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ABSTRACT

Despite a vast expansion in the availability of epige-
nomic data, our knowledge of the chromatin land-
scape at interspersed repeats remains highly lim-
ited by difficulties in mapping short-read sequenc-
ing data to these regions. In particular, little is known
about the locus-specific regulation of evolutionarily
young transposable elements (TEs), which have been
implicated in genome stability, gene regulation and
innate immunity in a variety of developmental and
disease contexts. Here we propose an approach for
generating locus-specific protein–DNA binding pro-
files at interspersed repeats, which leverages infor-
mation on the spatial proximity between repetitive
and non-repetitive genomic regions. We demonstrate
that the combination of HiChIP and a newly devel-
oped mapping tool (PAtChER) yields accurate pro-
tein enrichment profiles at individual repetitive loci.
Using this approach, we reveal previously unappre-
ciated variation in the epigenetic profiles of young TE
loci in mouse and human cells. Insights gained us-
ing our method will be invaluable for dissecting the
molecular determinants of TE regulation and their
impact on the genome.

INTRODUCTION

Transposable elements (TEs) are interspersed genomic re-
peats that impact genome function in myriad ways (1),
and whose complexity and abundance varies widely across
species, as a result of intricately entangled evolutionary pro-
cesses (2,3). In humans and mice, for example, TEs make
up around half of the genome, and include a wide variety
of endogenous retroviruses (ERVs), long interspersed nu-
clear elements (LINEs) and short interspersed nuclear el-

ements (SINEs), amongst others (4,5). The genetic mobil-
ity of TEs, as well as their frequent involvement in recom-
bination events, means that they are an abundant source
of genetic diversity. On one hand, TE insertions can have
deleterious consequences, having been implicated in a large
number of genetic diseases (6) and somatic re-arrangements
in cancer (7,8). On the other hand, TE-derived sequences
can be co-opted by the host genome to generate new genes
(9), cis-acting regulatory elements (10) and 3D structural
elements (11,12). Moreover, transcriptionally active TEs
can regulate gene in trans, functioning as long non-coding
RNAs (13,14), as well as trigger inflammatory responses
through viral mimicry (15,16).

With the growing appreciation for the impact of TEs
on genomic, cellular and organismal function comes the
need to have a detailed and genome-wide understanding
of TE regulation. TE chromatin is tightly and dynamically
regulated during development (17,18), carefully balancing
the deleterious and beneficial consequences of TE activ-
ity, with epigenetic TE deregulation being associated with
developmental defects and disease (19–22). Whilst many
of the generic TE chromatin regulators have been uncov-
ered (23–25), a complete understanding of how TEs be-
come active/silenced and impact the local genomic envi-
ronment requires locus-specific information. However, the
study of TE regulation has been notoriously hampered by
difficulties in mapping short-read epigenomic data to in-
dividual TE copies, due to their repetitive nature (26,27).
Evolutionarily young TEs are particularly problematic, as
individual copies have not diverged sufficiently from each
other to allow for unique alignments across the full length
of the elements. For clarity, we refer to uniquely aligned
reads as those with a single best-scoring alignment, whereas
non-unique reads have multiple best alignments with equal
score.

One commonly used approach to retain non-unique
reads from epigenomic profiling methods such as ChIP-
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seq, is to align reads to consensus sequences of particu-
lar TE families, thus gaining a family-wide view of epige-
netic patterns. A similar outcome can be achieved by har-
nessing ambiguous alignments from some short-read align-
ers, such as bowtie2 (28), which assign non-unique reads
randomly. Such ambiguously-mapped reads can be used
to generate generic patterns for different TE families (see,
e.g. (29,30)). However, family-wide patterns mask differ-
ences in the epigenetic profiles of individual elements. In-
deed, locus- and tissue-specific expression of young LINE-
1 elements supports the notion that there is marked epi-
genetic variation between closely related elements of the
same family (31,32). Yet the epigenetic determinants for ex-
pression of individual TEs remain unclear. There is also a
limited understanding of the locus-specific binding of tran-
scription factors to TEs (33), which is largely limited to
either evolutionarily old TEs, or to transcription factors
that bind the ends of repetitive regions, benefiting from ad-
jacent unique sequences for read alignment. Yet multiple
transcription factors bind LINE-1 elements in internal re-
gions that cannot be covered by uniquely mapped reads
(29), but their contribution to locus-specific expression is
unknown.

Some computational solutions have been specifically de-
veloped to assign reads from ChIP-seq data to individ-
ual repetitive elements, which use uniquely aligned reads
to inform the assignment of multi-mapping reads (34,35)
(also reviewed in (26,27)). The reliance on the existence of
uniquely aligned reads places a clear limitation on the use
of these methods to regions of high sequence similarity.
Furthermore, whilst similar approaches are appropriate for
RNA-seq data (36–38), where the signal is expected to be
evenly distributed along each element, protein binding pro-
files are often localised and therefore difficult to detect using
strategies that rely on uniquely mapped reads. Long-read
solutions to mapping the epigenetic status of TEs are so far
largely limited to DNA methylation profiling, which can be
performed on unfragmented DNA (39). In contrast, gener-
ation of histone modification or transcription factor bind-
ing profiles traditionally require chromatin fragmentation
(∼300 bp) in order to achieve the desired resolution.

Here,we take advantage of the random 3D folding of
chromatin to guide the assignment of short sequencing
reads from interspersed repetitive elements (such as TEs)
to individual locations. We demonstrate the accuracy of
our approach using both simulated data and an orthogonal
method, and showcase its ability to uncover locus-specific
features of TE chromatin.

MATERIALS AND METHODS

Cell culture

E14 ESCs (ATCC CRL-1821) were grown in feeder-
free conditions in DMEM GlutaMAX medium (Thermo
Fisher) supplemented with 15% FBS, non-essential amino
acids, 50 �M 2-mercaptoethanol, antibiotic-antimycotic
(Thermo Fisher) and 1000 U/ml ESGRO LIF (Millipore).
MCF7 and 2102Ep cells were grown in DMEM GlutaMAX
medium (Thermo Fisher), supplemented with 10% FBS,

penicillin-streptomycin (Thermo Fisher) and non-essential
amino acids (Gibco).

Hi-MeDIP

Cells were crosslinked in 1% formaldehyde for 12 min, and
the reaction quenched with 1.25 M glycine for 5 min. Cells
were then washed three times in ice cold PBS contain-
ing protease inhibitors (Roche), flash frozen, and stored at
-80◦C. Thawed cells were resuspended for 30 min, with 5
million cells per 50 ml of ice-cold lysis buffer (10 mM Tris–
HCl pH 8, 10 mM NaCl, 0.2% Igepal CA-630, one tablet
protease inhibitor cocktail). After spinning down (650 g),
cells were washed in 1x DpnII buffer, and ∼5 million cells
were resuspended in 716 �l of 1.32× DpnII buffer. Cells
were permeabilised by adding 22 �l of 10% SDS and incu-
bating at 37◦C for 1 h (with rotation), then quenched with
150 �l of 10% Triton X-100, followed by another 1-h incu-
bation at 37◦C. Digestion was performed by adding 2750 U
of DpnII and incubating overnight at 37◦C. After spinning
down (650 g), the pellet was washed with 1× NEB2 buffer
and resuspended in 467 �l of 1.11× NEB2 buffer. Fill-in
was performed with dCTP/dGTP/dTTP (1.5 �l of each 10
mM stock), biotin-14-dATP (37.5 �l of 0.4 mM stock), and
50 U Klenow (NEB), for 1 h at 37◦C. The cell suspension
was then mixed with 5 ml ligation buffer (550 �l 10× liga-
tion buffer (NEB), 27.5 �l 20 mg/ml BSA (NEB) in water),
2000 U of 5 U/�l T4 DNA ligase were added, and cells in-
cubated for 4 h at 16◦C (with rotation). After DNA extrac-
tion (Allprep DNA/RNA mini kit, Qiagen), 1.5 �g DNA
were sonicated to 300–700 bp using a Bioruptor Pico for
4 cycles (30 s on, 30 s off) in a total volume of 100 �l in
H2O. DNA was made up to 180 �l in 1× TE, and sequenc-
ing adaptors were ligated using NEBnext Ultra II reagents.
For immunoprecipitation, DNA was first denatured at 95◦C
for 10 min, then cooled on ice, at which point a 20 �l in-
put sample was taken and frozen. To the remaining DNA,
20 �l 10× IP buffer (100 mM sodium phosphate pH 7, 1.4
M NaCl, 0.5% Triton X-100) and 2 �l 5mC antibody (Ac-
tive Motif 61479) were added, followed by a 2-h incubation
at 4◦C. Dynabeads Protein G (previously washed in 500 �l
0.1% PBS–BSA) were resuspended in 1× IP buffer, and 8
�l beads were incubated with the DNA:antibody for 2 h.
Beads were washed twice with 350 �l 1× IP buffer for 10
min at room temperature, then resuspended in 125 �l Pro-
teinase K digestion buffer (50 mM Tris–HCl pH 8.0, 10
mM EDTA, 0.5% SDS); the same was done to the stored
input sample. Proteinase K (35 �g) was added and the re-
action incubated at 65◦C for 30 min. The supernatant was
collected and DNA purified using SPRI beads. For purify-
ing ligation junctions, 5 �l Dynabeads MyOne Streptavidin
C1 beads (Life Technologies) were washed in 50�l Tween-
buffer (5 mM Tris–HCl pH 7.5, 0.5 mM EDTA, 1 M NaCl,
0.05% Tween-20) and resuspended in 83.5 �l 2× No Tween
Buffer (10 mM Tris–HCl pH 7.5, 1 mM EDTA, 2 M NaCl),
then mixed with 83.5 �l of DNA (150 ng maximum per 5
�l beads) and incubated at room temperature for 30 min.
Beads were washed twice with 500 �l Tween-buffer, then
once with 200 �l 1× no Tween buffer (5 mM Tris–HCl pH
7.5, 0.5 mM EDTA, 1 M NaCl), and resuspended in water.
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Library preparation was completed using NEBNext Ultra
II reagents.

Targeted bisulphite sequencing

ATLAS-seq (31) was adapted for bisulphite-treated DNA
to comprehensively map the genomic location and assess
the DNA methylation status of human full-length LINE-1
elements. The approach is focused on the youngest family
(L1HS), but it also catches a significant fraction of L1PA2
to L1PA8 elements. In brief, bs-ATLAS-seq follows these
steps: fragmentation of genomic DNA by sonication, liga-
tion of a methylated adapter, bisulphite treatment of linker-
ligated DNA, suppression PCR-amplification of LINE-1 5’
junctions, and asymmetric Illumina paired-end sequencing
(90 + 210 bp). Read #1 starts from a random position (son-
icated DNA break), while read #2 starts from a fixed se-
quence in L1 5’ UTR (internal promoter). With this design,
read #2 covers the 15 most 5′ CpG sites (1-207, relative to
L1HS consensus sequence). Mapping and methylation call-
ing used bismark 0.22.1 (40).

External datasets

The following publicly available datasets were used:
mouse ESC Hi-C (GEO: GSM2533818) (41); mouse
ESC H3K27ac HiChIP (GEO: GSE101498) (42); mouse
AML12 Hi-C (GEO: GSE141080) and H3K9me3 HiChIP
(GEO: GSE141113) (43); mouse ESC RNA-seq (GEO:
GSE122854) (44); MCF7 and 2102Ep RNA-seq (EBI ENA:
E-MTAB-3788) (31). More details about the sequencing
datasets used in this study can be found in Supplementary
Table S1.

Hi-C and HiChIP read alignment

Data were aligned to the mm10 or hg38 genome assem-
blies. To perform mapping of non-unique reads informed
by 3D spatial contacts, Hi-C and HiChIP data were aligned
by PAtChER, with -d set between 10 000 and 40 000 (pa-
rameter referred to as Sd in the results section). Where not
specified in the results, -d 10 000 was used for mouse data,
and -d 20 000 for human data. After alignment, read pairing
information was removed from BAM files using PAtChER’s
‘unpair’ tool. For comparison, uniquely aligned reads were
extracted by filtering for ‘PO:A:u’ or ‘PO:A:s’ alignment
types. To perform random mapping of non-unique reads,
the ends of Hi-C and HiChIP data were independently
aligned using bowtie2 (28), with default settings. Distances
between interacting fragments in Hi-C data were extracted
from alignments using HiCUP (45).

RNA-seq data processing

RNA-seq data were aligned using HISAT2 (46), and reads
with MAPQ lower than 2 were removed. Fragments per
gene were counted with htseq-count and normalised to the
total read count. Genes expression values were matched to
the nearest SVA (MCF7 and 2102Ep data) or MERVL-int
(mouse ESC data) element using BEDtools (47).

Bigwig tracks

Bigwig tracks were generated using deepTools (48). Primary
tracks were generated using bamCoverage, with CPM nor-
malisation. Enrichment tracks (normalised to input) were
generated using bigwigCompare, with –operation “ratio”, –
pseudocount 0.01 and –skipZeroOverZero. Average profiles
over selected TE families were generated with plotProfile (–
averageType “mean”), and heatmap profiles with plotHe-
atmap (–sortUsing sum). Genome browser snapshots were
generated using the WashU Epigenome Browser (49).

Peak detection

Peaks were detected from normalized bedgraph files (con-
verted from bigwig) using MACS2 (50) bdgbroadcall, with
different values for -C depending on the experiment (see
code repository for details). Peaks were intersected with ei-
ther LINE-1 regions of interest for comparison with bisul-
phite data, or with RepeatMasker annotations to generate
peak counts per TE family.

Coverage analysis

Coverage at RepeatMasker annotations was extracted using
SAMtools (51) bedcov with -d 1. Data on mouse polymor-
phic TEs (52) were used to remove reference B6 insertions
that are absent in all sequenced 129 strains.

Sim3C

To generate simulated Hi-C data that matched the interac-
tion distance profile of experimental Hi-C data, a modified
version of Sim3C (53) was used. In particular, the model was
changed to a mix of two geometric cumulative distribution
functions with different ‘shapes’ (shape1 = 8e-5, shape2 =
3e–6). The nbins parameter was set to 200 000 and alpha to
0.73 (weight of the second geometric CDF). Minor modi-
fications to the output format were also made. Sim3C was
then run with –dist uniform, -l 75, -e DpnII, -m hic, –simple-
reads, –efficiency 0.9, –anti-rate 0. The position of mapped
reads was compared against that of simulated reads using
custom scripts (see code repository). Files containing cor-
rectly assigned reads were used to generate accuracy tracks,
which in turn were used to extract mean accuracy values per
element (>1 kb) of selected TE families.

Minigenome

Sequences surrounding 960 mouse gene promoters were
extracted and concatenated to make an mm10-based
minigenome. A modified version of the minigenome was
generated by duplicating 3 kb-long regions to a position ly-
ing 3–50 kb downstream from the original position (16 dif-
ferent distances; n = 60 per distance). To assess mapping ac-
curacy and read recovery, reads aligning to either the origi-
nal or duplicate position were counted using htseq-count.
Note that the duplicate regions only contain misaligned
reads and no correctly aligned ones, as these regions were
artificially created. Therefore, to avoid biases when normal-
ising HiChIP data to a Hi-C control (for the enrichment and
peak analyses), Hi-C reads were simulated for the duplicate
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regions, as follows: (a) reads mapping correctly to the orig-
inal location were also assigned to the duplicate location;
(b) reads misassigned to the duplicate location were also as-
signed to the original location. The same Hi-C-based reads
were added to both the Hi-C and HiChIP data, to simulate
non-enriched duplicate regions. Receiver operating charac-
teristic curves for peak detection were generated by varying
the -C parameter in macs2 bdgbroadcall.

Long-range chromatin loops

To detect chromatin loops, contact matrices were gener-
ated at a 10 kb resolution using Juicer (54), with hg38 ref-
erence genome and DpnII restriction sites. Significant in-
teractions were generated using the dump command utilis-
ing the observed/expected method at a bin size of 10 000.
Lastly, chromatin loops were called using the HiCCUPS
tool at 10 kb resolution using Knight-Ruiz normalization
(54). The dump command was also used to extract the
number of reads interacting within each bin involved in a
chromatin loop. To assess the impact of chromatin loops
on mapping accuracy, MCF7 Hi-C data were mapped to
a minigenome focused on 200 chromatin loop anchors,
wherein 3kb-long regions at the middle of each anchor were
duplicated at the other end of the loop. For comparison, a
second minigenome was made where the same regions were
duplicated at a fixed distance of 50 kb away.

Hi-MeDIP data processing

To better assess the performance of PAtChER, read map-
pability was reduced by trimming Hi-MeDIP reads to 75 bp
prior to mapping. Htseq-count was used to count reads
mapping to two regions of LINE-1 elements: (a) a 5′ re-
gion, from 0 to 135 bp from the start; (b) an internal region,
from 75 to 210 bp from the start. Only regions containing
at least three CpGs covered by the targeted bisulphite data
were used. Normalised Hi-MeDIP enrichment values were
compared to the mean bisulphite signal at each region.

MERVL genomic context

MERVL-int elements were clustered based on their
H3K27ac profiles, using the k-means clustering function
of deepTools plotHeatmap. Distances to the nearest gene
were extracted using BEDtools, and matched to their ex-
pression value. Elements from each cluster were intersected
with a published annotation of spatial A and B compart-
ments (41).

RESULTS

3D chromatin information improves mapping coverage at TEs

The use of 3D conformation data from Hi-C experiments
has been improving the assembly of genomes for nearly a
decade now (55). We argued that a similar principle could
be employed to enable the assignment of non-unique short
sequencing reads to specific locations, provided the source
material was genomic DNA. In particular, we hypothesized
that coupling of ChIP-seq to Hi-C (56,57) would enable a
chromatin conformation-guided mapping of each end of

the sequencing library to produce a ChIP-seq track with
increased coverage of interspersed repeats. As Hi-C gen-
erates chimeric fragments between genomic regions lying
nearby in 3D space, non-unique reads can become paired
with unique reads from proximal genomic regions (Figure
1A). A non-unique end can therefore be assigned with a
relatively high degree of confidence to the mapping loca-
tion that lies nearest to the corresponding unique end (Fig-
ure 1A), given the steep inverse proportional relationship
between genomic distance and contact frequency (Figure
1B). Importantly, high frequency contacts within a few tens
of kb are largely due to random collisions, whereas non-
random interactions can normally only be discerned from
the latter at distances over 50 kb (58–60).

To leverage this alignment principle, we developed
PAtChER (Proximity-based Alignment of HiChIP Ends
to Repeats; https://github.com/MBrancoLab/PAtChER), a
computational pipeline to map the ends of HiChIP data
to produce ChIP-seq tracks with increased genomic cover-
age. When PAtChER encounters Hi-C fragments for which
only one end can be uniquely aligned, it uses its location as
an ‘anchor’ to search for possible mapping hits of the non-
unique end in its vicinity (Figure 1C). Instead of searching
for all possible hits of the non-unique end in the genome
(which would use up prohibitive amounts of processing
time), PAtChER restricts the search space by only looking
for hits within a user-defined distance from the unique end
(Figure 1C). If more than one hit is found within this search
space, the nearest hit to the unique end is chosen. The search
distance parameter (which we will denote here as Sd) there-
fore affects the stringency of the mapping, as hits beyond
this distance will not be considered.

We evaluated the gains in mapping coverage by using
PAtChER (Sd = 20kb) to process human and mouse Hi-C
data – our own Hi-C dataset from 2102Ep cells, and a pub-
lished dataset from mouse ESCs (41). We focused on repeats
longer than 1kb, and segregated them based on the degree
of divergence to the respective family consensus (which also
functions as a proxy to their evolutionary age). The frac-
tion of each element that is covered by at least 1 read was
measured and, as expected, lowly divergent repeats were
poorly covered by uniquely mappable reads (Figure 1D). In-
cluding reads recovered by the PAtChER mapping strategy
led to a dramatic increase in the coverage of these young
repeats, especially in human data (Figure 1D). The lower
mappability of young mouse repeats relative to human ones
is likely due to their higher abundance, as previously sug-
gested (61), which reduces the number of unique ‘anchor’
points to support PAtChER-based mapping. When focus-
ing on specific TE families, we found that PAtChER-aligned
data virtually fully covered young LINE-1 and SVA ele-
ments in human (Supplementary Figure S1A). Coverage
in mouse TEs displayed a bimodal distribution at some
young TE families (Supplementary Figure S1B). When
we excluded polymorphic elements known to be absent in
the 129 strain (52) (from which E14 ESCs were derived),
the distribution became largely unimodal, with IAPEz ele-
ments displaying a median coverage of 74% (Supplemen-
tary Figure S1C). Notably, unlike for uniquely mapped
reads, coverage by PAtChER-mapped reads increases sub-
stantially with sequencing depth, due to an increased proba-

https://github.com/MBrancoLab/PAtChER
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Figure 1. Harnessing Hi-C data to increase sequencing coverage at interspersed repeats. (A) Hi-C libraries generate chimeric reads between spatially close
genomic fragments. Uniquely mapping DNA fragments (purple) are more likely to interact with repetitive fragments (green) from nearby loci, due to the
high frequency of random collisions between tethered loci. (B) Frequency of 3D interactions as a function of inter-locus genomic distance, derived from
mouse ESC Hi-C data. (C) The mapping principle of PAtChER. Hi-C fragments with one uniquely mappable end (purple) and one multimapping end
(green) are processed by first aligning the unique end; a hit for the non-unique end is then sought within a user-defined distance (Sd) from the unique
end. (D) Coverage (% of bp covered by at least 1 read) of repetitive elements larger than 1kb as a function of their sequence divergence to the respective
consensus sequence. Hi-C data from human or mouse cells was processed by PAtChER, and compared against uniquely mapped reads alone. (E) Average
sequencing depth across L1HS (>5 kb) or MERVL-int (>4 kb) elements in PAtChER- or uniquely-aligned data. (F) Genome browser snapshots showing
examples of sequencing depth at L1HS (top) and MERVL (bottom) elements.

bility of capturing informative 3D contacts (Supplementary
Figure S1D).

Coverage by PAtChER-mapped data was generally even
across TEs, although this can be affected by the density of
restriction sites used during Hi-C library preparation (Fig-
ure 1E, note dip in L1HS coverage at a DpnII-poor re-
gion). Importantly, read density was markedly higher than
with uniquely mapped data alone, even though it was not
as high as in adjacent non-TE regions, as expected (Figure
1E, F). To deal with this uneven read depth, when apply-
ing PAtChER to HiChIP data, it is important to include a

Hi-C input control in order to normalise the signal (Figure
3A; see below). This allows quantification of enrichment for
proteins of interest at regions that would otherwise be ex-
cluded from sequencing data.

PAtChER maps non-unique reads with high accuracy

To test whether PAtChER assigns reads to their correct
locations, we first simulated Hi-C data using Sim3C (53).
Importantly, we adjusted the simulated model to ensure
that the interaction distance distribution matched that of
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our own Hi-C data (Supplementary Figure S2A). We used
PAtChER to map human and mouse Sim3C-generated data
using different values of Sd. To determine accuracy, we
calculated the percentage of PAtChER-mapped reads that
were assigned to the correct (simulated) location. Overall,
PAtChER yielded high mapping accuracy of non-unique
reads (>75%), with better performance in human than in
mouse data (Figure 2A). Whilst increasing the mapping
search distance (Sd) decreased PAtChER accuracy (Figure
2A), it led to gains in read recovery. We therefore sought
to evaluate the trade-off between accuracy and read recov-
ery at specific TE families. All human TE families tested
and several mouse ones (e.g. MERVL, IAPEz, ETnERV)
benefited from the increased read recovery that come with
higher values of Sd, without compromising substantially
on accuracy (Figure 2B; Supplementary Table S2). In con-
trast, accuracy at young mouse LINE-1 families dropped
rapidly with higher Sd values, arguing for the need to care-
fully choose Sd based on the target TE families of inter-
est. Elements lying in repeat-dense regions, such as IAPEy-
int (clustered on the Y chromosome) and certain Alu-dense
clusters, have notably reduced read recovery likely due to a
lower number of unique anchor points, yet maintain high
mapping accuracy (Supplementary Table S2). Mapping ac-
curacy also varied between copies of the same family (Sup-
plementary Figure S2B), depending on the local genomic
environment. To aid the quality control of results we have
generated genome-wide mapping accuracy tracks (Figure
2C; Supplementary Figure S2C; Supplementary Table S3).
This also enables an appreciation of how accuracy changes
within an element, as seen for LINE-1 elements, wherein
the 5′ end maps more accurately than the 3′ end, as ex-
pected from the abundance of truncated ORF2 fragments
within the human genome (Figure 2D; Supplementary Fig-
ure S2D).

We also evaluated mapping accuracy using real Hi-C
data, by aligning reads to a ‘minigenome’ containing ar-
tificially duplicated 3 kb-long regions, spaced out by vari-
able inter-repeat distances (Figure 2E). By comparing with
alignments to a non-modified, mm10-based version of the
minigenome (i.e. without the duplications), we could quan-
tify how many reads were recovered, and how many were
assigned to the original (correct) or duplicate (incorrect)
locations. Read recovery (% of reads at original location
in the modified minigenome over those in the mm10-
based minigenome) was dramatically higher in PAtChER-
mapped data when compared with unique reads, and in-
creased marginally with higher inter-repeat distance (Figure
2F; Sd = 20 kb). Mapping accuracy was in the same high
range as seen in Sim3C data, and expectedly increased with
increasing inter-repeat distance, reaching levels comparable
to uniquely mapped reads when the gap was 50 kb (Figure
2F; Sd = 20 kb). Other values of Sd provided trade-offs be-
tween accuracy and read recovery (Supplementary Figure
S2E), as already highlighted above.

Finally, we asked whether mapping accuracy could be af-
fected by non-random long-range interactions, which play
important roles in the spatial and functional organisation of
genomes (62). Long-range chromatin loops involving two
TEs of the same family could lead to read misassignment.
We therefore performed chromatin loop detection in two

human Hi-C datasets (MCF7 and 2102Ep cells), and com-
pared the number of reads involved in chromatin loops with
those involved in nearby random contacts. Irrespective of
the size of the interacting region, proximal contacts out-
weighed the number of reads involved in chromatin loops
by around 12-fold (Supplementary Figure S3A, B), suggest-
ing that chromatin loops are unlikely to significantly af-
fect mapping accuracy. To confirm this, we generated a new
minigenome wherein duplicated regions were placed at the
base of chromatin loops (Supplementary Figure S3C). Re-
assuringly, mapping accuracy remained high and similar to
that seen in a minigenome with duplicated regions placed
50 kb apart (Supplementary Figure S3D).

These results provided us with confidence that PAtChER
maps reads accurately, provided that adequate values of Sd
are chosen in a species- and TE family-specific manner.

Accurate protein enrichment detection at repetitive regions
using Hi-ChIP and PAtChER

Our main objective was to use PAtChER to map Hi-ChIP
data in a manner that produces ChIP-seq-like profiles at in-
terspersed repeats. To achieve this, it is critical to include a
control Hi-C library (equivalent to the input in ChIP-seq
experiments) that is used to control for uneven sequenc-
ing depth (Figure 3A). To test the quality and accuracy of
data processed in this manner, we again mapped data to the
minigenome containing artificially duplicated regions. We
used H3K27ac Hi-ChIP data from mouse ESCs (42), and
normalised it to Hi-C data from the same cell type (41). Vi-
sual inspection of normalised data showed that PAtChER
was able to reconstruct regions of H3K27ac enrichment at
the original location, whereas the duplicate region had a
much reduced signal (Figure 3B). In contrast, no enrich-
ment was seen at either region using only uniquely mapped
reads (Figure 3B).

We extended this analysis to all 960 duplicated regions
within the minigenome, first by calculating enrichment val-
ues at the both original and duplicate locations, and com-
paring them to enrichment values from mapping to the non-
modified, mm10-based minigenome. Enrichment values at
the original location of the modified minigenome correlated
well with those from the mm10-based minigenome (Fig-
ure 3C), showing that normalisation of HiChIP PAtChER-
aligned data enables detection of enriched regions at inter-
spersed repeats. Importantly, enrichment values were dis-
tinctly lower at the duplicate (incorrect) locations, with the
difference increasing for higher enrichment values (Figure
3C). This difference also increased with higher inter-repeat
distance (Figure 3D), as expected from the higher mapping
accuracy when repeats are further apart. To test how dis-
criminatory these differences in enrichment were, we per-
formed peak detection on normalised data using MACS2
(50). For optimised peak detection conditions, we found
that PAtChER enabled recovery of 60-75% of the expected
peaks, depending on inter-repeat distance (Figure 3E). The
false discovery rate for repeats separated by >15 kb was
5.6%, showing that peak detection is highly accurate for
this group (Figure 3E). By varying a key peak detection
parameter, we calculated an overall area under the curve
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Figure 2. PAtChER mapping accuracy. (A) Overall mapping accuracy of Sim3C-simulated reads. Human and mouse Hi-C data were simulated and mapped
with PAtChER using different values of Sd. For comparison, the accuracy for randomly assigned non-unique reads (by bowtie2) is shown (dashed line).
(B) The change in mapping accuracy of Sim3C data was compared against the change in number of mapped reads at selected TE families (elements >1 kb)
and for different Sd values. Read numbers are normalised against the value obtained using unique alignments (circles). (C) Genome browser snapshot of
read depth and mapping accuracy tracks for the human genome with Sd = 20 kb, using Sim3C data. (D) Average mapping accuracy profile across L1HS
(>5kb) elements, using Sim3C data. (E) Principle of the minigenome-based approach to assess mapping accuracy. Hi-C data was mapped to a minigenome
made up of 960 merged genomic segments, which contained either mm10 reference sequences, or were modified to include 3kb-long duplications at a
variable ‘inter-repeat’ distance from their original locations. Reads (purple lines) that cover the duplicated regions in the mm10-based minigenome become
unmappable uniquely in the modified genome. (F) Hi-C data mapped to the minigenomes (Sd = 20 kb) were assessed in terms of read recovery (% of reads
mapped at original location compared to a mm10-based minigenome alignment) and mapping accuracy (% of reads mapped to original, correct location),
as a function of inter-repeat distance.

(AUC) of 0.95 for repeats >15 kb apart, whereas uniquely
mapped data had an AUC of only 0.73 (Supplementary
Figure S4).

Overall, these analyses suggest that PAtChER process-
ing of HiChIP data enables accurate detection of genomic
regions of protein enrichment.

Validation of PAtChER outputs using an orthogonal method

As a final validation of PAtChER-aligned data at TEs, we
compared two orthogonal methods to map DNA methyla-
tion at interspersed repeats: (i) a combination of Hi-C with
methylated DNA immunoprecipitation (i.e. Hi-MeDIP),
followed by processing by PAtChER; and (ii) bisulphite se-
quencing of the promoter of young human LINE-1 ele-
ments, using a modified version of ATLAS-seq (31) that
provides locus-specific DNA methylation levels of the most
distal 210 bp of full-length LINE-1 elements. We performed

Hi-MeDIP and LINE-1 bisulphite sequencing on MCF7
(breast cancer) and 2102Ep (embryonal carcinoma) cell
lines. After PAtCHER alignment and normalisation of the
Hi-MeDIP data, we used only non-unique reads to mea-
sure the enrichment at the most internal part of the LINE-
1 region covered by bisulphite sequencing (Figure 4A). As
a comparison, we also analysed the more mappable 5′ end
of the bisulphite-covered region, calculating Hi-MeDIP en-
richments therein using only unique reads (Figure 4A).
We found a good correlation between Hi-MeDIP data and
bisulphite sequencing irrespective of whether unique (5′
end) or non-unique (internal region) reads were used, show-
ing good accuracy of PAtChER-processed enrichment val-
ues (Figure 4B). We obtained a similar outcome when in-
cluding both unique and non-unique reads (Supplementary
Figure S5A).

It is well established that the signal in MeDIP experi-
ments is affected by sequence composition, adding noise
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Figure 3. Accuracy of protein enrichment detection at repeats. (A) To produce ChIP-seq-like profiles from HiChIP data, parallel processing by PAtChER
of a Hi-C input is essential to allow for normalisation of uneven coverage. This can be done from the same cell prep (after cross-linking, digestion, ligation)
by dividing it into two before the immunoprecipitation step. (B) H3K27ac HiChIP data were mapped to the mm10-based and modified minigenomes
(see Figure 2E), and normalised to Hi-C input data. Genome browser snapshot demonstrates how PAtChER recreates a peak of H3K27ac enrichment
at the original position, as seen in the mm10 minigenome. (C) H3K27ac enrichment values at original (correct) and duplicate (incorrect) locations in the
modified minigenome, and compared with the enrichment at the original location in the mm10 minigenome. (D) H3K27ac enrichment values at original
and duplicate locations as a function of inter-repeat distance. (E) Peak detection performance at modified minigenome as a function of inter-repeat distance.
The true positive rate is the % of mm10 peaks that are found at original location in the modified minigenome. The false positive rate is the % of duplicate
locations where peaks were detected.

to comparisons between different genomic regions. A more
quantitative approach is to analyse the difference in signal
between two samples at the same loci. We therefore cal-
culated the difference in enrichment between MCF7 and
2102Ep, which yielded a strong correlation with bisulphite
data (Figure 4C; Supplementary Figure S5B). Importantly,
the correlation between the two techniques is very simi-
lar when comparing uniquely aligned data (at the 5′ end)
with PAtChER-aligned non-unique reads (at the internal
region; Figure 4C). Examples of individual loci showcase
the robustness in PAtChER-derived enrichment values over
uniquely mapped data (Figure 4D).

Finally, we performed peak detection on the normalised
data, considering either all PAtChER-aligned reads, or only
unique ones. In both cases, peaks were rarely detected in
regions of low bisulphite signal, with most peaks lying in
hypermethylated regions with >75% methylation (Figure
4E). Unique reads were sufficient to detect peaks at 40%
of hypermethylated regions at the 5′ end, where mappabil-
ity is relatively high, but this value was lower within the less
mappable internal region of LINE-1s (Figure 4E). Using
PAtChER-aligned data led to a clear improvement in peak
detection over uniquely aligned data, with 62-64% of hy-
permethylated regions overlapping with peaks (Figure 4E).
Notably, PAtChER-aligned data performed equally well
in both LINE-1 regions, showing that internally detected
peaks are of high confidence.

This genome-wide orthogonal validation using a highly
quantitative technique demonstrated that PAtChER data
provides reliable detection and quantification of protein en-
richment at evolutionarily young interspersed repeats.

PAtChER-processed data reveals TE copy-specific epige-
nomic profiles

Having validated PAtChER-processed data through multi-
ple approaches, we sought to gain insights into TE chro-
matin profiles at the level of individual elements. Our Hi-
MeDIP analysis had already revealed locus- and tissue-
specific patterns of LINE-1 DNA methylation that could
not be appreciated from uniquely mapped reads alone (Fig-
ure 4E). To expand this analysis, we looked for repeat
families wherein more DNA methylation peaks could be
detected when comparing PAtChER-processed reads with
uniquely aligned reads. Apart from young LINE-1 ele-
ments, a number of other young TE families were associ-
ated with DNA methylation peaks, including SVA F ele-
ments (Figure 5A). Indeed, most SVA elements larger than
1kb displayed localised DNA methylation enrichment that
could not be appreciated from uniquely mapped data (Fig-
ure 5B, C). SVA elements are known to harbour regula-
tory activity, including in pluripotent cells (63), suggesting
that their hypomethylated status in 2102Ep embryonal car-
cinoma cells (when compared to MCF7) could be related
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Figure 4. Validation of PAtChER-processed data using an orthogonal method. (A) DNA methylation of human LINE-1 elements was profiled using
Hi-C combined with antibody-based enrichment of DNA methylation (Hi-MeDIP) and processing by PAtChER, and compared to data from a targeted
bisulphite sequencing approach that measures DNA methylation at the first 210 bp of LINE-1 elements. Enrichment values were calculated using either
unique reads from the 5′ end, or using non-unique reads from a less mappable internal region. (B) Correlation between PAtChER-processed Hi-MeDIP
enrichment values and bisulphite sequencing data (expressed as % of methylated CpGs) at both LINE-1 regions, in MCF7 and 2102Ep cells. (C) The
DNA methylation difference between MCF7 and 2102Ep cells was calculated using data from either Hi-MeDIP or bisulphite sequencing and compared,
yielding a strong correlation for both LINE-1 regions (Pearson’s R is displayed). (D) Genome browser snapshots displaying bisulphite and Hi-MeDIP data
at LINE-1 elements with preferential methylation in either MCF7 (left) or 2102Ep (right) cells. (E) Peak detection was performed on PAtChER-processed
or uniquely aligned data. The plots display the percentage of peaks overlapping each LINE-1 element region, depending on their bisulphite methylation
status.

to gene regulatory activity. However, we found no evidence
of an overall association with the transcriptional activity of
neighbouring genes (Supplementary Figure S6A). It may be
that specific elements do play regulatory roles, such as in the
well-characterised example of the PARK7 locus (64) (Sup-
plementary Figure S5B), but testing this possibility would
require genetic and/or epigenetic editing experiments (63).
Having copy-specific chromatin profiles can thus enable the
identification of candidate gene regulatory loci. We also
generated Hi-MeDIP data for mouse ESCs, which revealed
a larger number of DNA methylation peaks at young TE
families when comparing PAtChER processing to uniquely
mapped data, including at IAPEz and RLTR10 elements
(Supplementary Figure S6C, D).

We then processed published HiChIP data for H3K9me3
(43), a major TE-silencing mark that often displays a broad
distribution that is difficult to assess from uniquely mapped
reads (65). Similar to DNA methylation in ESCs, H3K9me3
in AML12 hepatocytes showed a higher number of peaks
at young TE families when processed by PAtChER (Fig-
ure 5D). Many of these peaks were located deep within
the respective element, in areas that are not covered by
uniquely mapped reads, as exemplified by the distribution
of H3K9me3 at MERVL elements (Figure 5E, F). Map-
ping approaches that assess TE family-wide patterns can
reveal such internally located peaks, but fail to capture
the variability between individual elements. Indeed, when
we mapped the data using bowtie2 (28), which randomly
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Figure 5. Revealing TE chromatin variation using HiChIP and PAtChER. (A) The number of DNA methylation peaks (from Hi-MeDIP) detected in
MCF7 for each TE family was compared between PAtChER- and uniquely-aligned data. (B) DNA methylation enrichment profiles at SVA elements larger
than 1kb in MCF7 and 2102Ep cells. Each line in the heatmap represents a single SVA locus. (C) Genome browser snapshot of an example SVA locus
where the DNA methylation profile can only be appreciated from PAtChER-aligned data. (D) Comparison of PAtChER and unique H3K9me3 peaks
overlapping different TE families in mouse AML12 cells. (E) H3K9me3 enrichment profiles at MERVL-int elements larger than 4kb in AML12 cells.
PAtChER and uniquely aligned data are compared with bowtie2-aligned data, where non-unique reads are randomly assigned a best location. (F) Genome
browser snapshots of MERVL loci where clear differences in H3K9me3 enrichment are visible that cannot be appreciated from uniquely- or bowtie2-
aligned data. (G) H3K27ac enrichment profiles at MERVL-int elements larger than 4kb in mouse ESCs. K-means clustering divided the elements into
highly (1) or moderately (2) enriched, unenriched (3), and not covered (4). (H) Distance of MERVL elements in each cluster to annotated genes. P-values
are from chi-squared tests, corrected for multiple comparisons using the Benjamini-Hochberg method. (I) Expression distribution of genes within 100kb
of MERVL elements in each cluster. P-values are from Wilcoxon tests, corrected for multiple comparisons. (J) Overlap of MERVL elements in each cluster
with annotated A/B spatial compartments in mouse ESCs. N/A indicates elements overlapping unannotated regions. P-values are from chi-squared tests,
corrected for multiple comparisons.
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assigns non-unique reads, enrichment hotspots were found
evenly distributed across MERVL copies (Figure 5E, F). In
contrast, PAtChER captured differences in H3K9me3 de-
position between elements of the same family, revealing epi-
genetic differences that may affect or be affected by the local
environment.

Finally, we investigated the distribution of an active hi-
stone mark (H3K27ac) in mouse ESCs, where several TE
families are known to be active and play important roles
(14,44,66). Using deep H3K27ac HiChIP data (42), we
compared PAtChER-aligned reads with unique alignments,
and random assignment of non-unique reads. Of particu-
lar notice was the MERVL family, which after PAtChER
processing displayed marked variation in H3K27ac enrich-
ment between individual elements, including within the in-
ternal coding regions, which could not be appreciated by
the other two approaches (Figure 5G). MERVL elements
are highly active during the 2-cell stage of mouse preim-
plantation development, and are thought to facilitate zy-
gotic genome activation via gene regulatory activity (67–
69). Although MERVL elements are only transcribed in a
small proportion of ESCs (68), our data showed that a sub-
set of elements are enriched in H3K27ac (Figure 5G). We
therefore asked whether H3K27ac-enriched elements were
embedded within a distinct genomic environment. K-means
clustering divided elements into groups with high enrich-
ment (cluster 1), moderate enrichment (cluster 2), and low
to no enrichment (cluster 3) (Figure 5G). A fourth cluster
contained few aligned reads, and may constitute polymor-
phic elements that are not present in the 129 genome of E14
ESCs. A slightly higher proportion of elements from en-
riched clusters (cluster 1 and 2) were positioned intrageni-
cally when compared with cluster 3 elements (Figure 5H).
A more prominent difference was found when we analysed
the expression levels of genes within 100kb of MERVL ele-
ments, with those lying near cluster 1 and 2 being substan-
tially more active than genes near cluster 3 elements (Figure
5I). Accordingly, cluster 1 and 2 MERVL elements were pre-
dominantly found within the so-called A compartment of
spatial genome organisation (characterised by euchromatic,
active regions), whereas most cluster 3 elements were found
within the B compartment (characterised by heterochro-
matic, inactive regions) (Figure 5J). This suggests that in
ESCs, the surrounding chromatin and 3D environments are
major determinants of MERVL epigenetic status. There-
fore, the dramatically distinct landscape of the 2-cell stage
(70–73) may facilitate MERVL expression and enable its
functional roles therein.

DISCUSSION

We have presented here a strategy for generating protein–
DNA binding profiles at interspersed repeats using data
from HiChIP or similar methods. HiChIP is now a well-
established technique that is used by an increasing number
of laboratories, and for which commercial kits are available.
Therefore, the experimental implementation of our strategy
is already well supported, and the only additional require-
ment is the use of PAtChER to process the data, making
our solution highly accessible to other researchers.

We have shown through multiple approaches that
PAtChER-processed data is accurately mapped. Whilst the
level of accuracy varies between species, TE family, and even
individual elements, using different values of Sd and filter-
ing data based on mapping accuracy information can help
to ensure that results are reliable. It is also worth noting
that, when detecting areas of enrichment, any mis-aligned
reads are more likely to decrease sensitivity than yield false
positives because, unlike areas of true enrichment, align-
ment errors will be randomly distributed. This prediction
is supported by the low rate of Hi-MeDIP peak detection
at hypomethylated human LINE-1 elements (Figure 4D).
Peak detection using the minigenome approach also dis-
plays a low false positive rate (Figure 3E), and we believe
this to be a conservative estimate, because here the random
spread of mis-aligned reads is limited by the fact that there
are only two copies of each repeat. We propose that the
use of similar minigenomes (i.e. pseudo reference genomes)
could be used in a flexible and bespoke manner to estimate
false positive rates from any HiChIP dataset, taking into ac-
count the size and spacing of TEs of interest. We have also
shown that long-range chromatin loops have no discernible
effect on mapping accuracy, due to their much lower con-
tact frequency when compared to proximal random interac-
tions (Supplementary Figure S3). Nonetheless, the poten-
tial bias generated by cases of particularly strong interac-
tions between repeats should not be overlooked. These spe-
cific cases can be assessed by extracting and analysing long-
range interactions from the Hi-C or HiChIP data used for
PAtChER-based mapping.

A number of changes can be employed to the workflow
presented. Namely, all the HiChIP datasets analysed here
relied on restriction enzymes for the initial chromatin diges-
tion, which can lead to uneven coverage, as seen for L1HS
elements (Figure 1E). This limitation can be easily over-
come by the use of existing restriction-independent diges-
tion strategies (74,75), which result in more even coverage
of the genome. We also note that to attain adequate cover-
age of young TEs requires a relatively large amount of se-
quencing for large genomes (Supplementary Figure S1D).
These sequencing requirements are similar to those of high-
resolution HiChIP experiments where the objective is to
map 3D interactions. Nonetheless, we suggest that when
the objective is to apply PAtChER solely to obtain ChIP-
seq-like profiles, sequencing requirements can be reduced
by the use of capture probes to specific TE families (76),
thus focusing the sequencing efforts on the regions of in-
terest. Finally, similar to essentially all past ChIP-seq ex-
periments, we have restricted our analyses to elements an-
notated within reference genomes. A more accurate assess-
ment of the TE epigenomic landscape would require tak-
ing into account variation at polymorphic TE loci. Inter-
estingly, our coverage analysis showed that reads are not
mis-assigned to reference B6 TEs that are absent in the 129
mouse genome (Supplementary Figure S1C), suggesting
that PAtChER can identify these ‘absent’ variants. More-
over, spatial genomic contacts can also be used to identify
non-reference TE insertions, as previously shown (76). It
may therefore be possible to design computational strate-
gies to analyse HiChIP data in a manner that delivers epige-
nomic profiles at non-reference insertions, although not
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having complete sequences for those insertions constitutes
a significant limitation.

Recently, a solution for profiling protein–DNA interac-
tions based on long-read Oxford Nanopore Technologies
(ONT) sequencing was proposed, termed DiMeLo-seq (77).
It combines antibody-directed local DNA adenine methy-
lation, followed by ONT sequencing. Whilst TEs were not
analysed in this study, and therefore the robustness and va-
lidity of the data at interspersed repeats remain unclear,
DiMeLo-seq nonetheless promises in principle to be a vi-
able long-read-based alternative to our short-read-based
approach. The two different approaches have a different set
of advantages and disadvantages. We have listed some of
the current limitations of our approach above. Regarding
DiMeLO-seq, it critically depends on efficient in situ DNA
methylation, and requires whole genome ONT sequencing,
which is currently expensive. Additionally, ONT sequenc-
ing remains relatively error prone when compared to short-
read sequencing, and requires large amounts of input DNA
– unlike HiChIP, which can be performed on small cell num-
bers (42). Therefore, we believe that the existence of com-
plementary approaches is important, and will enable cross-
validation of results.

Using PAtChER-processed HiChIP data, we have
demonstrated that TEs harbour a large degree of epige-
nomic variation between elements of the same family,
despite a high degree of sequence similarity. Coupling
this information to existing and developing approaches
to profile TE transcriptional activity (78) will enable a
comprehensive dissection of the epigenetic determinants of
TE expression. We also propose that profiling H3K36me3
(which is a robust predictor of transcription (79)) or RNA
polymerase II binding using HiChIP and PAtChER is an
additional strategy to accurately measure TE transcription.
Given the capacity of TEs to regulate gene expression in cis
(10), knowledge of which loci are in an active or inactive
chromatin configuration will also be invaluable to dissect
the landscape of TE-derived gene regulatory elements,
and to inform experiments designed to establish causal
relationships. By unlocking the access to a large fraction
of the genome that has thus far remained hidden, the
combination of HiChIP and PAtChER will finally enable
a full exploration of the diverse and intriguing epigenetic
relationships between TEs and their host genomes.
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