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Sandhoff disease, Tay-Sachs disease, and the GM2 acti-
vator deficiency (Fig. 1A) are lysosomal storage disorders 
known as the GM2 gangliosidoses [reviewed in (1)]. They 
are rare autosomal recessive conditions caused by muta-
tions in the HEXB (Sandhoff disease), HEXA (Tay-Sachs 
disease), or GM2A (GM2 activator deficiency) genes. The 
HEXA and HEXB genes code for the -hexosaminidase  
(-N-acetyl-D-hexosaminidase, EC 3.2.1.52)  and  sub-
units, respectively, which dimerize to form the three iso-
forms of -hexosaminidase: A (), B (), and S () 
(Fig. 1A). The GM2A gene encodes the GM2 activator pro-
tein, a GM2 ganglioside-binding protein (Fig. 1A). Because 
-hexosaminidase A, assisted by the GM2 activator protein, 
initiates the degradation of GM2 ganglioside through re-
moval of the terminal -linked N-acetyl-galactosamine resi-
due, mutations that inactivate any of these three genes 
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is a lysosomal storage disorder characterized by the absence 
of -hexosaminidase A and B activity and the concomitant 
lysosomal accumulation of its substrate, GM2 ganglioside. It 
features catastrophic neurodegeneration and death in early 
childhood. How the lysosomal accumulation of ganglioside 
might affect the early development of the nervous system is 
not understood. Recently, cerebral organoids derived from 
induced pluripotent stem (iPS) cells have illuminated early 
developmental events altered by disease processes. To de-
velop an early neurodevelopmental model of Sandhoff dis-
ease, we first generated iPS cells from the fibroblasts of an 
infantile Sandhoff disease patient, then corrected one of the 
mutant HEXB alleles in those iPS cells using CRISPR/Cas9 
genome-editing technology, thereby creating isogenic con-
trols. Next, we used the parental Sandhoff disease iPS cells 
and isogenic HEXB-corrected iPS cell clones to generate 
cerebral organoids that modeled the first trimester of neuro-
development. The Sandhoff disease organoids, but not the 
HEXB-corrected organoids, accumulated GM2 ganglioside 
and exhibited increased size and cellular proliferation 
compared with the HEXB-corrected organoids.  Whole-
transcriptome analysis demonstrated that development was 
impaired in the Sandhoff disease organoids, suggesting that 
alterations in neuronal differentiation may occur during 
early development in the GM2 gangliosidoses.—Allende,  
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result in lysosomal accumulation of GM2 ganglioside, typi-
cally in the form of lamellar membranous inclusions (2).
The infantile forms of the GM2 gangliosidoses are un-

remitting neurodegenerative diseases with hypotonia, 
seizures, macrocephaly, blindness, and progressive loss 
of motor function and cognition. Onset occurs by 6 
months of age, and death ensues typically at 2–5 years 
(1).
Much of our understanding of the pathogenesis of GM2 

gangliosidosis has been uncovered through studies using 
animal models (3). Sandhoff disease (Hexb/) mice have 
been the most extensively studied. Like the human infan-
tile patients, the Sandhoff disease mice store abundant 
GM2 ganglioside in the nervous system, show progressive 
neurodegeneration, and have a severely shortened lifespan 
(4). During the disease course, neuroinflammation is 
prominent, with monocytic infiltration and significant glio-
sis. Late in the disease, neuronal death occurs by apoptosis 
(5–7). Whereas the acute neurodegenerative manifesta-
tions of the disease are believed to be primarily the result of 
postnatal processes (8), studies with murine progenitor 
cells have suggested the possibility that ganglioside storage 
might also alter neural differentiation (9, 10), raising the 

possibility that neurodevelopmental defects may also occur 
in GM2 gangliosidosis patients.
Little is known about early brain development in the 

GM2 gangliosidoses because of the general inaccessibility 
of human fetal tissue for study. However, probing human 
disease progression during development is now possible 
with the reprogramming of patient-derived somatic cells 
into induced pluripotent stem (iPS) cells and their further 
differentiation into cerebral organoids; three-dimensional 
cell-culture models of early brain development (11, 12). 
These systems recapitulate the complex cellular behaviors 
of the developing brain, allowing for the study of funda-
mental neurodevelopmental mechanisms, such as growth 
and differentiation, and how they may be altered by 
disease.
To investigate whether lysosomal -hexosaminidase defi-

ciency affects early neurodevelopment, we derived iPS cells 
from the fibroblasts of an infantile Sandhoff disease pa-
tient. In addition, we generated isogenic iPS cells in which 
we corrected the disease-causing HEXB mutation using 
CRISPR/Cas9 genome editing. We then used the Sandhoff 
disease and control HEXB-corrected iPS cells to generate 
cerebral organoids. We found that the gene expression 

Fig.  1.  Characterization of the infantile Sandhoff disease patient. A: Diseases, subunits, and substrates associated with GM2 gangliosidoses. 
B: The infantile Sandhoff disease patient (GSL033) was compound heterozygous for mutations in the HEXB gene, with one allele carrying 
an 16 Kb deletion that included the promoter, exons 1–5, and part of intron 5 (top) and the other allele harboring a splice-site point muta-
tion near the 3′ end of intron 10 (bottom). The sequence of the HEXB gene shows the single-point mutation (IVS10-2A>G) in the acceptor 
splice site (underlined) of intron 10. C: -Hexosaminidase activity detected in lysates from the Sandhoff disease patient’s fibroblasts com-
pared with control fibroblasts. The bars represent -hexosaminidase activity as percentage of control cells. ***P < 0.001, one-way ANOVA test 
with Bonferroni correction. D, E: Electron microscopy images of postmortem brain sample of the frontal lobe (D) and thalamus (E). Scale 
bars, 1 m. F: MRI image of the patient’s brain at 2 years of age. GAGs, glycosaminoglycans; SD, Sandhoff disease.



552 Journal of Lipid Research  Volume 59, 2018

profile of the cerebral organoids mirrored that observed in 
fetal neurodevelopment during the first trimester of preg-
nancy. The Sandhoff disease organoids, which accumu-
lated GM2 ganglioside, exhibited an enlarged size with 
increased cellular proliferation, and a gene expression pat-
tern indicating impaired differentiation, when compared  
with isogenic HEXB-corrected organoids. Our results 
suggest that, in addition to its devastating postnatal effects, 
lysosomal -hexosaminidase deficiency may alter early neu-
rodevelopmental processes.

MATERIALS AND METHODS

Sandhoff disease infantile patient
The Sandhoff disease patient included in this study was  

enrolled in National Institutes of Health protocol 02-HG-0107, 
“The Natural History of Patients with Glycosphingolipid Storage 
Disorders,” with parental consent. All studies involving human 
subjects were approved by the appropriate review board and abide 
by the Declaration of Helsinki principles. The patient, a female 
child of Western European ancestry, was diagnosed by examina-
tion of urine oligosaccharide and glycan profiles, and finally by 
sequencing of the HEXB gene from blood leukocyte DNA. During 
infancy, she developed seizures and neuromuscular weakness and 
died at 4 years of age. The patient exhibited the characteristic 
macrocephaly (referring to head circumference size exceeding 
the 98th percentile value for normal growth for age and gender) 
that is typical for GM2 gangliosidosis infantile patients (1). Her 
head circumference measured 55.5 cm at 24 months of age.

Cell cultures
Human primary fibroblasts were established from a skin biopsy 

of the patient and were grown in DMEM (Thermo Fisher Scien-
tific, Waltham, MA) supplemented with 10% fetal bovine serum 
(HyClone Laboratories, GE Healthcare Life Sciences, South 
Logan, UT). Control fibroblasts were derived from a normal 
donor skin biopsy.
To generate patient-derived iPS cells, skin fibroblasts from the 

Sandhoff disease patient were reprogrammed by transfection with 
episomal vectors encoding the four reprogramming factors, OCT-
3/4, SOX2, KLF4, and L-MYC (13) (Applied StemCell, Milpitas, 
CA). The cloned Sandhoff disease iPS cells had a normal karyo-
type, exhibited the pluripotent markers characteristic of human 
stem cells (OCT4, SOX2, and SSEA-4), and were able to form 
embryoid bodies that differentiated into the three embryonic 
germ layers. The Sandhoff disease iPS cells were grown in serum-
free feeder-free culture conditions on Matrigel-coated (Corning 
Inc., Corning, NY) wells in mTeSR1 medium (StemCell Technol-
ogies, Vancouver, Canada).
Control normal iPS cells were purchased from Alstem (Richmond, 

CA; catalog number iPS11). They are a footprint-free human iPS 
cell line derived from normal human foreskin fibroblasts by ecto-
pic expression of OCT4, SOX2, KLF4, and MYCL genes using epi-
somal plasmids.

Creation of isogenic control (HEXB-corrected) iPS cells
To create isogenic control iPS cells, we first corrected the in-

tron 10 acceptor splice-site mutation in one of the Sandhoff disease 
patient’s HEXB alleles in the parental Sandhoff disease iPS cells 
using the CRISPR/Cas9 editing technology (14). We designed a 
single-guide RNA (sgRNA) containing a 20 bp target sequence 
corresponding to the 3′ end of intron 10 and the 5′ portion of 

exon 11 of the human HEXB gene, 5′ GTAACGTTAATGGCTT-
GCGC 3′, which was followed by a protospacer adjacent motif 
(PAM) sequence, NGG. The sgRNA forward (5′ GTAACGTTA-
ATGGCTTGCGC 3′) and reverse (5′ GCGCAAGCCATTAACGT-
TAC 3′) sequence oligonucleotides were annealed, phosphorylated, 
and subcloned into the CRISPR/Cas9 plasmid pSpCas9(BB)- 
2A-Puro (15) to create the SD/pSpCas9(BB)-2A-Puro plasmid. 
pSpCas9(BB)-2A-Puro (PX459) was a gift from Feng Zhang (Ad-
dgene plasmid #48139; Addgene, Cambridge, MA). To correct 
the mutant sequence, a single-stranded 181-base repair oligode-
oxynucleotide containing a G→A correction for the mutation in 
one of the patient’s HEXB alleles, and 90 bases of homologous 
sequence flanking each side of the correction were designed: 5′ 
AAATTATGTTCCTAGTAATAATGCCTTAAACTTTCAATTT
CATCTACTGTTCTAGGCCTAATAATATGTATTGCAATTTGT
AACGTTAATAGCTTGCGCCAGGTACCATAGTTGAAGTATG-
GAAAGACAGCGCATATCCTGAGGAACTCAGTAGAGTCACA
GCATCTGGCTTCCCTGTAAT 3′. The repair oligodeoxynucleo-
tide also contained a silent point mutation, which would disrupt 
the HEXB target PAM sequence and prevent Cas9 recutting, as 
well as two additional silent point mutations to create a KpnI re-
striction enzyme site for screening.
Patient-derived iPS cells were then transfected using the human 

stem cell Nucleofector Kit 1 (Lonza, Rockville, MD) to deliver  
20 g of the SD/pSpCas9(BB)-2A-Puro plasmid and 100 pmol of 
the repair oligodeoxynucleotide. After 48 h, transfected iPS cells 
were treated with puromycin (1 g/ml) for 48 h. After selection, 
iPS cells were grown in mTeSR1 until the colonies were large 
enough for hand-picking. Single colonies were grown individu-
ally and expanded for analysis (recovery of -hexosaminidase ac-
tivity and sequence confirmation).
For sequencing, the region in the HEXB gene containing the 

acceptor splice-site mutation was amplified by PCR using the 
flanking primers 5′ CAAACCTAAGGTTGATGAAAC 3′ and 5′ 
GTTTCATCAACCTTAGGTTTG 3′. The following conditions were 
used: denaturation 94°C for 1 min, amplification 58°C for 1 min, 
and extension 72°C for 1 min (40 cycles). The nonedited frag-
ment was 453 bp in length. The PCR fragment was subcloned into 
the pCR 4-TOPO vector (TOPO TA cloning kit for sequencing; 
Thermo Fisher Scientific) and sequenced using the T3 primer.
Potential off-target regions for the sgRNA were predicted with 

the Optimized CRISPR Design website (crispr.mit.edu) (15) and 
amplified in the HEXB-corrected iPS cell clones using the primers 
listed in supplemental Table S1. The following conditions were 
used for the five primer sets: denaturation 94°C for 1 min, 55°C 
for 1 min, and 72°C for 1 min (40 cycles). PCR fragments were 
sequenced using the corresponding forward primer.

-Hexosaminidase assays
iPS cell lysates or human fibroblasts prepared in 0.1 M citric 

buffer (pH 4.2) containing 0.1% Triton X-100 were assayed for 
-hexosaminidase activity with 4-methylumbelliferyl N-acetyl--D-
glucosaminide (Sigma-Aldrich, St. Louis, MO) (16). Values were 
normalized using -galactosidase activity and measured using 
4-methylumbelliferyl -D-galactopyranose (Sigma-Aldrich) (17). 
Activity was calculated as -hexosaminidase activity normalized by 
-galactosidase activity per minute and expressed as percentage of 
control cells.

Generation of cerebral organoids from iPS cells
Cerebral organoids were generated using parental Sandhoff 

disease iPS cells and HEXB-corrected iPS cells according to the 
protocol designed by Lancaster and colleagues (12, 18), with 
the following modification on embryo body formation. Embryo 
bodies were generated on AggreWell 400 plates (StemCell 
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Technologies) in AggreWell medium (StemCell Technologies) 
and maintained in AggreWell medium until neural induction 
on day 5 of culture. Cerebral organoids were grown in suspen-
sion in 125 ml spinner flasks on a low-speed microstirrer (Whea-
ton, Millville, NJ) at 25 rpm in a 5% CO2 tissue-culture incubator 
for up to 14 weeks, and harvested at indicated time points for 
analysis.
Organoid size was analyzed by determining perimeter of the 

individual organoids from digital images taken of the organoids at 
week 4 and week 10 using ImageJ software (National Institutes of 
Health).

Histological analysis of cerebral organoids
Organoids were fixed in 4% paraformaldehyde in PBS for 20 

min at 4°C, followed by overnight incubation at 4°C in 30% su-
crose in 0.2 M phosphate buffer, pH 7.5. Tissues were embedded 
in OCT compound (Thermo Fisher Scientific), frozen, and later 
sectioned for ganglioside immunodetection (19). Frozen sections 
were warmed to room temperature, air-dried for 10 min, fixed in 
cold acetone for 10 min at 20°C, and again air-dried. After PBS 
rehydration, sections were incubated with 5% normal goat serum 
in PBS for 1 h at room temperature and then incubated with one 
of the following antibodies for 1 h at room temperature: anti- 
neuronal 3 tubulin monoclonal antibody clone TUJ1 (mouse 
IgG, catalog number 801201; BioLegend, San Diego, CA); anti-
ganglioside GM2 monoclonal antibody, clone MK1-16 (mouse IgM, 
catalog number A2576; TCI, Tokyo, Japan) (20); anti-ganglioside 
GD3, clone R24 (mouse monoclonal IgG3, catalog number 
ab11779; Abcam, Cambridge, MA); anti-galactosylceramide, 
clone mGalC (mouse monoclonal IgG3, catalog number MAB342; 
Sigma-Aldrich); anti-myelin basic protein (rabbit polyclonal IgG, 
catalog number AB5864; Sigma-Aldrich). After three washes in 
PBS, sections were incubated for 1 h at room temperature with 
appropriate secondary antibodies: Alexa Fluor 488-labeled anti-
mouse IgM (catalog number A21042; Molecular Probes, Thermo 
Fisher Scientific), Alexa Fluor 594-labeled anti-mouse IgM (cata-
log number 21044; Molecular Probes, Thermo Fisher Scientific), 
or Alexa Fluor 594-labeled anti-mouse IgG (catalog number 
A11032; Molecular Probes, Thermo Fisher Scientific). Cryosections 
were mounted for microscopy on glass coverslips using Fluoro-
shield mounting medium with DNA-binding dye, DAPI (Abcam). 
Antibody-stained sections were examined using a confocal laser-
scanning microscope (LSM 780; Carl Zeiss, Inc., Thornwood, NY) 
and images were acquired using the Zen 2012 software (Carl 
Zeiss, Inc.). Average expression of GM2, GD3, galactosylceramide, 
and myelin basic protein was determined by the quantification of 
the fluorescence intensity of the anti-GM2 antibody correspond-
ing to an entire organoid section using ImageJ software, normal-
ized with the fluorescence intensity of DAPI for the same section. 
For cholera toxin B subunit staining, frozen organoid sections 
were fixed in cold acetone for 10 min at 20°C, air-dried, blocked 
with 5% normal goat serum in PBS for 1 h at room temperature, 
and then incubated with FITC-conjugated cholera toxin B sub-
unit (Sigma-Aldrich) for 45 min at room temperature. Fluores-
cence-stained sections were mounted and examined on a 
confocal laser-scanning microscope as described above. Cholera 
toxin B subunit staining fluorescence intensity was quantified as 
described above.
Cell proliferation within organoid sections was determined 

by labeling with 5-bromo-2-deoxyuridine (BrdU) (Thermo 
Fisher Scientific) for 4 h in culture. The cells that incorporated 
BrdU were detected using Alexa Fluor 488-labeled anti-BrdU 
antibody (A23210; Molecular Probes, Thermo Fisher Scientific) 
according to the manufacturer’s protocol. Fluorescently stained 
sections were mounted and examined on a confocal laser- 
scanning microscope as described above. Ten fields per organoid 

section were examined, and the percentage of BrdU+ DAPI+ nu-
clei was quantified. Similarly, proliferation of Sandhoff and 
HEXB-corrected iPS cells was determined by incorporation of 
5-ethynyl-2′-deoxyuridine (EdU) for 4 h in culture. Cells were 
fixed in 4% paraformaldehyde in PBS for 20 min at 4°C. EdU-
labeled iPS cells were detected using the Click-iT Plus EdU kit 
(Molecular Probes, Thermo Fisher Scientific) according to the 
manufacturer’s manual. Fluorescently stained samples were 
mounted and examined on a confocal laser-scanning micro-
scope as described above. Ten fields per iPS cell type were ex-
amined, and the percentage of EdU+ DAPI+ nuclei was 
quantified.
Cell apoptosis within organoids was detected by in situ TUNEL 

on frozen sections using the Apoptag apoptosis detection kit 
(Sigma-Aldrich) following the manufacturer’s instructions. Cryo-
sections were mounted and examined on a confocal laser-scanning 
microscope as described above. Ten random fields chosen from 
an entire organoid section were examined, and the percentage of 
TUNEL+ DAPI+ nuclei was quantified.
Transmission electron microscopy of postmortem human 

brain and cerebral organoids was performed as described (21).

Adeno-associated virus-mediated expression of  
-hexosaminidase in organoids
Using a 5 l Hamilton syringe equipped with a custom-made 

32 gauge small hub needle (10 mm, beveled 25°) (Hamilton, 
Reno, NV), Sandhoff disease organoids at week 4 were injected 
with 1 l of adeno-associated virus (AAV) (2 × 109 vg) carrying a 
1:1 ratio of AAVrh8 vectors encoding cynomolgus macaque HEXA 
and HEXB subunits (AAV-HEXA/B) (22) or AAVrh8-GFP (2 × 109 
vg) as a control virus. Organoids were harvested 11 days later for 
analysis of size, -hexosaminidase activity, and GM2 ganglioside 
content.

RNA-sequencing and bioinformatics analyses
Sandhoff disease and HEXB-corrected cerebral organoids were 

harvested at weeks 8 and 10 of culture and RNA was extracted 
(four samples at each time point, each consisting of four to six 
organoids) using the RNeasy Mini kit (Qiagen, Hilden, Ger-
many). RNA was quantified using the Agilent RNA 6000 Nano kit 
(Agilent Technologies, Santa Clara, CA) on a BioAnalyzer 2100 
(Agilent Technologies). RNA (1 g, RIN >8) was used to prepare 
RNA-sequencing (RNA-Seq) libraries with the TruSeq Stranded 
mRNA Library Prep kit (Illumina, San Diego, CA) according to 
the manufacturer’s protocol. Library DNA concentrations were 
measured using the Quant-iT PicoGreen dsDNA assay kit (Thermo 
Fisher Scientific). All samples were normalized according to 
concentration and pooled. Single-end 50 bp sequencing was  
performed on an Illumina HiSeq 2500. Reads were mapped to  
the human hg19 reference genome using the ELAND aligner 
(Illumina). Reads per kilobase of transcript per million (RPKM) 
values were determined using the Genomatix Software Suite 
(Genomatix, Munich, Germany).
Whole transcriptomes from Sandhoff disease and HEXB- 

corrected organoids at weeks 8 and 10 of culture were com-
pared with RNA-Seq gene expression data from 16 normal hu-
man dorsolateral prefrontal cortex specimens at the fetal and 
infancy developmental stages (obtained from the Allen Brain 
Atlas; www.brain-map.org) (23). Pearson correlation analysis 
was computed between the gene expression levels, quantified as 
RPKM, of the four Sandhoff disease and four HEXB-corrected 
samples for each time point and the values for the 16 control 
human dorsolateral prefrontal cortex samples (23, 24). The 
National Center for Biotechnology Information Gene Expres-
sion Omnibus (GEO) accession number for the RNA-Seq data 
is GSE106311.
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Genes that were expressed at levels RPKM >3 in both cerebral 
organoids and brain samples were included for Pearson correlation 
analysis. Heat maps were generated using Prism 7 software 
(GraphPad, La Jolla, CA).
Differential gene expression analysis was performed by the 

DESeq2 algorithm using Genomatix Software Suite. A thresh-
old for the log2 (fold change) of expression/enrichment level 
(HEXB-corrected vs. Sandhoff disease) of 1.5 and an adjusted 
P-value threshold 0.05 (Wald test) were used for the 
analysis.
Gene ontology analysis was performed using Genomatix Path-

way System (Genomatix Software Suite) through the analysis of 
the top 100 upregulated and the top 100 downregulated genes for 
HEXB-corrected organoids compared with Sandhoff disease or-
ganoids at week 10 of culture. The biological processes category 
was plotted selecting the top 14 terms ranked by P value.

Statistical analyses
Statistical significance was calculated using the Student t-test or 

one-way ANOVA with Bonferroni correction. P  0.05 was consid-
ered statistically significant.

RESULTS

Creation of isogenic control (HEXB-corrected) iPS cells 
from Sandhoff disease iPS cells
The infantile Sandhoff disease patient was identified as 

compound heterozygous for HEXB mutations. One of the 
HEXB alleles carried the common 16 Kb deletion, which 
includes the HEXB promoter, exons 1–5, and part of intron 
5, previously shown to result in undetectable HEXB mRNA 
(Fig. 1B) (25, 26). The other allele was found to carry a 
novel point mutation in the intron 10 acceptor splice site 
(IVS10-2A>G) (Fig. 1B). As expected by the severity of the 
mutations found on each allele of the gene, fibroblasts 
from the patient showed nearly absent -hexosaminidase 
activity (Fig. 1C).
Electron microscopy analysis of frontal lobe and thala-

mus samples obtained from the postmortem brain of the 
patient showed the presence of abundant multilamellar 
bodies in the cytoplasm of brain cells, indicating the accu-
mulation of lipid consistent with the Sandhoff disease diag-
nosis (1) (Fig. 1D, E).
The patient also exhibited the characteristic macro-

cephaly seen in most GM2 gangliosidosis infantile pa-
tients. MRI examination of the brain of the patient found 
no ventricular involvement, consistent with megalencephaly 
(Fig. 1F).
We generated iPS cells from skin fibroblasts established 

from the patient (Fig. 2A) (13). As expected, Sandhoff dis-
ease iPS cells showed greatly reduced total -hexosaminidase 
activity compared with a control iPS cell line (Fig. 2C).
To create isogenic control iPS cells, we edited the ge-

nome of the Sandhoff disease iPS cells to correct the HEXB 
acceptor splice-site mutation (Fig. 2A, B). We designed a 
sgRNA with a 20 bp target sequence corresponding to the 
3′ end of intron 10 and the 5′ portion of exon 11 of the hu-
man HEXB gene to produce a Cas9-induced double-strand 
break approximately 6 bp from the acceptor splice-site 

mutation on the HEXB allele. A repair oligodeoxynucleo-
tide, which contained a G→A correction for the splice-site 
mutation, was used as a template for the homology-directed 
repair process induced by Cas9 cleavage (Fig. 2B). The  
patient-derived iPS cells were transfected with a plasmid 
expressing Cas9 and the sgRNA, and with the repair oligo-
deoxynucleotide. Puromycin-selected iPS cell clones were 
isolated and tested for -hexosaminidase activity (Fig. 2A). 
This approach allowed for rapid screening of the iPS cell 
clones to identify those in which the HEXB gene had been 
functionally corrected. Thirty-eight individual clones were 
screened in this manner, and four that expressed elevated 
-hexosaminidase activity were further analyzed by se-
quencing. Three of these selected clones were found to 
have correct editing of the HEXB gene based on the repair 
oligodeoxynucleotide sequence and were named isogenic 
HEXB-corrected clones 1, 2, and 3. The three clones ex-
pressed about half of the total -hexosaminidase activity 
detected in normal iPS cells, consistent with the correction 
of one of the mutated HEXB alleles (Fig. 2C).
Potential off-target loci for the sgRNA were predicted by 

the Optimized CRISPR Design website (15). The top five 
off-target loci were sequenced in the three isogenic HEXB-
corrected clones and none were found to be modified 
(supplemental Table S2).

Isogenic HEXB-corrected cerebral organoids lack  
GM2 storage
Cerebral organoids generated using iPS cells form com-

plex brain-like structures in suspension culture, and have 
been used to model normal human brain development 
and disease (11, 12, 23, 27, 28). To determine whether 
-hexosaminidase deficiency affects early neurodevelop-
ment, we generated cerebral organoids from Sandhoff 
disease iPS cells and isogenic HEXB-corrected iPS cells 
(Fig. 2D). The organoids were grown in suspension culture 
for up to 14 weeks and then analyzed for GM2 ganglioside 
accumulation, cell proliferation and apoptosis, and gene 
expression (Fig. 2D).
A hallmark of Sandhoff disease is the accumulation of 

GM2 ganglioside (3, 29). We examined the level of GM2 
storage by immunostaining Sandhoff disease cerebral or-
ganoid frozen sections, and found the presence of GM2 
ganglioside as early as at week 4 of culture, mainly in cells 
located in areas positive for neuronal 3 tubulin expres-
sion (Fig. 3A). In contrast, isogenic HEXB-corrected organ-
oids accumulated significantly less GM2 ganglioside (Fig. 
3A, B). Electron microscopy of Sandhoff disease organoids 
at week 4 and week 14 of culture showed the presence of 
inclusion bodies (Fig. 3C), similar to the structures found in 
the Sandhoff disease patient’s brain (Fig. 1D, E), although 
not as abundant.
We measured the levels of GD3 ganglioside, abundantly 

expressed on developing neurons (30). GD3 ganglioside 
expression, detected by immunostaining, was significantly 
reduced in the 4 week isogenic HEXB-corrected organoids 
compared with Sandhoff organoids (Fig. 4A, B). Cholera 
toxin B subunit binding, which measures GM1 ganglioside 
and other related glycolipids (31), was not significantly 
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different between Sandhoff disease and HEXB-corrected 
organoids at 4 weeks (Fig. 4C, D).
Galactosylceramide, a major glycosphingolipid of my-

elin (32), was probed by immunostaining 10 week Sand-
hoff and isogenic HEXB-corrected organoid frozen 
sections (Fig. 5A, C). Expression of galactosylceramide, 
which was not significantly different between Sandhoff  
and isogenic HEXB-corrected organoids, was largely coex-
pressed with an oligodendrocyte marker, myelin basic pro-
tein (Fig. 5B, D). The results indicate that galactosylceramide 

production was not disturbed in the Sandhoff disease 
organoids.

Sandhoff disease cerebral organoids are enlarged and 
exhibit increased cellular proliferation
When the size of the organoids was examined, the Sand-

hoff disease organoids appeared larger than the organoids 
generated from the isogenic HEXB-corrected cells at weeks 
4 and 10 of culture (Fig. 6A). We then calculated the size of 
individual cerebral organoids (11, 12, 23, 27, 28). This 

Fig.  2.  Creation of isogenic control (HEXB-corrected) iPS cells and generation of cerebral organoids. A: Strategy for mutation correction 
to create isogenic control iPS cells. Fibroblasts from the Sandhoff disease patient, GSL033, were transfected using episomal vectors express-
ing reprogramming factors to generate an iPS cell line. Sandhoff disease iPS cells were transfected with a CRISPR/Cas9 vector expressing 
the HEXB-targeted sgRNA together with a single-stranded repair oligodeoxynucleotide (oligo) to correct the splice-site point mutation 
through homology-directed repair. iPS cell clones were screened for -hexosaminidase activity to identify those recovering about 50% of the 
enzymatic activity found in the control iPS cell line and sequenced to confirm editing. B: Sequence of the targeted region of the HEXB gene. 
WT sequence, mutant SD sequence (showing the 20 bp sgRNA target sequence and the PAM sequence), a segment of the repair oligode-
oxynucleotide, and the corrected HEXB gene (carrying the correct base in the acceptor splice site of intron 10, underlined) are shown.  
Sequences corresponding to exon 11 are shadowed in gray. The silent mutations to disrupt the PAM sequence and to create a KpnI site are 
highlighted in orange. C: -Hexosaminidase activity of isogenic HEXB-corrected iPS cell clones. CRISPR/Cas9-edited iPS cell clones were 
isolated and screened for the recovery of about 50% of -hexosaminidase activity in vitro. Three HEXB-corrected isogenic iPS cell clones 
(HEXB-corrected clones 1, 2, and 3) were further analyzed. -Hexosaminidase activity was normalized by -galactosidase activity per minute. 
Bars represent the mean -hexosaminidase activity as percentage of control iPS cells. ***P < 0.001, one-way ANOVA test with Bonferroni 
correction between SD and each corrected clone. D: General scheme for the generation of cerebral organoids. Cerebral organoids were 
generated using the parental Sandhoff disease and the three isogenic HEXB-corrected iPS cell clones. This method leads to a rapid develop-
ment of brain-like tissue as a cerebral organoid. Organoids were grown for up to 14 weeks and were analyzed for GM2 ganglioside accumula-
tion, cell proliferation and apoptosis, and gene expression. SD, Sandhoff disease.
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analysis showed that Sandhoff disease organoids were  
significantly larger in size compared with the isogenic 
HEXB-corrected organoids at week 4 and week 10 of cul-
ture (Fig. 6B).
To demonstrate that the -hexosaminidase deficiency 

was responsible for the increased size of the Sandhoff dis-
ease organoids, we injected the organoids with AAV carry-
ing monkey HEXA and HEXB genes (AAV-HEXA/B) to 
restore expression of -hexosaminidase. The organoids 
injected with AAV-HEXA/B showed significantly increased  
-hexosaminidase activity, significantly less GM2 storage, and 
reduced size compared with organoids injected with a con-
trol virus (AAV-GFP) or uninjected organoids (Fig. 7A–D).
To determine the basis of the size differential between 

Sandhoff disease and isogenic HEXB-corrected organoids, 
we examined the proliferation index in organoids by ana-
lyzing cellular BrdU incorporation at week 4 and week 6 of 
culture. We found a significant increase in the number of 
BrdU+ DAPI+ cells in Sandhoff disease organoids compared 
with the isogenic HEXB-corrected organoids at both time 
points (Fig. 8A). However, no significant differences were 

found in the proliferation capacity of the Sandhoff disease 
and isogenic HEXB-corrected iPS cells (Fig. 8B), indicating 
that the difference in cellular proliferation was a property 
of the more differentiated organoids. We detected low per-
centages of TUNEL+ DAPI+ apoptotic cells in Sandhoff dis-
ease organoids that were not significantly different from 
the HEXB-corrected organoids at week 8 (Fig. 8C), suggest-
ing that cell death was not a factor in the difference in 
organoid size.

Sandhoff disease cerebral organoids exhibit impaired 
neuronal differentiation
We next performed whole-transcriptome RNA-Seq anal-

ysis to determine whether developmental differences were 
reflected in gene expression profiles of Sandhoff disease 
and isogenic HEXB-corrected cerebral organoids. First, we 
identified the developmental stage of the cerebral organ-
oids by comparing the organoid gene expression profiles 
with expression data from 16 human dorsolateral prefrontal 
cortex samples corresponding to different fetal and in-
fancy stages (33). Pearson correlation analysis (23, 24) 

Fig.  3.  Sandhoff disease cerebral organoids accumu-
late GM2 ganglioside. A: Frozen sections of Sandhoff 
disease (SD; top panels) and isogenic HEXB-corrected 
organoids (bottom panels) at week 7 of culture were 
stained with DAPI (left), anti-GM2 ganglioside (cen-
ter), and anti-3 tubulin (right). Representative im-
ages of entire organoid sections are shown. The insets 
show higher magnification views of GM2 staining 
(center) and DAPI, GM2 and 3 tubulin merged stain-
ing (right). B: Quantification of GM2 ganglioside  
expression in SD organoids (red bars) and isogenic 
HEXB-corrected organoids (white bars) from week 4 
up to week 10 of culture. GM2 expression was calcu-
lated as anti-GM2 ganglioside antibody fluorescence 
intensity normalized by DAPI intensity quantified by 
ImageJ software. Bars represent mean GM2 expression 
and each dot represents the value corresponding to an 
entire organoid section, with two sections per organ-
oid. *P < 0.05, ***P < 0.001, t-test analysis between SD 
and the corrected clone at each time point. C: Electron 
microscopy of SD organoids after week 4 and week 14 
of culture showing multilamellar bodies (arrows). Scale 
bar, 200 nm.
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Fig.  4.  Expression of GD3 and GM1 in Sandhoff disease cerebral organoids. A: Frozen sections of Sandhoff disease (SD; top panels) and 
isogenic HEXB-corrected organoids (bottom panels) at week 4 of culture were stained with DAPI (left) and anti-GD3 ganglioside (right). 
Representative images of entire organoid sections are shown. B: Quantification of GD3 ganglioside expression in SD organoids (red bars) 
and isogenic HEXB-corrected organoids (white bars) at week 4 of culture. GD3 ganglioside expression was calculated as anti-GD3 ganglioside 
antibody fluorescence intensity normalized by DAPI intensity quantified by ImageJ software. Bars represent mean GD3 expression and each 
dot represents the value corresponding to an entire organoid section, with two sections per organoid. *P < 0.05, t-test analysis between SD 
and the corrected clone. C: Sections of Sandhoff disease (SD; top panels) and isogenic HEXB-corrected organoids (bottom panels) at week 
4 of culture were stained with DAPI (left) and FITC-conjugated cholera toxin B subunit (CTB) (right). Representative images of entire or-
ganoid sections are shown. D: Quantification of CTB binding in SD organoids (red bars) and isogenic HEXB-corrected organoids (white 
bars) at week 4 of culture. CTB binding was calculated as CTB fluorescence intensity normalized by DAPI intensity quantified by ImageJ 
software. Bars represent mean CTB binding and each dot represents the value corresponding to an entire organoid section, with two sections 
per organoid. ns, not significant; t-test analysis between SD and the corrected clone.

indicated that the gene expression profiles of Sandhoff dis-
ease and isogenic HEXB-corrected organoids at 8 weeks 
correlated most highly with those corresponding to fetal 
human dorsolateral prefrontal cortex samples from 8 to 16 
weeks of pregnancy (Fig. 9A, top panel). At week 10 of cul-
ture, there was a divergence between the Sandhoff disease 
and isogenic HEXB-corrected organoids in their correla-
tion with the fetal brain samples, suggesting differences in 
their gene expression profiles (Fig. 9A, bottom panel).
Gene ontology analysis of the top 100 upregulated and 

top 100 downregulated genes for HEXB-corrected organ-
oids compared with Sandhoff disease organoids revealed 
that the top biological process pathways identified were 
predominantly associated with central nervous system and 
neuronal differentiation (Fig. 9B). Moreover, the top nine 
upregulated genes in isogenic HEXB-corrected organoids 
relative to Sandhoff disease organoids encoded transcription 

factors critical in neuron morphogenesis and central ner-
vous system development: TRB1 (34), FOXG1 (35), NR2E1 
(36), FEZF2 (37), NEUROD2 (38), OTX1 (39), EMX1 (40), 
EOMES (41), and LHX2 (42) (Fig. 9C). The elevated ex-
pression of these genes indicated that neuronal differen-
tiation was more advanced in isogenic HEXB-corrected 
organoids than in Sandhoff disease organoids.

DISCUSSION

The impact of lysosomal storage diseases on neurodevel-
opment has been challenging to determine. Through the 
confluence of iPS cell, CRISPR/Cas9, and organoid tech-
nologies, it is now possible to study the brain-specific patho-
physiology of human disease in an in vivo setting (13, 14, 43). 
Here, we describe an analysis of infantile Sandhoff  
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Fig.  6.  Sandhoff disease cerebral organoids are 
larger than isogenic HEXB-corrected cerebral organ-
oids. A: Representative images of the cerebral organ-
oids at weeks 4 and 10 of culture. Scale bar, 0.5 cm. B: 
Size comparison of Sandhoff disease (SD; red bars) 
and isogenic HEXB-corrected organoids (white bars) 
at week 4 and week 10 of culture performed by calcu-
lating the perimeter of each organoid using ImageJ 
software. The bars represent mean perimeter values 
and each dot represents one organoid. **P < 0.01, 
***P < 0.001, t-test analysis between SD and corrected 
organoids.

disease using human cerebral organoids generated from 
patient-derived iPS cells. To isolate the effect of the disease-
causing mutations in the HEXB gene from the patient-specific 

genetic background, we generated isogenic HEXB-corrected 
iPS cells using CRISPR/Cas9 genome editing to serve as con-
trols in our studies. A simple screen, based on the enzymatic 

Fig.  5.  Expression of galactosylceramide and myelin basic protein in Sandhoff disease cerebral organoids. A, B: Frozen sections of Sand-
hoff disease (SD; top panels) and isogenic HEXB-corrected organoids (bottom panels) at week 4 of culture were stained with DAPI (left), 
anti-galactosylceramide (GalCer) (center), and myelin basic protein (MBP) (right). Representative images of entire organoid sections are 
shown in A and higher magnification views in B. C, D: Quantification of GalCer and MBP expression in SD organoids (red bars) and isogenic 
HEXB-corrected organoids (white bars) at week 4 of culture. GalCer and MBP expression was calculated as antibody fluorescence intensities 
normalized by DAPI intensity quantified by ImageJ software. Bars represent mean GalCer and MBP expression and each dot represents the 
value corresponding to an entire organoid section, with two sections per organoid. ns, not significant, t-test analysis between SD and the cor-
rected clone at each time point.
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detection of recovered -hexosaminidase activity, was de-
vised that facilitated identification of correctly edited Sand-
hoff disease iPS cells, which were confirmed by sequencing. 
This enzymatic activity-based screening procedure may be 
a useful adjunct for the genetic editing of iPS cells for other 
lysosomal storage or metabolic diseases in which enzyme 
deficiencies are present and easily determined.
The three-dimensional organoid model that was utilized 

mimicked neuronal differentiation processes occurring 
during fetal development in human cortex (12, 23, 24, 
44, 45). Cerebral organoids have been used previously for 
modeling normal and pathological development in a variety 
of contexts, including microcephaly, autism, and Alzheimer’s 
disease (12, 27, 46). The Sandhoff disease cerebral organ-
oids generated in this report stored increased amounts of 
GM2 ganglioside beginning at 4 weeks, which progressively 

increased with time in culture. Gene expression profil-
ing suggested that the organoids at 8 weeks of culture were 
developmentally similar to 8–16 weeks postconception 
human fetal cerebral cortex. Lipid storage in the brains of 
fetuses affected with GM2 gangliosidosis has been noted 
as early as the first trimester of pregnancy (47–51), in ac-
cordance with the results obtained here with cerebral 
organoids.
Cerebral organoids have been shown to mimic clinical 

conditions of abnormal head size in infancy and child-
hood, including microcephaly, in patients with CDK5RAP2 
mutations (12) and Zika infection (23) and megacephaly, 
in autism spectrum disorders (27). The Sandhoff disease 
patient from whom the iPS cells were derived for this 
study exhibited megalencephaly, a general feature of GM2 
gangliosidosis patients. The Sandhoff disease organoids 

Fig.  7.  AAV mediated -hexosaminidase correction reduced GM2 storage and size of Sandhoff disease cerebral organoids. A:  
-hexosaminidase activity of uninjected, control AAV-GFP-injected, and AAV-HEXA/B-injected Sandhoff disease cerebral organoids. The bars 
represent average -hexosaminidase activity normalized by -galactosidase activity per minute and each circle represents one individual or-
ganoid. *P < 0.05, t-test. B, C: Expression of GM2 in AAV-injected Sandhoff disease organoids. Representative images of entire organoid 
sections 11 days after injection of control AAV-GFP-injected (central panels), AAV-HEXA/B-injected (right panels), and uninjected organoids 
(left panels). GM2 ganglioside expression, bottom panels; DAPI staining, top panels. C: Quantification of GM2 ganglioside expression. The 
bars represent average GM2 ganglioside fluorescence intensity normalized by DAPI intensity and each circle represents one individual or-
ganoid. *P < 0.05, t-test. D: Quantification of organoid size as described in Fig. 6. The bars represent perimeter average values and each circle 
represents one individual organoid. *P < 0.05, ***P < 0.001, t-test.
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Fig.  8.  Sandhoff disease cerebral organoids display 
increased proliferation. A: Proliferation of cells in or-
ganoids. Quantification of the percentages of BrdU+ 
DAPI+ cells in Sandhoff disease (SD; red bars) and 
HEXB-corrected organoids (white bars) at week 4 and 
week 6 of culture. The bars represent mean values cor-
responding to random fields (dots) taken from entire 
organoid sections (three organoids for SD and two or-
ganoids for HEXB-corrected at 4 weeks; six organoids 
for SD and four organoids for HEXB-corrected at 6 
weeks). B: Proliferation of iPS cells. Quantification of 
the percentages of EdU+ DAPI+ SD and HEXB-corrected 
iPS cells. Ten random fields (dots) were counted per 
cell type. The bars represent mean values. C: Apopto-
sis of cells in organoids. SD and HEXB-corrected or-
ganoids at week 8. Quantification of the percentages 
of TUNEL+ DAPI+ cells. Ten random fields (dots) were 
counted per genotype. The bars represent mean val-
ues. Two organoids were analyzed for each genotype. 
*P < 0.05, ***P < 0.001, t-test analysis between SD and 
each corrected clone. ns, not significant.

were significantly larger in size than the isogenic HEXB-
corrected organoids and the Sandhoff disease organoids 
injected with AAV-HEXA/B evoking a megalencephalic-like 
condition. It is unclear whether the abnormally increased 
cellular proliferation detected in the Sandhoff disease or-
ganoids substantially contributes to the GM2 gangliosido-
sis-associated megalencephaly in patients; however, if the 
proliferative defect extended into the postnatal period, 
it could be clinically impactful. Further studies will be 
required to clarify whether there is a causal relationship 
between the increased proliferation within the Sandhoff 
organoids and the clinical finding of megalencephaly in 
the GM2 gangliosidoses.
Transcript profiling indicated that pathways involved in 

neuronal differentiation and central nervous system devel-
opment were altered in the cerebral organoids derived 
from the Sandhoff disease iPS cells compared with those 
generated from the isogenic HEXB-corrected controls. 
Strikingly, correction of the HEXB mutation and restora-
tion of -hexosaminidase activity upregulated several key 
transcription factor genes involved in neuron morphogen-
esis and central nervous system development. These find-
ings suggest that neuronal differentiation is impeded in 
Sandhoff disease, and are in accordance with work in the 
Sandhoff disease mouse model that showed progenitor 
cells with lysosomal -hexosaminidase deficiency exhibited 
impaired neuronal differentiation (9, 10). The elevated 
expression of GD3 ganglioside observed in the Sandhoff 
disease organoids is also consistent with reduced neuronal 
maturation (30).
How the lysosomal -hexosaminidase deficiency causes 

abnormal cellular proliferation and neuronal differentia-
tion of cerebral organoids is not known. However, glyco-
sphingolipids, which are substantially increased in the 
GM2 gangliosidoses, are known to influence growth and 
differentiation of cells in a variety of experimental con-
texts (32, 52–55). The accrual of gangliosides can directly 
promote neural stem cell proliferation (56–58) and has 

been implicated in neuronal differentiation (30, 59–63). 
A variety of mechanisms have been described for the influ-
ence of gangliosides on cell behaviors, including direct 
modulation of signaling receptors and mediation of cell-
cell interactions (63–68). Interestingly, lysosomal storage 
in cells from a related disorder, GM1 gangliosidosis, acti-
vates mTORC1 signaling (69), which is a pathway directly 
linked to cellular proliferation. However, we cannot rule 
out the possibility that a substrate of -hexosamindase 
other than GM2 ganglioside (Fig. 1A) may influence cel-
lular proliferation and differentiation within cerebral 
organoids.
Early neurodevelopmental processes are believed to 

have little impact on the major acute symptoms of Sand-
hoff disease (8). This conclusion was reached using an in-
ducible adult mouse model of Hexb deficiency whose 
disease severity was indistinguishable from a germline defi-
ciency (8). Indeed, within the Sandhoff disease organoids, 
we did not observe an elevation of apoptosis, which is a 
major factor in the terminal neurodegenerative disease 
course. However, the results revealing an altered prolifera-
tion and neuronal differentiation status exhibited by the 
Sandhoff disease organoids raise the possibility of more 
subtle neurodevelopmental abnormalities that might be 
masked by the severe stereotypical features of the GM2 
gangliosidoses.
The three-dimensional cerebral organoid model of 

Sandhoff disease provides a new means to study the 
early developmental consequences of lysosomal gangli-
oside storage within a human context. Using this para-
digm, alterations in fundamental cellular behaviors, 
proliferation and neuronal differentiation, were identi-
fied, which raise the possibility that they could impact 
fetal brain development in GM2 gangliosidosis patients. 
While perhaps not contributing to acute neurodegen-
eration, they may be consequential when treatments are 
eventually devised to reverse enzyme deficiencies post-
natally (70–72).
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