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ABSTRACT
The development of a successful vaccine, which should elicit a combination of humoral and cellular
responses to control or prevent infections, is the first step in protecting against infectious diseases. A
vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be
effective in humans there are some issues that should be considered, such as the adjuvant, the route of
vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that
inoculation is by far the most commonly used method, injection has several potential disadvantages,
including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also
problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine
administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration
of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety.
Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated
that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against
pathogen infections. Here we review the development of noninvasive immunization with vaccines based
on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA,
RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine
administration will be more widely applied in the clinic in the near future.
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Introduction

Although some infectious diseases, including malaria, meningi-
tis, diphtheria, hepatitis B, tetanus, polio, measles, mumps, and
rubella, are now controlled in developed countries due to the
development of vaccines and good management of healthcare,
there is still a need to improve all healthcare systems and
reduce the economic disparities between developed and devel-
oping countries.1 Several outbreaks in developing countries of
infectious diseases, such as HIV/AIDS, malaria, tuberculosis,
dengue, influenza, and other respiratory diseases, occur each
year and are responsible for more than 54% of total mortality.
In developing countries, strategies are urgently needed to
prevent these diseases as are new approaches to developing spe-
cific drugs and protective vaccines, which are currently unavail-
able for some diseases. The available vaccines, such as for
hepatitis B and measles, elicit specific humoral and cellular
immunity and protect both immunized individuals and their
neighbors.2-4 However, these diseases are still seriously threat-
ening to human life, especially in developing countries.5 WHO
vaccination campaigns have decreased mortality, but improve-
ments in vaccine administration and storage are still needed.

The overwhelming number of vaccinations administered
worldwide over the last half century have been by injection.

Such vaccinations have been responsible for preventing mil-
lions of deaths per year from infectious diseases. Nevertheless,
there are reasons to consider routes of vaccination not involv-
ing injection. Of the possible vaccination methods, injection
has the advantages of low cost and quick delivery, and has an
excellent long-term record for safety in use across billions of
doses administered worldwide over more than the past half-
century.6 However, most needle-based vaccines require a cold
chain, which is expensive, due to the need for cold storage
rooms and cold transportation to maintain the vaccine at the
proper temperature.7 Temperature changes could destroy freez-
ing- or heat-sensitive vaccine vials, which would then need to
be destroyed. A study in Bangladesh demonstrated that, while a
cold chain could be maintained during storage of polio vaccine
at the district level and at health facilities, there were tempera-
ture fluctuations during transport. Temperatures >8�C (with a
maximum of 21�C) were detected in 5 of the 23 refrigerators
and 3 of 6 transported cold boxes when the vaccines were car-
ried from the district to local depots. Moreover, 17% of the vac-
cine carriers could not reach some remote destinations. In
addition, in African, Latin American, and some Asian coun-
tries, the electrical supply is not reliable and will require extra
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investment in generators or conversion to alternative sources,
such as solar energy, to provide consistent cold chain storage.8

Furthermore, hypodermic injection is not easy to perform at
home by the patients themselves and requires the help of
trained nurses.9 Moreover, hypodermic injection may result in
pain for patients, thus potentially leading to needle phobia,
especially in children.10,11 The improper disposal and reuse of
syringes contaminated with blood-borne pathogens are also
essential safety concerns, especially in developing countries.12,13

In recent decades, needle-free vaccine delivery systems have
been developed to improve safety, especially to healthcare pro-
viders and the community, after concerns regarding pandemics
and bioterrorism. Oral, intranasal (i.n.), and transcutaneous
vaccinations are promising noninvasive immunization methods
that stimulate mucosal immunity, which is one of the most
important components of the immune response. Mucosal
immunity not only protects against respiratory infections, such
as influenza, but also against systemic infections, such as tuber-
culosis (TB) and HIV.14 Vaccine delivered directly to the muco-
sal surface is rapidly and widely distributed and enhances
mucosal, cellular, and humoral immune responses.15 I.n. vacci-
nation against respiratory and gastrointestinal pathogens offers
several theoretical and practical benefits, such as avoiding the
need for extensive purification from bacteria and significantly
reducing the cost of training healthcare workers. Furthermore,
noninvasive vaccination eliminates needlestick injuries and
exposure of health workers to blood-borne pathogens, such as
HIV and hepatitis B, and there is no need to dispose of large
quantities of needles, which is a difficult problem in developing
countries.16 In contrast to mucosal immunization, transcutane-
ous vaccines are not degraded by enzymes or digestive acid,17

and microneedle patches are easy to carry during travel. In fact,
beyond the application in vaccine delivery, microneedle-medi-
ated vaccination also induces more efficient immunity, and it
has been widely used in the treatment of diabetes, Alzheimer’s
diseases, seborrheic keratosis, and tumors.18-21

Here we describe advances in oral, i.n., and transcutaneous
vaccination at different stages of development, including pre-
clinical and clinical trials and licensed vaccines. We focus on
vaccine technologies that are based on noninvasive immuniza-
tion with live attenuated virus, recombinant virus, inactivated
virus, viral subunits, virus-like particles, DNA, RNA, and anti-
gen expression in rice.

Noninvasive vaccines induce mucosal and systemic
immunity

The epithelial coating of mucous membranes constitutes the
largest immunologic organ, which has a greater probability of
infection if the microorganism crosses at least one of the body’s
protective mucosal barriers. These barriers are the respiratory
tract, gut, genital tract, conjunctiva, and urinary system. The
protection of mucosal membranes is conferred by the humoral
and T cell responses as well as the innate immune response,
and this system is collectively known as mucosa-associated
lymphoid tissue (MALT).22 MALT immunization is similar to
systemic immunization, which depends on efficient antigen
sampling and uptake, antigen presentation by antigen-present-
ing cells (APCs), and the production of effector and memory B

and T cells.23 MALT can be subdivided into gut-associated lym-
phoid tissue (GALT), which includes lymph nodes, Peyer’s
patches, and isolated lymphoid follicles, and nasopharyngeal-
associated lymphoid tissue (NALT), which includes tonsils/
adenoids, inducible bronchus-associated lymphoid tissue, and
lymph nodes.

Unlike systemic immunization, mucosal immunization
depends on the secretion of IgA by plasma cells.24 Locally,
secreted IgA (sIgA) binds to the Ig receptor (pIgR) at the baso-
lateral surface of mucosal epithelial cells and is then actively
transported into the lumen by transcytosis,25,26 where it regu-
lates viral and bacterial infections at the oral and i.n. mucosal
surface. The sIgA antibodies bind to pathogens to inhibit their
interaction with, and uptake by, epithelial cells but deliver the
pathogens to antigen-presenting cells (APCs).27 In GALT loca-
tions, the precursors of IgA plasma cells are generated in local-
ized zones of organized lymphoid induction sites and gut
lymph nodes.28,29 These structures are found in the small intes-
tine and appendix, where the B cells are activated at the germi-
nal centers (GCs). The generation and maturation of IgA-
producing B cells are promoted by follicle DCs, T follicular
helper cells, and macrophages, which secrete cytokines, such as
TGF-b, IL-10, and IL-4,30 and help the B cells to generate long-
lasting memory cells with high levels of somatic mutation.31,32

The NALT in humans is localized in the salivary glands, the
paired palatine and tubal tonsils, and the unpaired pharyngeal
and lingual tonsils and has similar functions as GALT. The ton-
sils consist of follicular germinal centers, the extrafollicular
areas, the mantle zones, and the reticular crypt epithelium on
the surface. The epithelium contains M cells, DCs, na€ıve B and
T cells, and memory B cells. Unlike GALT, the tonsils generate
plasma cells with a production of 70% IgG and 30% IgA. How-
ever, the paired tubal tonsils and unpaired pharyngeal tonsils
produce sIgA, which blocks entry into the epithelia cells. Like
GALT, the germinal centers are associated with somatic muta-
tion and differentiation into B memory cells.33

In addition, it has been observed that mucosal and transcu-
taneous immunization induce systemic immune responses that
are further enhanced by activated dendritic cell (DC) migration
from the mucosa to the lymph nodes and spleen.27 It has also
been observed that, with the help of L-selectin on the cell sur-
face,34 systemic IgG B cells migrate into the mucosa from bone
marrow, and, vice versa, that induced antigen-specific T and B
cells leave the Peyer’s patches via the efferent lymphatics
through thoracic duct lymph and are disseminated to the sys-
temic circulation. They then enter the mucosa of the gut, respi-
ratory system, salivary and mammary glands, and reproductive
tract.35,36

Oral vaccination preclinical applications

Oral vaccination is the best method for vaccine administration
because of the ease of regulatory compliance and low cost. Oral
immunization is a standard needle-free technique that has been
used especially in vaccine campaigns against influenza (chil-
dren), poliomyelitis, rotavirus, typhoid fever, cholera, and other
diseases.22 However, only a few vaccines have an oral formula-
tion, since there are issues that may affect protective immune
responses. For example, antigen should travel intact to the
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lumen of the intestine without degradation by the acidic envi-
ronment of the stomach.37,38 Otherwise, the antigen concentra-
tion could diminish from levels capable of inducing an
immune response to an anergy response. However, a good vac-
cine like the poliomyelitis vaccine passes through the digestive
tract to the intestine, where the M cells in the Peyer’s patches
(PPs) of the GALT37 lack a mucus layer on their apical side and
efficiently transport oral vaccines to APCs by transcytosis,27,39

In fact, APCs are essential cells for the initiation of local and
systemic immunity; therefore, developing vaccine carriers tar-
geting APCs is a good strategy to improve the immune
response.3

Oral delivery has been tested in development of viral and
bacterial vaccines that were attenuated by repeated passages
in tissue culture or by chemical mutagenesis. This approach
was first demonstrated in a mouse model by sublingual
immunization with a live attenuated Japanese encephalitis
virus vaccine and a recombinant modified vaccinia virus,
which induced virus-specific IFN-gC CD4C and CD8C T
cells. However, IL-17C CD4C T cells were also increased
after sublingual immunization.40

Intriguingly, DNA vaccines delivered by live attenuated Sal-
monella typhimurium (JOL911) effectively protected mice from
lethal infection by H1N1 influenza virus, while i.n. administra-
tion did not. However, virus copy numbers in the lungs were
lower following oral and i.n. immunization compared with the
lungs of the PBS-vaccinated control group.41 In another study,
attenuated S. typhimurium was used to orally deliver a Trichi-
nella spiralis paramyosin DNA vaccine to mice. The orally vac-
cinated mice were effectively protected from T. spiralis
infection, and their antibody responses showed significant
mucosal sIgA and systemic IgG2a and a significant increase in
Th1 (IFN-g, IL-2) and Th2 (IL-4, -5, -6, and -10) cytokines.42

Oral immunization with antigens carried by engineered viruses
has demonstrated that GALT elicits both humoral and cellular
immune responses that protect against several infectious dis-
eases. The most frequently used engineered virus is adenovirus,
which has been used in phase I clinical trials. Several reports
have demonstrated that adenovirus vaccine can be adminis-
tered orally to prevent different kinds of infection. Lubeck
developed human adenovirus type 7 (Ad7) and type 4 (Ad4)
vaccines containing hepatitis B surface antigen. After oral
immunization of chimpanzees with these two vaccines, the ani-
mals generated significant antibody responses and effective
protection against hepatitis B virus.43 In another study, skunks
and foxes were vaccinated with an Ad5 vaccine expressing the
rabies glycoprotein gene. The vaccine was instilled into the
mouth cavity, resulting in a 100% survival rate for street rabies
virus-challenged animals.44 Furthermore, studies with mice
orally vaccinated with a replication-deficient adenovirus
(Rad68) vaccine containing the measles virus nucleocapsid pro-
tein generated a significant splenic cytotoxic T cell response (in
70% of the mice) and antibody response (in 89% of the mice).45

Oral administration of adenovirus vaccine also protected the
mice from HIV, Ebola, influenza virus, and botulism.46-49 In
another study by Lin et al., vaccination with live attenuated gas-
troenteritis virus incorporating CpG DNA in pigs enhanced the
IgA level in the intestinal tract and the IgG level in the serum
after oral immunization.50

Currently, influenza vaccines are administered intramuscu-
larly or intradermally, which induces mainly humoral
responses against hemagglutinin (HA) and neuraminidase
(NA) proteins. These proteins are polymorphic, especially in
the exposed domains subject to the immune system.51,52 Never-
theless, these routes of immunization are less effective in stimu-
lating mucosal immunity,53,54 and a split-flu vaccine in
combination with the adjuvant methylglycol chitosan and/or
CRX601 administered sublingually was recently found to
improve the systemic and mucosal immune responses equiva-
lently or to a greater extent than intramuscular vaccination.55

Subunit vaccines based on virus-like particles (VLPs) that
self-assemble from viral structural proteins and related antigens
is another technology used to stimulate GALT and induce pro-
tection.56 This type of vaccine demonstrated that oral immuni-
zation with recombinant Baccillus subtilis expressing cholera
toxin B subunits and Helicobacter pylori urease B spores con-
tributes to a reduction in the H. pylori load.57

As mentioned above, one of the problems of vaccination in
developing countries is maintaining a cold chain to preserve
vaccines. To solve this problem, Borde et al. developed a liquid-
killed, multivalent whole-cell-plus-enterotoxin-B-subunit oral
vaccine against enterotoxigenic E. coli that induced an effective
immune response in mice.58 This vaccine is given together with
dmLT (an enterotoxin-derived adjuvant) as a dry-powder vac-
cine formulation that is especially suitable for low-income
countries.

Another problem for vaccination is the acidic conditions of
the gastrointestinal tract, which could degrade protein, DNA,
and polysaccharide vaccines, leading to weak immune
responses and poor protection against pathogens. New carriers
are needed to design available vaccine payloads, with effective
release within their residence time in the small intestine and
optimization of the adjuvant capabilities of the delivery
vehicles,41 and some researchers have studied this kind of deliv-
ery vehicle. For example, Yagnik, et al. constructed a recombi-
nant Lactococcus lactis bacterium that expressed protein A of
Shigella dysenteriae type 1 in its outer membrane, which elicited
a higher immune response after oral administration than by the
i.n. route.59 In another study, Oliveira et al. delivered a plasmid
DNA vaccine expressing the Rho1 GTP protein of Schistosoma
mansoni with chitosan nanoparticles. In vivo experiments sug-
gested that oral administration increases the expression of
modulatory IL-10 and thereby reduces liver pathology.60 More-
over, green-synthesis silver nanoparticles formulated with an
H5N1 DNA vaccine generated effective antibody and cellular
immunity in chicken against influenza.61 In fact, oral vaccine
administration has several protective effects besides the control
of infectious diseases. For example, the cholera toxin B subunit,
a component of a licensed oral cholera vaccine, increased
mucosal healing in the colon after oral administration.62 Also,
hepcortespenlisimut-L, a drug used as a liver cancer vaccine,
has proven to be safe, effective, and fast-acting against hepato-
cellular carcinoma following oral administration.63

Interestingly, a transgenic rice-based vaccine has been
developed, which has proven to be safe and resistant to the
acidic environment in the stomach.64 It has been demon-
strated that rice-based allergic vaccines as well as cholera
and diarrhea vaccines can be delivered efficiently by oral
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administration.65-67Taken together, these results suggest that
oral vaccine administration has great potential for protec-
tion against different diseases.

Clinical trials for oral vaccines

Several clinical trials for oral vaccines have been conducted and
are listed in Table 1. However, these vaccines have not been
approved by the US FDA. Rotarix and RotaTeq are two vac-
cines that have been internationally approved by WHO; how-
ever, they have been shown to be less effective (in 40–70% of
subjects) in third world countries.68 The live attenuated rotavi-
rus vaccine Rotavin-M1 was evaluated for safety and immuno-
genicity, and the IgA seroconversion rate of Rotavin-M1 was
found to be comparable to the licensed vaccine Rotarix.69 How-
ever, infants who received Rotavin-M1 shed virus in their stool
at a lower frequency (44–48%) than those who received Rotarix
(65%). More infants are expected to be enrolled in subsequent
trials.

Another vaccine in clinical trials is designed against entero-
toxigenic E. coli (ETEC), which is endemic in developing coun-
tries and may produce an infectious diarrhea. Chen et al.
conducted a phase 1 clinical trial to demonstrate the safety and
immunogenicity of the peru-15pCTB vaccine against ETEC
infection. This study showed that antitoxin antibody serocon-
version increased fourfold compared with baseline. Further-
more, the vaccine was safe up to 1 £ 1010 CFU.70 Recently, an
oral recombinant adenovirus influenza vaccine induced signifi-
cant increases in haemagglutination inhibition and high titers
of microneutralization antibodies with only mild adverse

effects.71 Moreover, Euvichol is an inactivated bivalent oral
cholera vaccine tested during a phase I clinical trial in healthy
South Korean adult males that induced a seroconversion rate of
95% and 45% for Vibrio cholera O1 and O139, respectively.72

H. pylori is associated with gastritis, peptic ulcer, and gastric
adenocarcinoma and is present in the gastric mucosa in at least
half of the world population. Until now, there has been no
effective vaccine. However, an oral recombinant H. pylori vac-
cine substantially reduced infection by this bacterium in clinical
trials that had enrolled 4464 children from China.73

One more vaccine assessed in a phase I clinical trial is an
adenovirus vaccine that expresses both an avian influenza A
hemagglutinin and a TLR3 ligand. This vaccine exhibited cyto-
toxic T cell responses and IFN-g production that were similar
to the placebo group.74 Efficient immunogenicity and fewer
adverse effects were also found in these clinical trials. However,
more participants are needed to further evaluate these vaccines
before they receive final approval.

Licensed oral vaccines

The poliomyelitis is a disease caused by three poliovirus sero-
types (P1, P2, and P3). The virus enters through the mouth,
goes to the gastrointestinal tract, then to the lymph nodes and
may travel to the central nervous system, where the virus repli-
cates in the motor neural cells, resulting in motor neuron
destruction causing muscle weakness and paralysis.75 The first
immunotherapy was developed in the 1950s by Hammon et al,
who used immunoglobulins of individuals recovered from
poliovirus infection and injected into patients with active

Table 1. Clinical trials for oral immunization.

Type of vaccine Sponsor institution Stages Clinical registration Time

Live attenuated Shigella vaccine University of Maryland Phase 1 NCT01531530 2012
Live attenuated enterotoxigenic Escherichia coli (ETEC) vaccine TD Vaccines A/S Phase 1 NCT00901654 2009
Live attenuated typhoid vaccine International Centre for Diarrhoeal Disease Research, Bangladesh Phase 2 NCT01019083 2009
Live attenuated cholera vaccine International Vaccine Institute Phase 2 NCT00741637 2008
Live attenuated Shigella sonnei vaccine NIAID Phase 1 NCT01336699 2011
Live attenuated Salmonella vaccine University of Maryland Phase 1 NCT01129453 2010
Live attenuated Shigell a vaccine PATH Phase 1, NCT02934178, 2016

Phase 1 NCT01813071 2013
Live attenuated HRV vaccine National Institute of Hygiene and Epidemiology, Vietnam Phase 2 NCT0137757169 2011
Live attenuated typhoid fever vaccine Avant Immunotherapeutics Phase 2 NCT00498654 2007
Live attenuated ETEC–cholera vaccine NIAID Phase 1 NCT0065410870 2008
Adenoviral Norovirus vaccine Vaxart, Inc. Phase 1, NCT02868073, 2016

Phase 1 NCT03125473 2017
Adenoviral influenza vaccine Vaxart, Inc. Phase 1, NCT02547792, 2015

Phase 1 NCT0168829771 2012
Adenovirus vaccine PaxVax, Inc. Phase 1 NCT03160339 2017
Replication-competent adenovirus HIV vaccine PaxVax, Inc. Phase 1 NCT02771730 2016
Replicating Ad26-vectored HIV-1 vaccine International AIDS Vaccine Initiative Phase 1 NCT02366013 2015
Adeonoviral RSV vaccine Vaxart Phase 1 NCT02830932 2016
Inactivated cholera vaccine International Centre for Diarrhoeal Disease Research, Bangladesh Phase 1 NCT01019083 2009
Inactivated polio vaccine Bilthoven Biologicals Phase 3 NCT02766816 2016
Inactivated Shigella vaccine PATH Phase 1 NCT01509846 2012
Inactivated cholera vaccine International Centre for Phase 2, NCT02742558, 2016

Diarrhoeal Disease Research, Bangladesh Phase 1/2 NCT02823899 2016
Inactivated enterotoxigenic Escherichia coli (ETEC) vaccine U.S. Army Medical Research and Materiel Command Phase 3 NCT02556996 2015
Inactivated Vibrio cholerae vaccine EuBiologics Co.,Ltd Phase 1 NCT0170753772 2012
Live attenuated/inactivated cholera vaccine University of Maryland Phase 2 NCT02145377 2014
Recombinant Helicobacter pylori vaccine Jiangsu Province Centers for Disease Control and Prevention Phase 3 NCT0230217073 2014
HIV-1 MN peptide vaccine NIAID Phase 1 NCT00000798 2001
Avian influenza DNA vaccine Vaxart Phase 1 NCT0133534774 2011

HRV, human rotavirus; RSV, respiratory syncytial virus; ETEC, enterotoxigenic Escherichia coli; NIAID, National Institute of Allergy and Infectious Diseases.
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disease. This passive immunization was 80% effective reducing
the effects of poliomyelitis, but there were not enough plasma
to stop the pandemic.76

The first candidate polio vaccine was developed by Hilary
Koprowski and colleagues. This poliovirus vaccine was attenu-
ated in cotton rats with low pathogenicity in rhesus monkeys.
It was first tested in 20 healthy individuals, and they were all
seroconverted and did not get sick.77 The first licensed vaccine
(inactivated poliovirus vaccine, IPV) contains P1, P2 and P3
serotypes, which were grown in Vero cells (monkey kidney
cells) and inactivated with formaldehyde. The volunteers who
were immunized showed seroconversion with 3 doses.78 This
vaccine was developed by Sack et al., and it was licensed for
serotypes P1 and P2 in 1961 and type 3 in 1963.79 The oral
poliovirus vaccine (OPV) was the second vaccine, composed of
the subtypes P1, P2 and P3 after the repeated passage of the
virus in tissue cultures of cynomolgus monkey kidney at sub-
physiological temperatures. The subtype viruses are able to
infect cells in the gut but is unable to replicate in the neuron
system. The vaccine was developed by Sabin et al., and it was
licensed in 1962. OPV vaccine was tested in several countries
(Netherlands, Mexico, Japan, USSR, Brazil, Cuba, etc.) before
its license.80 Due to its low cost, it became the most used polio
vaccine worldwide. However, OPV can cause vaccine-associ-
ated paralytic poliomyelitis (VAPP) especially in developing
countries with a risk of 4.7 cases per million births. VAPP were
associated with subtype 2 poliovirus.81 This vaccine was discon-
tinued in the USA in 2000. The VAPP has not been observed
using the IPV. OPV is used in many countries. However,
WHO recommends that all countries using only OPV add at
least 1 dose of IPV to the schedule.82 The IPV and OPV are
licensed in the USA but only IPV is currently used. The most
recent version of IPV contains three serotypes of polio vaccine
viruses, but grown single component in Vero cells, inactivated
with formaldehyde, and has trace amounts of antibiotics as a
preservative. Both polio vaccines have saved millions of lives
and have prevented deformities, which result in significant
high cost in health care especially in developing countries.

Adenovirus types 4 and 7 cause acute respiratory disease,
which is a threat to the health of US military personnel.83 A
vaccine for adenovirus types 4 and 7 (BL 125296/0) is orally
administered and after 26 days in a clinical trial showed a sero-
conversion rate of 94.5% and 93.8% against types 4 and 7,
respectively.84 The protective effect of this vaccine was associ-
ated with serotype-specific neutralizing antibodies. While there
were adverse effects, such as nasal congestion, cough, sore
throat, headache, abdominal pain, arthralgia, nausea, and diar-
rhea, there was not a significant difference from the placebo
group. Vaxchora is an FDA-approved oral vaccine for individu-
als of ages 18–64 years traveling to cholera-endemic areas. This
vaccine was 90.3% effective after 10 days and 79.5% effective
after 90 days against V. cholerae O1, and the immune mecha-
nism is associated with vibriocidal antibody titers.85

RotarixTM, an orally administered vaccine, is used widely to
protect from gastroenteritis and reduce its occurrence after
hospitalization.86,87 A clinical study showed that after one
month of a two-dose series, 86.5% of 787 recipients of Rotarix
were seroconverted compared with 6.7% of placebo recipients.
A pentavalent vaccine, RotaTeq, was also shown to protect

against rotavirus gastroenteritis at different levels of severity by
increased IgA seroconversion.88,89 Both Rotarix and RotaTeq
are more suitable for protecting against severe gastroenteritis
(effective for 90% of patients) while less suitable against mild
infection (effective for 60–75% of patients).90 However, it has
been documented that the use of RotaTeq and Rotarix has been
associated with the development at a very low rate of intussus-
ception (»1:40,000 doses), and shedding from the vaccinee’s
stools, which may result in the infection of immunocompro-
mised individuals.27

Salmonella typhi causes typhoid fever, an acute, febrile,
enteric disease, which continues to be important in many parts
of the world.91 Vivotif is another vaccine against gut pathogens
and is administered by the oral route and is indicated for
immunization against S. typhi for adults and children older
than 6 years. This capsule vaccine should be administered in
four doses to induce a broad immune response, mainly includ-
ing serum IgG and IgA responses, mucosal antibodies, CD4C T
cells, and CD8C cytotoxic T cells.22,92-94 However, most of these
licensed vaccines are not recommended for infants due to the
lack of safety data for attenuated virus vaccines, and only rota-
virus vaccines are currently used in infants.27

The oral killed-cholera vaccines, Shanchol and Dukoral, are
safe, immunogenic, effective in the clinic, and are recom-
mended by WHO. However, they are not available in the US as
of this writing. It was found that vibriocidal antibodies against
V. cholera O1 Inaba, V. cholerae O1 Ogawa, and V. cholerae
O139 were effectively induced in adults, toddlers, and younger
children.95 In addition, Dukoral is safe and immunogenic in
Peruvian and North American volunteers.96,97 Sriskyi et al.
showed that TLR–MyD88 signaling may mediate immune
responses to the Dukoral vaccine.98 Furthermore, antigen-spe-
cific memory B-cell responses were not detected in Dukoral-
treated individuals, which explains the brief period of protec-
tion conferred by this vaccine.99

Preclinical evaluation of intranasal vaccination

Several diseases, such as influenza and pneumococcal disease,
threaten human life and are transmitted by the nasal route.
Nasal tissue is also an excellent route for vaccine administra-
tion, which has the advantage of requiring lower doses and
without exposure to extreme pH or digestive enzymes. Separate
from the main salivary glands and tonsil tissue, there are locally
draining lymph nodes that lie under the respiratory epithelium
of the nasal cavity, where antigens are also transported to DCs,
macrophages, and B cells by M cells. B lymphoblasts migrate to
and proliferate in the germinal centers where mucosal sIgA and
systemic IgG are induced.100 In parallel, mature DCs bearing
antigens migrate to the follicular B cell zone and interfollicular
T cell zone and activate T cells and B lymphoblasts by present-
ing antigens to them. The activated T and B cells then enter the
bloodstream to initiate systemic immunity at distant sites.101

Therefore, i.n. immunization can induce potent immunity, pro-
ducing effective protection against infectious disease while
helping to achieve widespread vaccination in developing
countries.

Studies of i.n. administration of vaccines have been con-
ducted using live attenuated influenza vaccines, which have
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generated protective immune responses. Fan et al., demon-
strated in rhesus macaques that i.n. vaccination with cold-
attenuated H5N1 virus induces neutralizing antibodies and an
HA-specific CD4C T cell immune response that is fully protec-
tive. Yang et al. also found that ferrets and mice immunized by
i.n. administration with live attenuated BJ/AA ca virus
produced high levels of sIgA that was protective against chal-
lenge with A/Beijing/501/2009 or A/California/07/2009 viral
strains.102-104 Furthermore, an engineered PR8 influenza virus
was generated that expressed the receptor-binding subdomain
of botulinum neurotoxin, resulting in a vaccine that protected
mice from botulinum and influenza at the same time using i.n.
administration.105 Moreover, an attenuated live viral vaccine
expressing a functional species-specific artificial microRNA
(PR8-amiR-93NP) was safe and led to cross protection for
mice from heterologous influenza virus strains after i.n.
immunization.106

Although vaccines induce protective immune responses
against infectious diseases, the adjuvant helps to accelerate and
enhance antigen-specific immune responses. Huang et al., com-
bined several adjuvants, including PELC, which is a squalene-
based water-in-oil-in-water emulsion stabilized by Span�85
(sorbitan trioleate), and poly(ethylene glycol)-block-poly(lac-
tide-co-e-caprolactone) (PEG-b-PLACL) together with LD-
indolicidin or alum and inactivated influenza virus to formulate
a vaccine that increased influenza-specific serological protec-
tion after i.n. vaccination.107

In addition, i.n. vaccines against other viruses and bacteria
have been developed. For example, when used for i.n. immuni-
zation, an rAd5-based vaccine combined with 2.0 £ 108 IFU
Ad5-IFNa as adjuvant facilitated the development of robust
specific antibodies and increased survival in guinea pigs
exposed to experimental Ebola virus.108 Malley et al. showed
that delivery of an inactivated non-encapsulated pneumococcal
vaccine and cholera toxin as adjuvant elicited protection
against nasopharyngeal colonization and invasive disease from
encapsulated pneumococci.109 Moreover, the combined immu-
nization of formalin-inactivated influenza vaccine and cholera
toxin significantly reduced the death rate in mice after lethal
infection by influenza A virus followed by group A streptococci.
These results showed the importance of preventing secondary
bacterial infections after prior non-lethal influenza exposure.110

It was also demonstrated that both i.n. and sublingual
administration of inactivated polio vaccines contributes to the
generation of polio-specific serum IgA in saliva, fecal extracts,
and intestinal tissues and to IgA-producing B cells in mouse
spleens. The level of polio-specific IgG induced by mucosal
immunity was much higher than that induced by the intramus-
cular route.111 Interestingly, Harakuni et al. showed that the
immune effects of i.n. administration on the mucosa against an
unrelated Japanese encephalitis virus are better than those
resulting from administration with oral and transcutaneous
immunization.112 These results suggest that it is necessary to
develop a more suitable method of noninvasive administration.

Likewise, subunit vaccines have been developed for delivery
by i.n. administration, which was found to protect mice from
the threat of Yersinia pestis. For example, Arnaboldi et al.
developed a tobacco mosaic virus (TMV)-based delivery plat-
form in which i.n. immunization of a subunit vaccine

consisting of Y. pestis virulence factors, including F1 and LcrV,
with TMV significantly reduced the morbidity and mortality of
Y. pestis, while subunit vaccines lacking TMV did not.113 Other
i.n. vaccine candidates have been tested with encouraging
results. One study showed that a lipopeptide complex including
a conserved extracellular domain of matrix protein 2 (M2e) of
influenza A virus induced the generation of IgA and IgG2b
antibodies and reduced the mortality of influenza-challenged
mice without adjuvant.114 Even when tested without adjuvant,
an i.n. vaccine delivery consisting of a nanometer-sized hydro-
gel (composed of a cationic cholesteryl group-bearing pullulan
[cCHP]) with a nontoxic subunit fragment of Clostridium botu-
linum type A neurotoxin BoHc/A strongly increased serum IgG
and sIgA antibody responses.115 Furthermore, the expressed
fusion protein, which included M2e and cholera toxin subunit
B in a vaccine delivered by the i.n. route, induced specific IgA
and IgG antibodies as well as T cell and memory B cell
responses and protected mice against heterologous influenza
virus.116 Recombinant vaccines administered with i.n. immuni-
zation have also been widely studied. Leishmanial recombinant
protein combined with cholera toxin protects mice from Leish-
mania infection by inducing IFN-g production following i.n.
administration.117 Another study found that immunization
with recombinant DnaJ (Hsp40) protein induced effective
immune antibodies and the release of IL-10, IFN-g, and IL-
17A against Streptococcus pneumoniae.118 Interestingly, non-
pathogenic Lactococcus lactis NZ9000, expressing pneumococ-
cal immunogenic proteins, protected against S. pneumoniae
and elicited innate and adaptive immune responses.119

Replication-deficient recombinant human adenovirus sero-
type rAd5 vectors were also constructed to express the N gene
of the pneumonia virus of mice (PVM) pathogenic strain
J3666. Its i.n. administration causes a PVM-specific CD8
response rather than increased serum IgG, which may result in
the effective protection of mice after PVM challenge.120

The effects of VLP vaccines administered by i.n. immunization
have also been widely investigated. A modular murine polyomavi-
rus-like particle delivered by i.n. immunization was used to display
the group A streptococcus (GAS) antigen J8i, which significantly
induced J8i-specific IgG and IgA antibodies and reducedGAS colo-
nized in the throat.121 Cai et al. showed that a combination of respi-
ratory syncytial virus (RSV) fusion protein VLPs and glycoprotein
VLPs increases protection against live RSV, with a reduction in
lung viral replication and histopathology damage.122 However,
some adjuvants, such as Toll-like receptor 3, ricin toxin B, TLR7
and nine of its agonists, and murabutide, need to be applied to
increase the immune response of VLP vaccines.123-126 Following i.
n. delivery of TLR7 and its nine agonists with Norwalk virus, VLPs
produce a more robust and broad spectrum of immune responses
than by oral administration.125

Other vaccines, such as those involving DNA immunized by
the i.n. route, need adjuvants, such as enterohemorrhagic E.
coli-secreted proteins and IL-6, to increase the immune
response.127,128 Currently, DNA vaccines can be delivered using
several biomaterials, such as the copolymer polyethyleneimine
and hollow Ag@SiO2 nanoparticles.129-131 In the same way,
mRNA can be transfected into both dividing and non-dividing
cells without entering the nucleus, resulting in higher gene
expression. Furthermore, mRNA vaccines may overcome

1722 Z. ZHENG ET AL.



specific mutations that frequently occur in patients. Li et al.
developed a system using a cationic cyclodextrin-modified pol-
yethylenimine 2 k conjugate with encoded HIV gp120 mRNA.
This system delivered by i.n. immunization provides strong sys-
temic and mucosal immune responses, cytokine production,
and a balanced Th1/Th2/Th17 T helper cell distribution. These
vaccines also overcame the nasal epithelial barrier to increase
mRNA paracellular delivery.132

Clinical trials for intranasal vaccines

MEDI-534 is a vaccine designed for delivery by the i.n. route
that is currently undergoing a clinical trial. It combines a live
attenuated respiratory syncytial virus (RSV) with parain-
fluenza-3 virus (PIV3), which causes lower respiratory tract ill-
ness in young children. This clinical trial demonstrated that
MEDI-534 has a potential immunogenic effect in both seropos-
itive and seronegative children.133-135 Furthermore, after three
doses of MEDI-534, the children were found to be 100% seror-
esponsive to PIV3 but only 50% to RSV. It was demonstrated
that a mutation generated in the transcription termination poly
A gene sequence upstream of the bPIV3N gene and the RSV
fusion protein F open reading frame reduced RSV F expression.
Although there was an association between this mutation and a
lower rate of RSV seroconversion, a larger sample size is needed
for definitive confirmation.136

A live attenuated i.n.-administered pertussis vaccine, BPZE1,
induced significant memory B cell responses against pertussis

toxin, filamentous haemagglutinin, and pertactin in 7 colonized
subjects out of 36 subjects who had received BPZE1.137,138 More-
over, BPZE1 had a protective effect against RSV, in part, by
markedly increasing IL-17 cytokines produced by CD4C T
cells.139 The peptide vaccine Vacc-4x was used for HIV therapy
and generated T cell responses and mucosal and systemic
humoral responses. However, different doses led to different
immune responses; hence, the clinical dosage and mechanisms
of immune regulation need to be further elucidated.140

Atmar et al. conducted a clinical trial to assess the effect of a
norovirus-like particle vaccine against norovirus, which causes
epidemics and sporadic acute gastroenteritis. This study
showed reduced frequencies of gastroenteritis and infection by
Norwalk virus and increased IgA seroconversion.141 A Norwalk
VLP vaccine also enhanced the levels of specific IgG antibodies
in subjects that had received a 100-mg vaccine dose and
enhanced the levels of IgA antibody-secreting cells in subjects
that received a 50-mg or 100-mg vaccine dose.142 Despite limi-
tations with regard to subject age, pregnancy, and health issues
of the currently licensed vaccines, an i.n. proteasome-adju-
vanted trivalent vaccine increased seroconversion and protec-
tion against infection.143 The clinical trials that have been
conducted for i.n. vaccines are listed in Table 2.

Licensed i.n. vaccines

The US FDA-approved, i.n.-delivered, licensed vaccines are the
influenza A (H1N1) 2009 monovalent pandemic flu vaccine

Table 2. Clinical trials for intranasal immunization.

Type of vaccine Sponsor institution Stages Clinical registration Time

Live attenuated RSV/PIV3 vaccine MedImmune LLC Phase 1 NCT00345670133 2006
Phase 1/2 NCT00767416134 2008
Phase 1 NCT00493285135 2007
Phase 1/2 NCT00686075136 2008

Live attenuated influenza vaccine Beijing Chaoyang District Centre for
Disease Control and Prevention

Phase 1 NCT02665871 2016

Live attenuated influenza vaccine MedImmune LLC Phase 1 Phase 2 NCT00112112 NCT00344305 2005
2006

Live attenuated influenza vaccine PATH Vaccine Solutions Phase 2 NCT01625689 2012
Live attenuated influenza vaccine University of Colorado, Denver Phase 2 NCT02474901 2015
Live attenuated Bordetella pertussis

vaccine
GRIEMHMRF Phase 1 NCT03137927 2017

Unmodified live attenuated Sendai
virus vaccine

St. Jude Children’s Research Hospital Phase 1 NCT00186927 2005

Live attenuated B. pertussis vaccine Institut National de la Sant�e Et de la
Recherche M�edicale, France

Phase 1, Phase 1 NCT01188512,137-139 NCT02453048 2010 2015

Adenovirus-vectored influenza vaccine Altimmune, Inc. Phase 1 NCT00755703 2008
Adenovirus vaccine NINAD Phase 1 NCT01806909 2013
Live attenuated/inactivated influenza

vaccine
St. Jude Children’s Research Hospital Phase 1 NCT00906750 2009

Inactivated influenza virus vaccine NanoBio Phase 1, Phase 1 NCT01333462, NCT01354379 2011
Corporation 2011

Inactivated influenza vaccine MedImmune LLC Completed NCT00808808 2008
RSV subunit vaccine Mucosis BV Phase 1 NCT02958540 2016
Pneumococcal subunit vaccine Genocea Biosciences, Inc. Phase 2 NCT02116998 2014
HIV gag peptides vaccine Oslo University Hospital Phase 1/2 NCT01473810140 2011
Recombinant RSV vaccine Bavarian Nordic Phase 1 NCT02864628 2016
Norwalk virus-like particle vaccine Takeda Phase 1/2 NCT00973284141 2009
Norwalk virus-like particle vaccine LigoCyte Pharmaceuticals, Inc. Phase 1 NCT00806962142 2008
Liposomal-based influenza vaccine Hadassah Medical Organization Phase 1/2 NCT00197301 2005
Proteosome-adjuvanted influenza

vaccine
Hvivo Phase 1/2 NCT02522754143 2015

RSV, respiratory syncytial virus; PIV3, parainfluenza virus type 3; GRIEMHMRF, Gamaleya Research Institute of Epidemiology and Microbiology, Health Ministry of the Rus-
sian Federation.
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and the FluMist� trivalent and quadrivalent seasonal flu vac-
cines. These vaccines activate the immune responses of individ-
uals of ages 2–49 years, who are protected against influenza
disease caused by the pandemic (H1N1) 2009 virus, while the
FluMist trivalent vaccine was designed against two influenza A
and one influenza B strains.144 The first approved FluMist
quadrivalent vaccine was intranasally delivered against H1N1
and H3N2 2009 virus and B strains by Yamagata and Victo-
ria,145,146 who demonstrated that the quadrivalent and trivalent
vaccines are safe and immunogenic.146 Vaccination with Flu-
Mist quadrivalent vaccine may increase protection against both
B strains covered by the trivalent vaccine.146 Another intranasal
live attenuated vaccine, Nasovac-S, has been approved in India,
as its safety and efficacy were confirmed after administration to
a large population.147

Even though intranasal vaccines are alternatives to replace
the injectable ones and have shown vaccine efficacy, there was
an inactivated intranasal influenza vaccine, known as Nasalflu
licensed in Switzerland, which was removed from the market
because of its association with relative risk of Bell’s palsy. This
vaccine contained hemagglutinins from three influenza viruses
(A/Bayern H1N1, B/Beijing, and A/Wuhan H3N2) and E. coli
heat-labile enterotoxin (HLT). The prelicensure clinical trials
of this vaccine showed no sign of Bell’s palsy in 1218 vaccine
recipients.148,149,150 However, Mutsch et al. conducted a
matched case-control research and a case-series analysis in
German-speaking regions of Switzerland after the vaccine was
licensed in Switzerland, and they found a strong association
between the inactivated intranasal influenza vaccine and Bell’s
palsy. The disease was only observed in patients who received
the intranasal vaccine but not the ones inoculated with the par-
enteral influenza vaccines.150 They estimated that the relative
risk of Bell’s palsy was 19 times the risk in the controls, corre-
sponding to 13 excess cases per 10,000 vaccinees within 1 to
91 days after vaccination. These kinds of cases have indicated
the importance of preclinical safety studies, wherein it requires
longer period of observation.150

Transcutaneous vaccination

Transcutaneous vaccination is delivery through the skin and
has several advantages, such as that the epidermis contains sev-
eral types of immune cells, including DCs, langerinC cells
(LCs), T lymphocytes, NK cells, macrophages, and mast
cells151,152 Epidermal Langerhans cells are special DCs, respon-
sible for controlling immune responses in the skin, and they
are defined by their localization in the epidermis and the
expression of CD1a and langerin (CD207). The latter molecule
is a receptor of C-type lectin, which recognizes the pathogen-
associated molecular pattern (PAMP) on the surface of differ-
ent pathogens. After the interaction, followed by langerin-
mediated endocytosis, the LC migrates to the lymph nodes to
activate the immune response153,154 Transcutaneous immuni-
zation may enable efficient presentation of the antigen to the
immune cells of the skin, inducing a rapid and efficient
immune response.

One of obstacles for transcutaneous immunization is the
stratum corneum (the dead cell layer) of the skin, which is diffi-
cult to penetrate. Several studies have designed different

adjuvants and delivery systems using different chemical and
physical approaches to improve immune responses without the
use of needles. Microneedle patches effectively deliver antigens
into APCs of the epidermal and mucosal compartments.
Although mucosal and systemic immunity are induced by
transcutaneous immunization, the specific mechanisms are still
not well understood.155 Belyakov et al. demonstrated that the
migration of DCs and LCs carrying an HIV peptide construct
with CT, LT, or CpG oligodeoxynucleotides to the lungs
induced a significant cytotoxic T lymphocyte (CTL) response
in the systemic circulation and the strongest response in the
lung after transcutaneous priming and transcutaneous boost-
ing,155 and these results may partially explain mucosal immu-
nity. During this process, the LCs induced Th1 and Th2
responses after treatment with antigen-delivering microneedle
vaccination. This effect was confirmed in a study in which LC-
depleted mice were vaccinated with microneedles coated with
subunit influenza vaccine. The results showed that 95% of the
vaccine was eliminated from the skin of wild type mice,
whereas 65% of the vaccine was eliminated in LC-KO mice.
This mouse strain also had impaired humoral and cellular
immune responses, with reduced Th1 and Th2 profiles in com-
parison with wild type mice.156

Due to the rapid development of microfabrication manufactur-
ing, immunization with microneedles has recently received
increased attention in the vaccine field. Currently, microneedle
types include solid (for direct tissue pretreatment), drug-coated,
deep, dissolving, and hollow.157 Several materials, including poly-
mers, colloidal silica, ceramics, steel, glass, sugar, hydrogel, and
alumina, are used for microneedle fabrication.158-164 Each type of
microneedle employs different mechanisms for vaccine delivery.
Solid microneedles are generally made of stainless steel with a
diameter of 500 mm, which directly generates skin pores and
allows the penetration of topical vaccine through the surface of the
pretreated skin into the body,165 while drug-coated microneedles
are used to release the drug slowly into the skin.166 One of the
materials used in drug-coated microneedles is poly(L-lactide)
(PLLA), which is melted on silicone micro-molds with pyramidal
cavities at 200�C, compressed by a hot press, and cooled to RT.
Later, the microneedles are coated with lidocaine hydrochloride
monohydrate. The investigators found that delivery efficiency into
porcine skin was 69.1 § 15.1%, 77.2 § 13.5%, and 84.0 § 6.8%
after application at 1, 2, and 5 min, respectively, and that the lido-
caine was stable for 3weeks at different temperatures.166

In general, non-dissolvable microneedles are made of inor-
ganic materials, such as metal, silicon, glass, and ceramics,
while dissolvable microneedles are made from water-soluble
biopolymers, such as sulfate dextran and chondroitin, in which
the drugs are applied as a suspension that dissolves into the
skin.167 In fact, the eye may also be a target organ for micronee-
dle application.168 This technology can be applied to the deliv-
ery of DNA, viral capsid subunits, and inactivated and live
attenuated vaccines. The delivery of live attenuated vaccines
has several disadvantages, since the vaccine needs to be stored
and distributed at low temperatures, and reconstitution is
required before administration.169 However, measles virus,
which still greatly threatens the morbidity and mortality of chil-
dren worldwide,170 combined with excipient trehalose delivered
by steel microneedles generates immunity against measles
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comparable to subcutaneous injection.171 Furthermore, these
microneedle measles patches are significantly protected from
loss of titer for 30 days at room temperature, which meets the
WHO requirements for lyophilized vaccines.171,172

Edens et al. further developed a dissolving microneedle
patch fabricated with sucrose to evaluate the measles vaccine in
rhesus macaques.173 They showed that subcutaneous injection
and microneedle delivery generated equivalent titers of neutral-
izing antibodies. However, microneedle patches sustained a
higher level of activity and thermostability with increasing tem-
perature.174 In addition, Vrdoljak et al. vaccinated live recombi-
nant adenovirus and modified vaccinia Ankara vectors by
transcutaneous delivery using solid microneedle patches,175

which resulted in virus delivery and infection and elicited
humoral or CD8C T cell responses comparable to that pro-
duced by intradermal injection. Similarly, an adenoviral vector
vaccine delivered by microneedle conferred robust protective
immunity against Zika virus and malaria.176,177 Motivated by
the fact that the efficacy of live attenuated oral rotavirus vac-
cines is lower in developing countries, Wang et al. showed that
the administration of inactivated rotavirus vaccine with Micro-
nJet600� microneedles in neonatal gnotobiotic piglets gener-
ates comparable protective effects as intramuscular injection.178

Muller et al. developed a high-density microprojection array,
the Nanopatch, which delivers inactivated poliovirus vaccine
into the skin. These microneedle arrays led to the generation of
neutralizing antibodies against poliovirus in 100% of the rats
treated.179 Furthermore, influenza subunit vaccines were
administered by microneedle patches to increase humoral
immunity.180,181 The influenza subunit vaccine coated onto
microneedle patches elicited an effective immune response
comparable to intramuscular injection in guinea pigs.182

Microneedles have also been used to deliver recombinant
antigen vaccines, in which anthrax antigen delivered by micro-
needle induces the same effective immune response and protec-
tion as intramuscular injection.182 Furthermore, recombinant
trimeric soluble hemagglutinin derived from the A/Aichi/2/68
virus generates a higher immune response, including more
antigen-specific Th1 cells, a greater mucosal antibody response,
and a higher survival ratio than unmodified hemagglutinin.180

Likewise, VLP vaccines confer effective protection against
influenza using the microneedle route. It was shown that
microneedle delivery of H5N1 influenza VLPs results in a sus-
tained B and T cell response. Intriguingly, application to
human skin induced the CD207C Langerhans cells to migrate
toward the basement membrane.183 Kim et al. showed that het-
erologous VLPs incorporating the influenza virus M2 extracel-
lular domain generated a broad cross-protective effect against
H1N1, H3N2, and H5N1.184

In another study, Hooper et al. developed an experimen-
tal smallpox DNA vaccine that included four vaccinia virus
genes (4pox), which was delivered using plasmid DNA-
coated microneedle arrays and induced a greater antibody
response than a live virus vaccine delivered by scarifica-
tion.185 Moreover, vaccination with a DNA vaccine encod-
ing influenza hemagglutinin (HA) using microneedles
generated better protection against viral challenge, enhanced
humoral and cellular immunity, and enabled dose sparing
compared with intramuscular injection.186,187 Although

DNA vaccines are thermostable, inexpensive, and rapidly
manufactured, their use under clinical conditions is limited
due to their insufficient immunogenicity.188,189 To solve this
problem, different kinds of non-viral delivery systems,
including cationic lipids, polymers, and liposomes, com-
bined with microneedle delivery have been used for DNA
vaccines.190-192 Kim et al. used a pH-responsive polyelectro-
lyte to deliver polyplex-based DNA vaccines, which gener-
ated robust humoral and memory immune responses.193

Recently, a DNA vaccine coated onto PLGA/PEI or PLGA-
PLL/gPGA nanoparticles and administered with micronee-
dle patches effectively reduced the risks of H1N1 and Ebola
virus, respectively.194,195 Arya et al. showed that a DNA
vaccine for rabies dissolved in microneedle patches gener-
ated a robust immune response, providing the potential to
protect individuals from biting infection—at least to some
extent.196 Co-stimulation with A/PR8 influenza hemaggluti-
nin DNA and an A/PR8 inactivated virus vaccine delivered
by microneedle patches produced significant protection
against A/PR8 and 2009 H1N1 virus. This study demon-
strated that a single immunization with a microneedle vac-
cine or by intramuscular injection induced rapid memory
responses with high HAI titers upon heterologous virus
challenge, inducing protective immunity.197

Currently, microneedle-mediated vaccine delivery has also
been investigated in the clinic, and several studies have been
completed (Table 3). However, the number of clinical trials of
microneedle vaccines has been much fewer than the number of
trials for oral or i.n. vaccines. Rouphael et al. conducted a phase
I clinical trial for inactivated influenza vaccine (fluvirin) admin-
istered by microneedle. It was shown that the adverse reactoge-
nicity is mild and transient after dissolvable microneedle
administration, and patients exhibited an increased neutraliz-
ing antibody titer, seroconversion rate, and level of seroprotec-
tion similar to intramuscular injection.198 Microneedle patches
administered by participants themselves also generated
increased immune responses.198 However, no microneedle-
related vaccines have been licensed to date.

Table 3. Clinical trials for transcutaneous immunization.

Type of vaccine Sponsor institution Stages
Clinical
registration Time

Inactivated influenza
vaccine

Georgia Institute of
Technology

Phase 1 NCT02438423198 2015

Inactivated influenza
vaccine

The University of
Hongkong

Phase 1 NCT01049490 2010

Inactivated influenza
vaccine

NanoPass Technologies
Ltd

Phase 1 NCT00558649 2007

Inactivated influenza
vaccine

The University of Hong
Kong

Phase 1 NCT01304563 2011

Inactivated influenza
vaccine

Assistance Publique –
Hôpitaux de Paris

Phase 1/2 NCT01707602 2012

Hepatitis B vaccine The University of
Hongkong

Phase 2/3 NCT02621112 2015

Varicella zoster virus
vaccine

The University of
Hongkong

Phase 1 NCT02329457 2014

Inactivated polio
vaccine

Eastern Virginia
Medical School

Phase 2 NCT01686503 2012

Fluzone intradermal
vaccine

National Institute of
Allergy and
Infectious Diseases

Phase 1 NCT01518478 2012
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Further improvements

Vaccination is an important approach to controlling infectious
diseases, especially in developing countries where technology
and sanitary conditions are less advanced. The most common
infectious diseases are malaria, TBC, HIV, and gastroenteritis
produced by drinking or eating contaminated water or food.
The ability to induce a balanced immune response after immu-
nization is determined by several factors, including the route of
immunization, the microorganism target organ, the nature of
the antigens, the immunological vehicles, and the cytokine and
T cell responses. The formulation of vaccine antigens is a prob-
lem in developing countries, where the conditions for both
storage and transportation of vaccines to the countryside are
suboptimal, and the cold chain may fail at either of these
steps.8,199 Most of the vaccines are intramuscular with good
results protecting millions of people, and where their adminis-
tration is not needle-free, especially in developing countries
where syringes are reused, it may be dangerous for both medi-
cal personnel and patients.

In this review, we have made the case that needle-free vac-
cines, especially those for mucosal delivery and transcutaneous
immunization, are good alternatives, which induce systemic
and mucosal immune responses and activate sIgA/IgG plasma
B cells and T cells that pass through the lymphatic system to
infection sites. However, further studies are needed to resolve
some remaining issues. Currently, several clinical trials of nee-
dle-free vaccination systems are being conducted using oral, i.
n., and microneedle administration, which are showing effec-
tive protection against pathogens. However, there are only a
few licensed oral and i.n. vaccines that are noninvasive com-
pared with the very large majority of vaccines that are injected.
According to the clinical trial results for licensed vaccines,
adverse effects may occur. Moreover, because the safety of the
attenuated mucosal virus is not easy to evaluate in infants, new
vaccines should be carefully evaluated before use in infants.
Although there are some significant advantages of vaccination
by the oral and i.n. routes, they face unique challenges. Oral
vaccination can be affected by low pH, proteolytic enzymes,
and biological barriers in the gastrointestinal environment.3

Furthermore, the short absorption time may constrain the
absorption of related vaccines.200 Considering the degradation
of vaccines, the vaccine dose should be increased to generate
comparable effects as parenteral injection,38 and this may
reduce vaccine efficacy. Therefore, there are more stringent
requirements for the vaccine carrier to achieve an efficient
immune response, as a larger dose may lead to risks of immune
tolerance, and constant antigen stimulation of the GI tract may
limit the response of the GALT to biohazard antigens rather
than protecting against these antigens.201,202

Intranasal vaccines also face short residence times and
higher dose requirements.101 Furthermore, physiological bar-
riers also hinder the absorption of vaccines. Thus, solving these
problems and increasing the vaccine efficacy of mucosal vac-
cines is still a challenge.

The other needle-free delivery system, the microneedle, has
had few vaccination clinical trials. Moreover, the microneedles
by themselves may not easily break the skin and may cause
swelling during insertion, which has in part reduced their

application in the clinic. While a recent study showed that
microneedle arrays filled with liposomes loaded with hepatitis
B virus vaccine induced robust systemic and mucosal immunity
by oral immunization,203 the alternative route of administration
of microneedle arrays should also be considered. Furthermore,
vaccines coated onto solid microneedles or dissolving micro-
needles may gradually dry out, reducing vaccine activity and
possibly producing discomfort when used over a longer period.
Therefore, microneedle-mediated vaccination also needs more
study to improve its application in the clinic.

The mechanisms of invasive vaccines should also be eluci-
dated for rational vaccine improvement. Overall, although non-
invasive administration of vaccines still has several unsolved
problems, it has a promising future, since it has the potential to
reduce the cost of the vaccines in developing countries, reduce
the risk of contamination with other needle-borne diseases,
and speed vaccine administration during pandemics. In addi-
tion, one of the important challenges of the needle-free system
is to design delivery vehicles that protect the vaccines, which
should improve results in clinical applications.
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