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Recently, as our population increasingly ages with more pressure on bone and cartilage
diseases, bone/cartilage tissue engineering (TE) have emerged as a potential alternative
therapeutic technique accompanied by the rapid development of materials science and
engineering. The key part to fulfill the goal of reconstructing impaired or damaged tissues
lies in the rational design and synthesis of therapeutic agents in TE. Gold nanomaterials,
especially gold nanoparticles (AuNPs), have shown the fascinating feasibility to treat a wide
variety of diseases due to their excellent characteristics such as easy synthesis,
controllable size, specific surface plasmon resonance and superior biocompatibility.
Therefore, the comprehensive applications of gold nanomaterials in bone and cartilage
TE have attracted enormous attention. This review will focus on the biomedical
applications and molecular mechanism of gold nanomaterials in bone and cartilage TE.
In addition, the types and cellular uptake process of gold nanomaterials are highlighted.
Finally, the current challenges and future directions are indicated.
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INTRODUCTION

Bone and cartilage play a vital role in providing mechanical support, mobility and weight bearing for
the body. At present, millions of patients are suffering from bone and cartilage degeneration and
diseases, such as fractures, osteoporosis, low back pain and osteoarthritis (Zhang and Jordan, 2010;
Agarwal and Garcia, 2015). Bone and cartilage-related medical treatments and costs are rising with
the increase in life expectancy of the population. Therefore, tissue engineering (TE) is gradually
considered a potential alternative therapeutic technique that could provide regeneration platform for
bone and cartilage tissue loss or damage.

Commonly, TE involves the proliferation, stimulation, differentiation, and guidance of cells with
the goal of reconstructing impaired or damaged tissues. There are three critical factors in a successful
tissue regeneration: cells, scaffolds, and signaling mediators (e.g., growth factors) (Li H. et al., 2020).
The repair of bone and cartilage tissue is a complicated event involving cells, signal molecules and
suitable scaffolds to prepare new tissue in special environment (Keeney et al., 2011). Furthermore,
the rapid development of materials science and engineering has promoted the progress of alternative
medical methods for bone and cartilage diseases. Bone and cartilage TE along with modern
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nanomaterials science has made a significant contribution to
health care and will expand further with the increasing elderly
population.

Nanomaterials are tiny particles with size distribution less
than 100 nm. In the last decades, various types of nanomaterials
have attracted the attention of many researchers in photocatalysis
(Pan et al., 2021), electrocatalysis (Zhang et al., 2021a),
photoelectrocatalysis (Hu et al., 2020; Zhao et al., 2020; Huang
et al., 2021), solar utilization (Jiang et al., 2020), heat management
(Zhang et al., 2021b) and other fields because of their unique
properties (Wang et al., 2019; He et al., 2020). Among the
numerous materials, Au represents one well-studied type (Xu
et al., 2016) with tunable shape (Zhu et al., 2015), structure (Ma
et al., 2015), and composition (Jiang et al., 2017). For gold
nanomaterials, AuNPs, as well as nanoclusters (AuNCs),
nanocages, nanorods (AuNRs), nanobelts, nanoplates and so
on, are becoming increasingly popular because of their optical
nonlinearities (Gao et al., 2015; Huang et al., 2017; Zhang et al.,
2018), local surface plasmon resonance (SPR) (Li Q. et al., 2017)
and photothermal effect (Jiang et al., 2012). Considering these
characteristics, it has been proved that gold nanomaterials can be
used in many fields such as chemistry, biomedicine, including the
diagnosis and treatment of diseases (Li et al., 2018b), sensor (Li
et al., 2015), catalysis (Li et al., 2013), surface-enhanced Raman
spectroscopy (Huang et al., 2019), illumination (Zhang et al.,
2017b), detector (Du et al., 2018), and therapy (Yeh et al., 2012).
The easy of synthesis and the unique properties of gold
nanomaterials make them ideal candidates for translation from
the laboratory scale into the clinical arena for use in humans.

In recent years, plenty of researchers have reported that
various gold nanomaterials could regulate the cell
differentiation, maintain tissue stability and promote tissue
regeneration in bone and cartilage. The present review focused
on the biomedical applications and molecular mechanisms of
gold nanomaterials in bone and cartilage TE. We described
various kinds of gold nanomaterials and their cellular uptake
process, followed by discussion on biomedical applications and
molecular mechanisms of gold nanomaterials in bone and
cartilage TE. The future work and perspective were also provided.

TYPES OF GOLD NANOMATERIALS

The properties of gold nanomaterials depend sensitively on their
size, shape, dimensionality and other properties. The types of gold
nanomaterials can be classified according to these properties.
Therefore, based on the dimensions of gold nanomaterials, they
can be divided into several groups: zero-dimensional (0D), one-
dimensional (1D), two-dimensional (2D), and three-dimensional
(3D). Gold nanomaterials also can be sorted into various shapes such
as gold nanospheres, nanocages, nanorods, nanobelts, nanosheets
and so on (Dreaden et al., 2012; Dykman and Khlebtsov, 2012).

AuNPs, mostly referring to spherical gold nanomaterial,
represent one type of 0D nanostructure materials possessing
unique electrical, magnetic, optical and catalytic properties.
AuNPs are widely used in medicine because of their excellent
biocompatibility, low toxicity chemical stability and SPR

detectability. They are easy to be surface-functionalized, and can
be used more widely because of the ability to modify drugs,
proteins, peptides and DNA (Mandal et al., 2011).
Nanoparticles can easily penetrate the cell membrane and locate
in the cytoplasm, thus affecting some cell signal pathways that
induce differentiation (Li J. et al., 2017). It has been reported that
when thiolated polyethylene glycol was coupled with AuNPs,
AuNPs were able to be prevented from being attacked by the
intravascular immune system, thus providing a biological basis for
their use as drug carriers (Boisselier and Astruc, 2009). Recent
studies have shown that AuNPs were closely related to bone and
cartilage TE, especially in osteoblasts, osteoclasts, chondrocytes and
bone marrowmesenchymal stem cells (BMSCs). Besides AuNPs in
0D nanomaterials, AuNCs and gold nanocages are also usually
used in bone and cartilage TE due to their good stability,
biocompatibility and two-photon absorption (Ramakrishna
et al., 2008; Shiang et al., 2012).

In addition to 0D nanomaterials, AuNRs are an important 1D
nanomaterials, that have plasma characteristics, unique optical
properties, photoluminescence (Huang et al., 2009). 2D gold
nanomaterials mainly include gold nanosheets, gold nanoplates
and so on. For gold nanosheets, with thicknesses of single to few
atomic layers, they have unique mechanical, electronic, and
surface-related properties, which hold good application
potential in the fields of photosensitive imaging, biological
detection, catalysis and so on (Ye et al., 2019). However,
compared to 0D nanomaterials especially AuNPs, the
application of 1D and 2D gold nanomaterials in bone and
cartilage TE deserves further study.

CELLULAR UPTAKE PROCESS OF GOLD
NANOMATERIALS

It is known that gold nanomaterials need to perform their
biological function by penetrating the cell membrane. Several
uptake mechanisms were proposed and studied for gold
nanomaterials. Cellular uptake ways of AuNPs are influenced
by many factors, including shape, surface chemistry,
functionalization and especially size (Chithrani et al., 2006). Li
et al. (Li et al., 2016) suggested that AuNPs were taken in by
human mesenchymal stem cells (hMSCs) in a size and shape-
dependent manner. And AuNPs can enter into cells by various
pathways such as phagocytosis, macropinocytosis, endocytosis
and transcellular pathways (Zhao et al., 2011). In bone and
cartilage TE, gold nanomaterials enter into cell mostly through
endocytosis or transcellular pathway (Table 1). From the table, it
could be inferred that endocytosis plays the most important role
in bone and cartilage-related cellular uptake process of gold
nanomaterials with or without functionalization. This effective
uptake process keeps cell membrane intact and makes gold
nanomaterials play a relatively stable function. Besides, gold
nanomaterials are also able to play a role via binding to the
membrane protein. In consideration of the toxicity and more
secure applications, it is necessary to explore the cellular uptake
mechanism of gold nanomaterials or the effect mechanism of
extracellular gold nanomaterials in further related research.
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EFFECT AND MECHANISM OF GOLD
NANOMATERIALS IN BONE AND
CARTILAGE TISSUE ENGINEERING
Promotion and Regulation of the
Differentiation
Bone marrow mesenchymal stem cells (BMSCs) are a
heterogeneous population with high replication ability. They are
pluripotent stem cells which can differentiate into osteoblasts and
chondroblasts and then differentiate into bone or cartilage tissue.
As mentioned above, BMSCs, one of three main factors, play a
critical role in TE. The proliferation and differentiation of BMSCs
can be considered as independent programmable processes, and
controlling these processes in a predictable manner is crucial to
regeneration of the desired tissue type. It has been reported that
gold nanomaterials, mainly AuNPs, promoted osteogenic and
chondrogenic differentiation through their effects on BMSCs (Yi
et al., 2010; Sansanaphongpricha et al., 2020). The molecular
mechanism mainly involved mitogen-activated protein kinase
(MAPK), Wnt/β-catenin, and autophagy.

Regulation of Mitogen-Activated Protein Kinase
Pathway
There are three parallel pathways of MAPK, including
extracellular signal related kinases (ERK1/2), protein kinase
38 (p38), and c-Jun-N-terminal kinases (JNKs) pathways.
ERK1/2 are generally referred to as growth factor-related

kinases while p38 and JNK are often described as stress-
activated protein kinases (SAPK2/p38 and SAPK1/JNK).
Studies have indicated that MAPK pathway was involved in
the proliferation and differentiation of osteoblasts (Greenblatt
et al., 2013).

Extracellular Signal Related Kinases/Mitogen-Activated
Protein Kinase Pathway
Among the three pathways, ERK/MAPK pathway is essential for
cell growth and differentiation, which is also necessary for
osteoblast adhesion, migration and integrin expression. In
bone formation, ERK/MAPK pathway can transmit
extracellular environmental information into the nucleus,
which produces nuclear response to various of signals such as
the stimulation of extracellular growth factors, extracellular
matrix (ECM) or mechanical load (Ge et al., 2007).

In the study of Zhang el al (Zhang et al., 2014), extracellular
AuNPs can activate integrin of primary osteoblasts in answer to
the chemical or physical changes in ECM and convert them into
intracellular signals for mediating cell behavior. In detail, integrin
then activated focal adhesion kinase (FAK) and ERK
phosphorylation was enhanced in later, which finally activated
ERK/MAPK pathway. Meanwhile, AuNPs also could enter cells
via receptor-mediated endocytosis and directly or indirectly
activate ERK/MAPK pathway (Figure 1A). Runt-related
transcription factor-2 (Runx-2) was an vital mediator of
MAPK reaction and previous studies indicated Runx-2 was a

TABLE 1 | The main cellular uptake processes of gold nanomaterials in bone and cartilage tissue engineering.

Uptake pathways Au nanomaterials
used

TEM size
(DLS size)

Cell or
tissue used

Function References

Direct diffusion Chitosan-conjugated AuNPs 17 nm (40 nm) hADMSCs Osteogenic differentiation Choi et al. (2015)
Endocytosis AuNPs-loaded hydroxyapatite

nanocomposites
4.7 ± 0.7 nm hMSCs Osteogenic differentiation Liang et al.

(2019)
Vesicles (endocytosis
presumed)

AuNPs (5, 13, 45 nm) hPDLPs Osteogenic differentiation Zhang et al.
(2017a)

Endocytosis SPIO-Au core-shell NPs 17.3 ± 1.2 nm Preosteoblast Osteogenic differentiation Yuan et al.
(2017)MC3T3-E1 cells

Endocytosis AuNPs 20 nm (20 ± 2 nm) Mice MSCs Osteogenic differentiation Yi et al. (2010)
Endocytosis AuNPs, bisphosphonate-

conjugated AuNPs
20–40 nm (20–49 nm) BMMs Inhibition of osteoclast

differentiation
Lee et al. (2016)

Endocytosis/activating
integrin pathway

AuNPs 20, 40 nm Primary
osteoblasts

Osteogenic differentiation Zhang et al.
(2014)

Endocytosis Epigallocatechin gallate-
functionalized AuNPs

30 nm (35.6 nm) BMMs Anti-osteoclastogenesis Zhu et al. (2019)

Endocytosis AuNPs, vitamin D-conjugated
AuNPs

30–40 nm (36.5 ± 1.1,
60.8 ± 0.3 nm)

hADMSCs Osteogenic differentiation Nah et al. (2019)

Endocytosis (author
presumed)

Gold nanosphere, nanostar,
nanorod

40, 70, 110 nm hMSCs Osteogenesis Li et al. (2016)

Vesicles (endocytosis
presumed)

Human β-defensin 3-combined
AuNPs

45 nm hPDLCs Osteogenic differentiation Zhou et al.
(2018)

Endocytosis AuNPs 58.71 ± 22.33 nm hPDLSC Cell proliferation Li et al. (2018a)
Endocytosis AuNPs 13, 50 nm Joints tissues Antioxidants for collagen-

induced arthritis
Kirdaite et al.
(2019)

Endocytosis Arginine-glycine-
aspartate–modified AuNPs

39.4–41.9 nm
(55.9–65.4 nm)

hMSCs Chondrogenic differentiation Li et al. (2017a)

BMMs, bone marrow-derived macrophages; DLS size, the size of nanomaterials in hydrodynamic form by dynamic light scattering; hADMSCs: human adipose-derived mesenchymal
stem cells; hMSCs, human marrow mesenchymal stem cells; hPDLCs, human periodontal ligament cells; hPDLPCs, human periodontal ligament progenitor cells; hPDLSCs, human
periodontal ligament stem cell; TEM size, the size of nanomaterials in dried form by transmission electron microscopy.
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key transcription factor regulating the differentiation of BMSCs
into osteoblasts due to the function directly regulating the
expression of other osteoblastic specific genes including
osteocalcin (OCN) and collagen type1 (Col-1), etc (Franceschi
et al., 2003). Meanwhile, bone morphogenetic protein-2 (BMP-2)
took most responsibility for osteoblasts differentiation
(Mahmood et al., 2011) and could enhance the function of
Runx-2. In a word, AuNPs activated ERK/MAPK pathway,
up-regulated the expression of Runx2, BMP-2, OCN, Col-1
and increased the activity of the early marker for osteoblast
differentiation, alkaline phosphatase (ALP) and the number of
bone nodules, thus proving that AuNPs stimulate osteoblast

proliferation and differentiation indeed through ERK/MAPK
pathway.

Protein Kinase 38/Mitogen-Activated Protein Kinase
Pathway
Among the three parallel MAPK pathways, p38 is usually called
stress-activated protein kinase. Li et al.(Yi et al., 2010)
demonstrated that AuNPs could interact with membrane of
mesenchymal stem cells (MSCs) and enter into cells through
receptor-mediated endocytosis, thus functionalizing as
mechanical stimuli. In cells, AuNPs bound to the related-
proteins and consequently activated the p38/MAPK signal

FIGURE 1 | The function andmolecular mechanism of AuNPs in cells. (A) Schematic diagram of the possible molecular pathways affected by the osteogenic effects
of AuNPs. AuNPs activate integrin and Wnt signaling pathway extracellularly or enter cells through endocytosis and transcelluar pathway. AuNPs up-regulate Runx-2,
BMP-2, ALP, Col-1, OCN, BSP and reduce PPARγ to enhance osteogenic differentiation via ERK/MAPK, P38/MAPK,Wnt/β-catenin signaling pathways and autophagy
in osteogenesis-related cells. JNK/MAPK signaling pathway has been not reported so far. (B) Schematic representation of AuNPs disturbing the formation and
function of osteoclasts. AuNPs inhibit ROS in BMMs, the fusion of pre-osteoclast cells or the function of V-ATPase in osteoclasts.

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 7241884

Shi et al. Nanomaterials for Bone/Cartilage Tissue Engineering

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


pathway (Figure 1A). The study of Niu et al. (Niu et al., 2017) also
discovered the same phenomenon in human periodontal
ligament stem cells (hPDLSCs). Specifically, similar to ERK,
AuNPs could up-regulate of osteogenic genes such as BMP-2,
Runx-2, OCN, Col-1 and so on through the p38/MAPK signal
pathway. In addition, AuNP could also down-regulate adipocyte
major transcription factor peroxisome proliferator-activated
receptor γ (PPARγ). In summary, AuNPs can produce
mechanical stimulation and activate p38/MAPK signal
pathway, thus up-regulating the expression of osteogenic genes
and down-regulating the adipogenesis specific genes.

Jun-N-terminal kinases/Mitogen-Activated Protein Kinase
Pathway
At present, there are no studies on AuNPs promoting osteogenic
differentiation by activating JNK/MAPK pathway, but some
studies have proved that up-regulating JNK expression and
activating MAPK can promote osteogenic differentiation
through insulin-like growth factor-1, mineral trioxide and
other substances (Zhao et al., 2013; Wang et al., 2014). At the
same time, it is not difficult to find that in most studies on JNK/
MAPK pathway, JNK and ERK often play a role together (Kim
et al., 2015). Whether these two pathways influence each other in
the process of promoting osteogenic differentiation is worthy of
further study. In addition, some studies have found that ERK,
JNK and p38-MAPK were up-regulated under mechanical
stimulation (Kyriakis and Avruch, 2001; Zhou et al., 2007). As
mentioned above, AuNPs can activate p38/MAPK pathway
through mechanical stress to promote osteogenesis, so whether
AuNPs have similar effects on JNK pathway is worth exploring.
In conclusion, AuNPs of a particular size and concentration could
promote osteogenic differentiation in different kind of cells by
MAPK pathways.

Regulation of Wnt/β-Catenin Pathway
The Wnt/β-catenin signaling pathway regulates the
differentiation of progenitor cells into osteoblasts. Wnts are
extracellular proteins that are crucial in multiple cellular
functions and many studies have shown that the Wnt pathway
was the powerful possible mechanism of AuNPs for promoting
cell proliferation (Li et al., 2018a). Wnt signals are regulated by
β-catenin that plays an important role in the signaling pathway.
In the study of Seon Young choi (Choi et al., 2015), researchers
used chitosan as a stabilizer for the reduction of AuNPs, and
detected the increased expression of specific markers of
osteogenic differentiation, such as OCN, bone sialoprotein
(BSP) and ALP, in human adipose-derived mesenchymal stem
cells (hADMSCs) co-cultured with chitosan-AuNPs, which
confirmed the role of AuNPs in promoting osteogenic
differentiation through Wnt/β-catenin pathway (Figure 1A).
Subsequent study reported by Zhou et al. confirmed the above
phenomenon in human periodontal ligament cells as well (Zhou
et al., 2018).

Also, several researches suggested that mechanical stimulation
enhanced osteogenesis and inhibited adipogenesis through
activation of Wnt/β-catenin signaling (Chen et al., 2017). As
mentioned earlier, AuNPs can interact with the cell membrane,

enter the cell through endocytosis, and combine with proteins in
the cytoplasm to produce mechanical stress. This unique
mechanical stress activates Wnt/β-catenin pathway similar to
the activation of MAPK pathway.

Regulation of Autophagy
Autophagy is a lysosome-based degradative pathway that
responds to stress and maintains intracellular homeostasis,
which is critical in various physiological and pathological
process, including osteogenic differentiation. AuNPs have been
shown to be a novel kind of autophagy modulators (Li et al.,
2010). Therefore, the mechanism of AuNPs in osteogenic
differentiation of MSCs involves autophagy (Figure 1A).

In the previous study, Zhang et al. (Zhang et al., 2017a)
suggested that the osteogenic differentiation induced by
AuNPs depends on the activation of autophagy. The early
induction of autophagy is characterized by the accumulation
of LC3-II binding to autophagosomes, the up-regulation of
autophagy gene Beclin-1 and the decrease of selective
autophagy target p62 (Mizushima et al., 2010). It has been
proved that AuNPs can up-regulate the mRNA expression of
LC3 and Beclin-1, and increase the activity and mineralization
rate of ALP, which represented the degree of osteogenic
differentiation. The osteogenic differentiation induced by
AuNPs has a high similarity with natural osteogenic
differentiation, which can play an effective role in bone TE
while having little effect on other normal tissues, so they have
greater potential in future application.

In addition, autophagy pathway also plays an important role in
the differentiation and pathological changes of cartilage tissue.
Autophagy has been shown to be related to cartilage formation,
and studies have shown that inhibition of autophagy can lead to
delayed cartilage development (Wang et al., 2015). However,
there are few reports that gold nanomaterials regulate the process
of cartilage differentiation by regulating the above pathways or
cytokines, and the regulation of cartilage differentiation is mainly
regulated by drugs, bioactive factors and so on.

Protection for Bone and Cartilage Tissue
The Protection of Gold Nanoparticles in Bone Tissue
The protective effect of AuNPs in bone tissue is mainly through
the inhibition of osteoclast. Osteoclasts, derived from monocyte/
macrophage lineage cells, are the main functional cells for bone
resorption and play the leading role in the balance between bone
resorption and formation. The differentiation and proliferation of
osteoclasts directly affect remodeling of bone tissue and
hyperactive osteoclasts are the root cause for excessive bone
resorption and subsequent osteoporosis. Studies have shown
that AuNPs had the ability to inhibit osteoclast and were one
of the most effective nanoparticles in the treatment of bone tissue
diseases (Lee et al., 2016). Therefore, it is of great significance to
clarify the regulatory mechanism of AuNPs on osteoclasts.

Inhibition of Receptor Activator of NF-κB Ligand-Induced
Osteoclastogenesis
Receptor activator of NF-κB (nuclear factor-κB) ligand (RANKL)
is a key factor motivating the differentiation and activation of
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osteoclasts. And RANKL is routinely used in the induction of
osteoclast differentiation. Some studied have proved that AuNPs
suppressed RANKL-induced osteoclastogenesis mainly by
inhibiting reactive oxygen species (ROS) or the fusion of pre-
osteoclast cells.

The binding of RANKL to its receptor RANK contributes to
the recruitment of tumor necrosis factor receptor-related factor 6
(TRAF6) into the cytoplasmic domain of RANK. RANKL
produces ROS that can act as a second messenger in bone
marrow-derived macrophages (BMMs), which is involved in
TRAF6, NADPH oxidase 1 (Nox1), Nox4 and Rac1. ROS then
activate MAPK pathway that required for osteoclast
differentiation (Atashi et al., 2015). Therefore, inhibition of
ROS helps to inhibit osteoclast differentiation. Sul et al. (Sul
et al., 2010) believed AuNPs, an antioxidant, inhibited RANLK-
induced osteoclast formation in a dose-dependent manner at 1-2
ug/ml by attenuating ROS production and up-regulating the
antioxidant enzyme glutathione peroxidase-1 (Gpx1) which
prevented bone resorption (Figure 1B). Furthermore, it was
believed that excessive ROS significantly restrained osteogenic
signaling pathways while promoting adipogenic signaling
pathways (Atashi et al., 2015). Therefore, AuNPs not only
promotes osteogenesis, but also inhibits osteoclastogenesis
through reducing ROS.

On the other hand, it was believed that nanoparticles could
weaken RNAKL-induced osteoclastogenesis by suppressing pre-
osteoclast fusion, including AuNPs (Zeng et al., 2019)
(Figure 1B). Osteoclasts are multinuclear terminal cells
formed via fusion of monocyte progenitors which is induced
by RANKL and macrophage colony-stimulating factor (M-CSF)
(Levaot et al., 2015). The fusion process involves three sequential
steps. Firstly, BMMs are induced to form pre-osteoclasts
possessing the ability to fusion induced by RANKL and
M-CSF. Then, these cells migrate, aggregate and adhere to
each other with their plasma membranes. Finally, the
continuous fusion of pre-osteoclasts forms multinucleated
cells, namely osteoclasts. In osteoclastogenesis, cell fusion is a
necessary and rate-limiting step in osteoclast development. Li
et al. (Zeng et al., 2019) demonstrated that AuNPs suppressed
pre-osteoclast migration in a dose-dependent manner and
prevented pre-osteoclast fusion by down-regulating expression
of fusogenic genes, such as Cx43. In summary, AuNPs can
suppress RANKL-induced osteoclastogenesis and they are
expected to be a potential target for the treatment of excessive
bone resorption.

Regulation of Acidic Microenvironment
AuNPs not only inhibit the generation of osteoclasts, but also
disturb the function of osteoclasts. Osteoclasts degrade bone via
lysosomal proteases activated in acidic microenvironment which
are controlled by vacuolar-type H+-ATPase (V-ATPase) (Sun-
Wada et al., 2003). In osteoclasts, V-ATPase can transfer protons
across membranes into extracellular microenvironment and
ultimately create an acidic condition. It has been demonstrated
that V-ATPase mutations can contribute to paralysis of
osteoclasts (Bhargava et al., 2012). In previous studies, AuNPs
could prevent V-ATPase binding on the endosome membrane

and inhibit the function of V-ATPase, thus alkalifying
microenvironment and deactivating osteoclasts (Bai et al.,
2018). Further research also suggested that AuNPs can
obstruct acidification of osteoclast absorption
microenvironment through directly disturbing the partial
domain of V-ATPase (Bai et al., 2020) (Figure 1B). However,
whether the interference of AuNPs on the activity of V-ATP
enzyme will cause abnormality of other metabolic processes in
osteoclasts and bone tissue, and whether other enzymes similar to
V-ATPase structure or function will be inhibited by AuNPs
remain to be further explored.

The Protection of Gold Nanoclusters in Bone Tissue
Gold nanoclusters (AuNCs) as emerging fluorescent
nanomaterials are smaller than nanoparticles and have better
biocompatibility in bone and cartilage. In the study of Kuo Li (Li
K. et al., 2020), they constructed AuNCs protected by ultra-small
lysozyme (Lys) and found that Lys-AuNCs could not only
promote osteogenic differentiation, but also inhibit the
formation of osteoclasts. More importantly, the study showed
that lysozyme itself had no significant effect on improving the
viability of MC3T3E1, important cells for bone tissue
regeneration, and the main reason for promoting proliferation
rate was the existence of AuNCs. However, except AuNPs and
AuNCs, there are few in-depth studies for other types of gold
nanomaterials in bone TE and in consideration of their
properties, further subsequent studies are needed.

The Protection for Cartilage Tissue
Cartilage tissues with lubrication and cushioning effects are
mainly responsible for large mechanical loads (Gilbert and
Blain, 2018). As thus, cartilage tissues are easy to be damaged.
However, the repair of impaired cartilage is always challenging.
The protective function of gold nanomaterials in cartilage tissue
has great application prospect, particularly in articular cartilage
tissue, including rheumatic arthritis (RA) and OA.

In many studies, it has been demonstrated that AuNPs can
inhibit angiogenic activities, suppress inflammation or serve as
antioxidant to protect cartilage tissue in arthritis. In the study of
Tsai et al. (Tsai et al., 2007), AuNPs have been shown to alleviate
collagen-induced arthritis which imitated RA in humans for the
first time. They could bound to vascular endothelial growth factor
(VEGF), an angiogenic factor, and inhibit endothelial cell
proliferation and migration. Another study also indicated that
AuNPs in the form of complexes bound to VEGF to treat RA (Lee
et al., 2014). Furthermore, AuNPs could down-regulate pro-
inflammatory responses and consequently inhibit
inflammation both in OA and RA (Gomes et al., 2016; Gul
et al., 2018). And the protection of AuNPs for ECM of which
the degradation is related to OA and RA have been proved.
AuNPs can also quench ROS and prevent the destruction of
synovitis in RA (Kirdaite et al., 2019). At the same time, AuNPs as
carriers can play a good role in cartilage TE, which will be
discussed in the following section.

Similar to AuNPs, gold nanocages are a kind of porous
nanogold materials with good biocompatibility to easily use in
combination with other materials. And they could reduce
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synovial hyperplasia and protect cartilage (Wang et al., 2020). As
for AuNRs, it is also easy to modify the surface of their surface.
And with the help of other drugs or protein, AuNRs have been
shown to promote chondrogenesis (Sansanaphongpricha et al.,
2020). As can be seen from the examples above, gold
nanomaterials are not only useful as therapeutic agents for
cartilage disease but also have enormous potential in cartilage TE.

Carriers in Bone and Cartilage Tissue
Engineering
Gold nanomaterials have been widely used in biomedical fields
including delivery carriers, because of their adjustable size, optical
properties, as well as their biocompatibility (Lopes et al., 2019).
Their deliverable application can range from small drug
molecules to large biomolecules, such as proteins, DNA or
RNA. Among them, AuNPs have become a promising
platform for a variety of biomedical applications due to the
characteristics of easy synthesis, easy functionalization, stable
properties, non-toxic and so on (Boisselier and Astruc, 2009).
Similar to AuNPs, AuNRs are also easy for surface modifications
and ready to conjugate with functionalized polymers, antibodies
and peptides (Huang et al., 2009; Bartczak et al., 2011). Therefore,
in bone and cartilage TE, gold nanomaterials could serve as
carriers in small molecules and biomacromolecules reputably and
need pay more attention to clinic application study.

Small Molecules Delivery
Prior to acting as drug carriers, AuNPs are usually functionalized,
which could enhance the stability of AuNPs, increase the
circulation time, reduce their side effect, strengthen their
interactional ability, improve their biocompatibility and
reinforce the regional orientation of drug action. At present,
the commonly used functionalization techniques include surface
modification via mercaptan, polyethylene glycol (PEG), amino
acid (Dykman and Khlebtsov, 2012) and combination of AuNPs
with other biocompatible materials (Li H. et al., 2020). With
above techniques, it is generally believed that AuNPs have good
performance in drug delivery.

Heo et al. (Heo et al., 2014) combined curcumin with AuNPs
to prepare cyclodextrin β-cyclodextrin coupled AuNPs, which
could significantly restrain the formation of tartrate-resistant acid
phosphatase (TRAP)-positive multinucleated cells safely in
BMMs. Nah et al. (Nah et al., 2019) used AuNPs to carry
vitamin D. The developed AuNPs-vitamin D complex
combined well with the mercaptan group between AuNPs and
vitamin D. Through the detection of related data, it was
confirmed that the complex enhanced osteogenic
differentiation. Some researchers also have shown that AuNPs-
loaded hydroxyapatite can be internalized into hMSCs and
enhance the osteogenic differentiation of hMSCs (Liang et al.,
2019). In the above examples, it can be found that AuNPs can
carry many types of drugs, which can protect the biological
activity of the delivered drugs while improving the bone tissue
targeting of the drugs. At the same time, they can play a
synergistic effect with the delivered drugs to improve the
efficiency of bone TE.

In cartilage tissue, AuNPs can also play the role of drug
delivery. Intra-articular injection provides a highly effective
and low systemic side effect for the treatment of joint diseases,
but it cannot keep the efficacy caused by reduced drug
concentration. The application of AuNPs can solve this
problem to some extent. Its advantage is that AuNPs can be
designed in different sizes and combine with drugs, thus slowing
down the clearance of drugs, and when combined with AuNPs,
drugs can penetrate ECM or cell barrier (Dwivedi et al., 2015).

The reason that the nano-drug loading system can attract so
much attention is mainly due to its unique performance and
characteristics in the delivery of drugs for the treatment of
diseases. By the way, the use of AuNPs as drug carriers can
protect drugs from attacked by the human immune system, and
have the characteristics of large drug loading. But at the same
time, they are restricted by their limited biodegradability.

Biomacromolecules Delivery
In addition to small molecular drugs, AuNPs can also deliver
large biomolecules. In practical work, researchers used a variety of
ways to functionalize AuNPs, and utilized functionalized AuNPs
to carry the required biological macromolecules. Their adjustable
size and function make them a useful scaffold for effective
recognition and transmission of biomolecules. At present, it
has been proved that AuNPs were successful in the delivery of
peptides, proteins or nucleic acids, such as DNA or RNA
(Graczyk et al., 2020).

In the field of bone and cartilage TE, it has been reported that
AuNPs can deliver siRNA, miRNA and other biomacromolecules
with the assistance of various modification (Pan et al., 2016; Wu
et al., 2020). AuNPs as effective biomacromolecules delivery
carriers provide adequate protection to prevent them from
being degraded by enzymes. Certainly, the function of above
molecules was enhanced by the carriers. Similarly, AuNRs could
serve as delivery carries of BMP-2 and siRNA and ultimately
promote osteogenesis and chondrogenesis (Tsai et al., 2007; Zhao
et al., 2015; Sansanaphongpricha et al., 2020). In summary, there
is massive clinical potential for gold nanomaterials as carrier in
bone and cartilage TE.

CONCLUSIONS AND FUTURE
PERSPECTIVE

The effective combination of nano-bioengineering and
regenerative medicine has become the focus of international
research. After establishing interdisciplinary nanotechnology
fields, it may be believed that nanomaterials will combine with
chemically and clinically applicable fields in the next generation
of chemical and medical platforms. Gold nanomaterials, as a new
type of medical materials, play a direct role as drug or indirect role
as drug carriers. They not only promoted the progress of
alternative medical methods, but also provide new ideas and
new goals for the clinical treatment for bone and cartilage diseases
represented by osteoporosis, bone defect and arthritis. In this
review, the majority of biomedical mechanism and applications
demonstrated that gold nanomaterials, especially AuNPs, had a
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protective effect on bone and cartilage tissue and could be further
modified to promote delivery efficiency and loading with other
drugs or biomacromolecules. However, it is worth noting that
gold nanomaterials need further examination in clinical studies,
which may obviously provide help for reducing the medical
pressure on bone and cartilage diseases, increasingly with a
rapidly aging population.

In spite of the potential therapeutic effectiveness of gold
nanomaterials, several limitations and deficiencies of their
applications remain. In bone and cartilage TE, the application
of gold nanomaterials is mainly limited to 0D AuNPs and 1D
AuNRs. However, while 2D gold nanosheets and other
hierarchical gold nanomaterials with different and unique
physical and chemical properties are well used in different
directions, such as tumor treatment, examination, imaging and
so on, there are few reports on the application of these materials
in bone and cartilage TE. It is thus highly desirable to explore
their utilization due to the broad research prospects. In addition,
whether naked gold nanomaterials can have a therapeutic effect

on chondrocytes and cartilage tissue needs to be further clarified
with potential mechanism.
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