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Neoadjuvant tamoxifen synchronizes ERα binding and gene 
expression profiles related to outcome and proliferation

Tesa M. Severson1, Ekaterina Nevedomskaya1,2, Justine Peeters3, Thomas 
Kuilman4, Oscar Krijgsman4, Annelot van Rossum1, Marjolein Droog1, Yongsoo 
Kim1,2, Rutger Koornstra5, Inès Beumer3, Annuska M. Glas3, Daniel Peeper4, Jelle 
Wesseling1, Iris M. Simon3, Lodewyk Wessels2, Sabine C. Linn1,6,7 and Wilbert 
Zwart1

1 Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
2 Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
3 Agendia NV, Amsterdam, XH, The Netherlands
4 Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
5 Department of Medical Oncology, Radboud University Medical Center, Nijmegen, GA, The Netherlands
6 Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
7 Department of Pathology, University Medical Center Utrecht, CX, The Netherlands

Correspondence to: Wilbert Zwart, email: w.zwart@nki.nl

Correspondence to: Sabine C. Linn, email: s.linn@nki.nl
Keywords: ChIP-seq, estrogen receptor, endocrine therapy, neoadjuvant therapy, gene expression analysis
Received: April 07, 2016 Accepted: April 13, 2016 Published: April 25, 2016

AbstrAct
Estrogen receptor alpha (ERα)-positive breast cancers are frequently treated with 

tamoxifen, but resistance is common. It remains elusive how tamoxifen resistance 
occurs and predictive biomarkers for treatment outcome are needed. Because most 
biomarker discovery studies are performed using pre-treatment surgical resections, 
the effects of tamoxifen therapy directly on the tumor cell in vivo remain unexamined. 
In this study, we assessed DNA copy number, gene expression profiles and ERα/
chromatin binding landscapes on breast tumor specimens, both before and after 
neoadjuvant tamoxifen treatment. We observed neoadjuvant tamoxifen treatment 
synchronized ERα/chromatin interactions and downstream gene expression, indicating 
that hormonal therapy reduces inter-tumor molecular variability. ERα-synchronized 
sites are associated with dynamic FOXA1 action at these sites, which is under control 
of growth factor signaling. Genes associated with tamoxifen-synchronized sites are 
capable of differentiating patients for tamoxifen benefit. Due to the direct effects of 
therapeutics on ERα behavior and transcriptional output, our study highlights the 
added value of biomarker discovery studies after neoadjuvant drug exposure.

INtrODUctION

Breast cancer is the most common cancer among 
women in the world. In 2012 over 1.6 million women 
were diagnosed with breast cancer worldwide. In the same 
year, around 520,000 women died from breast cancer 
[1]. The inter-patient heterogeneous nature of breast 
cancer is evident and clinically relevant histological and 

molecular subtypes of breast cancer can be identified. [2 
9]. The major subtype—estrogen receptor alpha (ERα)-
positive luminal breast cancer—is clinically defined 
by nucleic protein levels of ERα [10]. ERα is a ligand-
dependent transcription factor, activated by the natural 
hormone estradiol. Ligand-bound ERα can bind the DNA 
and recruit co-factors that form the foundations of the 
transcription complex, ultimately affecting target gene 
expression and driving tumor cell proliferation [11]. ERα-
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positive breast cancer has specific clinicopathological 
characteristics including a favorable prognosis compared 
with ERα negative disease, particularly in the first few 
years following diagnosis [12] and more often low tumor 
grade in comparison with other breast cancer subtypes [4]. 
Patients with ERα-positive breast cancer make up over 
70% of the total breast cancer population worldwide [13]. 

Since ERα is the major driver in luminal breast 
cancers, endocrine therapies have been developed to 
limit its transcriptional potency, including tamoxifen 
and aromatase inhibitors [14]. Tamoxifen is aimed to 
competitively bind the ERα, which prevents co-factor 
recruitment and disrupts the transcriptional complex 
formation [15]. Through this mechanism, tamoxifen 
blocks ERα-responsive gene expression and inhibits ERα-
positive tumor cell proliferation [16]. Aromatase inhibitors 
inhibit the production of estrogen and consequently inhibit 
tumor cell proliferation [17]. Although these endocrine 
therapies are successful agents, resistance to treatment 
is common. However, after developing a relapse despite 
tamoxifen treatment, 50% of patients still do respond 
to aromatase inhibitors [18]. Analogous to this, 50% of 
patients with acquired resistance to aromatase inhibitors 
still respond to tamoxifen [18]. This study and other 
reports [13] illustrate the heterogeneous response to 
first and second line endocrine therapy in ERα-positive 
breast cancer. Critically, these studies also exemplify 
that development of reliable predictive biomarkers for 
selective treatment efficacy is an urgent medical need. 

From a clinical perspective, identification of 
patients most likely to benefit from specific endocrine 
treatments in the early ERα-positive breast cancer setting 
is paramount. Currently, biomarker discovery is guided by 
data (e.g. gene expression signatures) collected from the 
untreated primary tumor samples obtained during surgery. 
However, the prediction of longitudinal therapy response 
may be more reliable when data are available from 
samples after drug exposure. In the endocrine therapy 
setting, neoadjuvant studies have been used successfully 
to determine response [19, 20], indicating the potential of 
molecular data taken from post-treatment samples to gain 
clinical knowledge. Here, we present the first combined 
characterization of transcriptomic, epigenomic, genomic 
and clinical data analyzed from ERα-positive breast 
cancers both before and after 2-6 weeks of neoadjuvant 
tamoxifen treatment. By integrating these genomic data-
streams from different time points, we aimed to examine 
drug-induced differences at the genetic, epigenetic 
and transcriptional level with the goal to identify novel 
predictive biomarkers for tamoxifen-response.

rEsULts

AFtEr study and patient characteristics

Forty-eight ERα-positive patients were enrolled 
at two hospitals in the Netherlands and sample material 
was taken from 28 tamoxifen-treated patients for further 
analysis (Figure 1A, Supplemental Figure 1A, 1B). Patient 
characteristics and collection data can be found in Table 
I. Patient treatment details can be found in Supplemental 
Table I. We collected immunohistochemistry (IHC) data 
for ERα and PR for both pre- and post-treatment samples 
of 26 of 28 patients (Supplemental Figure 1A). No tumors 
were HER2-positive. Clinical marker levels (ERα and 
PR) did not differ between sample origin hospitals. We 
found no significant differences between pre- and post-
tamoxifen treatment ERα levels (Wilcoxon rank-sum, P 
= 0.26) (Figure 1B, 1C). A trend was identified for higher 
PR levels after tamoxifen treatment, however it was not 
significant (Wilcoxon rank-sum, P = 0.08) (Figure 1B, 
1C). Gene expression levels for the corresponding coding 
genes, Estrogen receptor 1 (ESR1) and progesterone 
receptor (PGR) were also not significantly different 
between pre- and post-treatment samples (data not 
shown). When investigating the cell proliferation marker 
Ki67 (MIB1), post-treatment samples had significantly 
lower gene expression (MKI67) levels (Wilcoxon rank-
sum, P < 0.01) (Figure 1D). A similar significant trend 
was found when measuring Ki67 at the protein level 
with IHC (data not shown). Because IHC Ki67 score 
is difficult to interpret with substantial inter-observer 
variation [43], we chose to examine microarray gene 
expression levels of MKI67 as they are less subjective. 
In addition, we classified all our samples for two known 
molecular classifiers with links to outcome, MammaPrint 
and IntClust (Supplemental File 1).

Tamoxifen reprograms ERα binding in tumors

Since tamoxifen is aimed to directly target ERα 
action, ERα functioning may also be affected on the 
genomic level by drug treatment. Therefore, we analyzed 
the chromatin binding profiles of ERα in 6 pre- and 8 
post-treatment samples (4 treatment pairs) using ERα 
ChIP-seq (Figure 2A; Supplemental Figure 1A). We 
identified ERα bound genomic regions, as exemplified for 
two typical ERα regions in the human genome found at 
the enhancer regions proximal to the RARA and IGFBP4 
loci (Supplemental Figure 2A). As expected, the top DNA 
binding motifs identified in both pre- and post-treatment 
were found to be the hormone nuclear receptor family with 
ESR1 as the top factor (Supplemental Figure 2B).

A relocation of ERα chromatin interactions to other 
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sites was observed after tamoxifen treatment (Figure 2B, 
Supplemental File 2). Our laboratory [44] and others [26] 
previously reported ERα chromatin interaction profiles 
as highly heterogeneous between tumors. Consistent 
with previous findings, we found limited overlap of 
ERα binding patterns between two tumors prior to 
therapy (Figure 2C). Importantly, the pattern overlap 
was substantially increased after neoadjuvant tamoxifen 
therapy in treatment pairs (Figure 2C). To investigate this 
further in a quantitative fashion, the percent of overlapping 
ERα bound genomic regions between all samples of 
the total ERα bound genomic regions was calculated in 
each possible sample combination (within pre- or post-
treatment condition) (Figure 2D). The average percent 
overlap in pre- and post-treatment samples increased from 
3.0 to 7.9 with data ranging from 0.01% to 13% overlap 
among pre-treatment samples and 0.8% to 21% overlap 

among post-treatment samples. We identified a significant 
(Wilcoxon signed rank, P < 0.001) increase in overlap in 
genomic regions in the post-treatment group compared 
with the pre-treatment group. 

Next, we characterized the genomic regions of 
the tamoxifen-induced synchronized sites (I) and pre-
treatment unique sites (II) (Supplemental Figure 2C). In 
genomic location for both, the sites are typical of what is 
known of ERα binding in that they are found mostly in 
distal intergenic and intronic regions (Supplemental Figure 
2D) [45]. In addition, the most common sequence motifs 
associated with both groups of sites were ESR1 and ESR2 
(Supplemental Figure 2E). Similar findings are observed 
for pre-treatment unique sites. Next, we determined the 
nearest gene for each of the 126 ERα bound sites (I) within 
20kb [46]. Using this definition, 96 genes are associated 
with these tamoxifen-synchronized sites. When examining 

Figure 1: study collection and clinical marker values. A., Schematic representation of the AFTER study patient and material 
collection. b., Violin plots with boxplot overlay of IHC scores (Y-axis) for ERα (left panel) and PR (right panel) in pre- and post-treatment 
samples. N.S. indicates a p-value that is not significant at 0.05 level. c., Example of IHC staining of ERα and PR in a pre- and post-
treatment sample. Black bar indicates 400μm. D., Violin plots with boxplot overlay of MKI67 gene expression values in pre- and post-
treatment samples. ** indicates P < 0.01. 
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Figure 2: ERα binding events before and after neoadjuvant tamoxifen treatment. A., Schematic representation of ChIP-seq 
process. ERα bound to the DNA is depicted as green ovals; regulatory regions are depicted above the DNA strand as grey triangles. b., Venn 
diagrams depicting the overlap of ERα bound regions (peaks) in both pre-(red) and post-(blue) treatment pairs. Heatmaps on the right show 
ERα binding events at the center of the peak and the surrounding ±5kb for the pre-treatment sample only peaks (top), overlapping peaks 
(middle) and post-treatment sample only peaks (bottom). c., Venn diagrams depicting all overlapping peaks for pre- and post-treatment pair 
samples separately. D., Matrix to visualize percent of overlapping peaks (of total peaks in each pair combination) for both pre- and post-
treatment samples separately. Vertical colored side bars indicate patient menopausal-status (sample) and ERα IHC, PR IHC, Ki67 IHC and 
MKI67 values respectively. Patient menopausal-status is shown in yellow (post-menopausal), green (pre-menopausal) and purple (male). 
Separate scale bars are shown below the plot for expression levels corresponding to sidebars. IHC expression scale bar for both panels 
indicates percentage staining nuclei. Gene expression scale bar for both panels indicates normalized gene expression values. 
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these genes using Ingenuity Pathway Analysis (Qiagen), 
we find these genes involved in drug and lipid metabolism, 
estrogen receptor signaling and notably, EGF was 
identified as a potential upstream regulator. (Supplemental 
Figure 2F). 

ERα, PR and FOXA1 binding profiles in tumors 
and MCF7 cells reveal dynamic FOXA1 binding

ERα binding and activity in breast cancer is 
regulated and controlled by various other factors such 
as FOXA1, a pioneering factor required for binding of 
ERα [47 52] and PR, a modulator of ERα action in breast 
cancer [53]. When examining the 126 ERα bound sites 
synchronized by tamoxifen (Figure 3A (I)) in publicly 
available ChIP-seq data for tumors, we found the average 
relative signal intensity at these sites is higher in metastatic 
samples compared with primary tumors samples (ERα/PR 
positive) (Figure 3B, 3C). A similar pattern is seen in the 
unique pre-treatment sites (Figure 3A (II)) but with much 
less overall signal intensity (Figure 3B, 3C). In addition, 
in MCF7 cells we observed a similar pattern in response 
to tamoxifen or estradiol in ERα binding at these sites 
(Figure 4D, 4E). No PR binding was observed (Figure 
3D, 3E) under full medium conditions for either the 126 
synchronized sites or the unique pre-treatment sites. 
FOXA1 chromatin binding is described as independent 
of ERα action and irresponsive to hormonal stimuli [50, 
51]. However, FOXA1 chromatin binding at these 126 
sites was clearly induced by both tamoxifen and estradiol, 
accompanied by ERα binding. These data imply a unique 
feature of the 126 tamoxifen-synchronized ERα sites, 
hallmarked by dynamic FOXA1 action at these sites. 

ERα, FOXA1 binding profiles in MCF7 cells 
reveal potential mechanistic players

To better understand a possible mechanism of ERα 
and FOXA1 reprogramming to these sites after addition 
of tamoxifen, we investigated publically available ERα 
and FOXA1 ChIP-seq data from MCF7 cells treated 
with specific mitogens and/or growth factors [50]. Data 
from Hurtado and colleagues indicate the overlap of ERα 
binding sites for both estradiol and tamoxifen treated 
MCF7 cells is substantial. Furthermore, the proportion 
of tamoxifen only binding sites is very small (7%) [50]. 
Within our paired tumor data, we show that on average 
56.3% of the total sites are post-tamoxifen treatment only 
binding sites (Figure 2B). 

To examine a potential mechanism involved 
in synchronizing ERα to these sites based on known 
regulators of ERα binding, we investigated the Ross-
Innes mitogen cocktail data, which contains EGF, IGF-
1, TNFα and IL-6 [26], the Franco TNFα data [54] and 

the Lupien EGF data [52] at the tamoxifen synchronized 
and pre-treatment unique sites. The mitogen cocktail 
significantly induced FOXA1 binding at these sites 
(Wilcoxon signed rank, P < 0.0001). (Figure 4A, 4B). In 
ERα binding data where estradiol, TNFα or a combination 
of the two were added, we observed no increased FOXA1 
binding by TNFα (Figure 4C, 4D). Combined, these 
data rule out TNFα alone as a key regulator of FOXA1 
dynamics at these sites, leading us to investigate EGF as 
it was implicated in our own Ingenuity Pathway Analysis 
results. ChIP-chip data of EGF-stimulated ERα binding 
sites show high overlap (60%) with our tamoxifen induced 
sites (Figure 4E, Supplemental File 3). We found the 
enrichment for these sites within the pre-defined universe 
of known ERα binding sites to be significant (Fisher’s 
hypergeometric test, P < 1.10E-15) (Supplemental File 
3) indicating the high proportion of overlap of tamoxifen 
induced sites are biologically significant. In addition, we 
observed comparable results when looking at the overlap 
of the tamoxifen induced sites with serine 118 ERα DNA 
binding sites induced by estradiol (Figure 4F) [55]. 
Cumulatively, these data implicate EGF as a potential 
upstream regulator of FOXA1-induced chromatin binding 
at the 126 sites, facilitating ERα action at these sites in 
tumors post tamoxifen exposure.

DNA copy number profiling and alternate allele 
frequency analysis reveal little variation between 
replicates and/or treatment condition

We observed ERα binds to different sites after 
neoadjuvant tamoxifen treatment (Figure 2D). We 
questioned if the change in ERα binding is due to genomic 
changes within the tumor population or re-targeting of 
ERα. Notably, interaction profiles [56] and overall library 
read numbers [23] have been shown to be reproducible 
within replicate tumor samples. To determine the potential 
impact of intra-tumor genomic variability, we examined 
DNA copy number profiles (example in Supplemental 
Figure 3A) of 3 pairs of replicate tumor samples that were 
ChIP-sequenced twice. Replicate samples were sectioned 
from the same tumor at a different time with at least 5 
cell layers (25 to 50μm) between replicates. DNA copy 
number data were obtained from the off-target read in 
ChIP-seq experiments using the CopywriteR method [30] 
(Supplemental Figure 1A) and data were subsequently 
segmented with circular binary segmentation. We did not 
identify any substantial changes in the DNA copy number 
profiles between sample replicates. (Supplemental Figure 
3B). Unsupervised hierarchical cluster analysis on all the 
copy number data (20kb region bins, non-segmented) 
found most replicates cluster together with the exception 
of sample pair D (n = 12) (Supplemental Figure 3C). To 
quantify this further we calculated p-values (100 indicates 
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Figure 3: Binding profiles of 126 tamoxifen-synchronized regions (I) and unique pre-treatment regions (II). A., Venn 
diagrams depicting overlapping peaks (paired samples) for both post-treatment tamoxifen synchronized sites (I) and unique pre-treatment 
sites (II). b., Heatmap showing binding peak intensity for ERα binding events in I and II sites (± 5kb) in primary tumors (green) and 
metastases (purple).c., Normalized average signal intensity of ERα binding events from panel B. Line colors match B. D., Heatmap 
showing binding peak intensity for C for ERα binding events in I and II sites (± 5kb) in MCF7 cell lines deprived of hormones for three days 
and then given vehicle (grey), estradiol ((E2), brown), tamoxifen ((TAM), blue) and full medium ((ER.full), red). PR binding in MCR7 cell 
lines deprived of hormones for three days and then given full medium is shown in orange (PR.full). TAMR cell lines deprived of hormones 
for three days and then given vehicle (green) and TAM (purple) are also depicted. E., Normalized average signal intensity of ERα binding 
events from D. Line colors match D. F., Heatmap showing binding peak intensity for ERα and FOXA1 binding events in I and II sites (± 
5kb) in MCF7 cell lines deprived of hormones for three days and then given vehicle (blue), E2 (red) and TAM (green). G., H., Normalized 
average signal intensity of ERα (left) and FOXA1 (right) binding events from panel F. Line colors match F.
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a p-value < 0.00001) for the clustering based on multiscale 
bootstrap resampling and bootstrap resampling using the R 
package ‘pvclust’. (Supplemental Figure 3D) The p-values 
indicate the cluster analysis is highly supported by the data 
illustrating the low intra-tumor genomic variability of the 
samples as measured by DNA copy number. In addition, 
in our tumor ChIP-seq replicate data, we observed high 
correlation of read counts in known ERα binding regions 
[26] (Spearman’s rho 0.40 and 0.41) within replicate 
sample pairs and low correlation in 3 un-related samples 
to one of the replicate samples (Spearman’s rho, < 0.10) 
(Supplemental Figure 3E). 

To examine whether there is evidence that 
neoadjuvant tamoxifen treatment selects for a specific 
tumor sub-clone we also analyzed the copy number 
profiles of 4 treatment pairs, both pre- and post-treatment 
(Supplemental Figure 1A). Interestingly, we found no 
major differences in the copy number profiles between 
sample timing (Supplemental Figure 3F) suggesting 
treatment does not affect the overall DNA makeup in our 
samples. Unsupervised hierarchical cluster analysis of all 
the copy number data (non-segmented 20kb region bins) 
showed pre- and post-treatment samples cluster together, 
supporting the conclusion that neoadjuvant tamoxifen 
treatment does not confer DNA copy number changes 
in the samples (n = 8) (Supplemental Figure 3F, 3G) or 
select for a small sub-clone with a different DNA copy 
number pattern. The resultant p-values indicate our cluster 
analysis is strongly supported by the data (Supplemental 
Figure 3H). 

To quantitatively investigate the relative 
contribution of tumor DNA between treatment groups we 
called heterozygous single-nucleotide variants (SNVs) in 
both pre- and post-treatment ChIP-seq pairs. Assuming 
100% tumor DNA in our samples, each heterozygous 
SNV should have a ratio of 50/50 for alternate/reference 
reads (alternate allele frequency). Changes in the tumor 
content between treatment conditions should be evident 
in alternate allele frequency. We required each SNV to 
have at least 10 reads covering the alternate and reference 
allele for analysis. A scatterplot shows the alternate and 
reference allele counts in each SNV called (Supplemental 
Figure 3I). The distribution of alternate allele frequency 
between treatment groups was not significantly different 
(Wilcoxon signed rank, P = 0.76). Furthermore, we 
observed no significant difference (Wilcoxon rank sum, 
P = 0.37) between pre- and post-treatment alternate allele 
frequency in paired analysis taking into account only 
variants identified in both cases of the treatment pair 
(Supplemental Figure 3J). These findings support our 
conclusions from unsupervised hierarchical clustering of 
DNA copy number that pre- and post-treatment changes 
are not detectable at the level of DNA.

Pre- and post-treatment differential gene 
expression

Since ERα is a transcriptional regulator, we next 
examined differences between pre- and post-treatment 
samples at the gene expression level for 20 pre-treatment 
and 26 post-treatment samples (19 treatment pairs) using 
microarray technology on FFPE samples (Supplemental 
Figure 1A). We used ANOVA analysis to determine the 
most differentially expressed genes between the two 
classes, pre- and post-treatment, and visualized the results 
with unsupervised hierarchical clustering (Supplemental 
Figure 4A). Using the top variable genes from the dataset 
(variance > 1 across samples) we found 189 genes to be 
differentially expressed (FDR < 0.001 and fold-change > 
2, Supplemental Figure 4A). To identify key biological 
processes regulated by the differentially expressed 
genes, we used Ingenuity Pathway Analysis. The most 
upregulated genes in post-treatment samples are found in 
the adipogenesis pathway and are involved in LXR/RXR 
activation and include FBJ murine osteosarcoma viral 
oncogene homolog (FOS), nuclear receptor subfamily 
4, group A, member 1 (NR4A1; NUR77) and dual 
specificity phosphatase 1 (DUSP1) (Supplemental Figure 
4B, Supplemental File 4). Diseases such as cancer and 
neurological/cardiovascular disease along with biological 
functions such as cellular movement and apoptosis 
were associated closely with the genes upregulated after 
treatment (Supplemental Figure 4B). Interestingly, the 
most downregulated genes in post-treatment samples 
compared with pre-treatment samples were associated 
with immune response, such as REX1 RNA exonuclease 
1 homolog (REXO1L1P) (Supplemental Figure 4B, 
Supplemental File 4). Genes that were downregulated 
after treatment were also associated with diseases such as 
cancer, endocrine system disorders and breast carcinoma. 

In addition, we found MKI67 gene expression 
was significantly reduced in the post-treatment samples 
(Wilcoxon rank-sum, P = 0.003) (Figure 1D). To examine 
the relationship between MKI67 levels and proliferation 
we determined the gene expression proliferation module 
scores based on published modules AURKA and CIN70 
[34] and calculated the percent change as described in 
the module score between pre- and post-treatment. The 
percent change in known proliferation modules is highly 
correlated with percent change in MKI67 in our cohort 
(Supplemental Figure 4C, 4D). Notably, we found the pre-
treatment gene expression of proliferation module genes 
was significantly more variable than in the post-treatment 
condition (Wilcoxon rank-sum, P < 0.001), suggesting 
expression changes in proliferation module genes are 
driven by the tamoxifen treatment (Supplemental Figure 
4E).
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Figure 4: Binding profiles of 126 tamoxifen synchronized regions (I) and unique pre-treatment regions (II) under 
mitogen conditions. A., Heatmap showing binding peak intensity for ERα/FOXA1 binding events in I and II sites (± 5kb) in MCF7 cells, 
cultured under control conditions (blue) or in presence of a mitogen cocktail containing EGF, IGF-1, TNFα and IL-6 (brown for ERα and 
pink for FOXA1). b., Normalized average signal intensity of ERα/FOXA1 binding events from panel B. Line colors match B. c., Heatmap 
showing binding peak intensity for ERα binding events in I and II sites (± 5kb) in MCF7 cell lines deprived of hormones for three days and 
then given vehicle (brown), E2 (green), TNFα (burgundy), or the combination of both (orange). D., Normalized average signal intensity of 
ERα binding events from panel C. Line colors match D. E., Venn diagram depicting overlap of the 126 tamoxifen-induced bindings sites 
with EGF-induced ERα sites. F., Venn diagram depicting the overlap of tamoxifen-induced binding sites with estradiol induced S118-ER 
sites.



Oncotarget33909www.impactjournals.com/oncotarget

Genes associated with 126 tamoxifen induced 
synchronized sites differentiate patient outcome

After identifying the 96 genes associated with the 
126 tamoxifen-induced sites (±20kb from the nearest 
transcription start site) (Figure 5A), we first determined 
these genes strongly separate pre- and post-treatment 
samples (Figure 5B). Next, we wished to examine 
their capacity to predict patient outcome using distant 
metastasis free survival (DMFS). For this, we used 
publically available gene expression and clinical data 
from two data sources, (i) tamoxifen treated [38, 39], n = 
250, n = 134, respectively (ii) and non-endocrine therapy 
treated [40, 41], n = 209, n = 158, respectively (Figure 
5A, 5B). For tamoxifen-treated patients (n = 250, [38]), 
the 96 genes are capable of differentiating good versus 
poor outcome for the unsupervised hierarchically defined 
groups using DMFS (hazard ratio (HR) = 0.49, P = 0.006). 
This result was validated in a second cohort (HR = 0.44, 
P = 0.003; n = 134, [39]). Based on these 96 genes, no 
significant differential outcome was found in the two ERα 
positive cohorts of non-endocrine therapy treated patients 
[40, 41] (HR = 1.01, P = 0.961; HR = 1.69, P = 0.385, 
respectively), indicating the genes are not prognostic in 
nature (Figure 5B).

DIscUssION

In breast cancer, biomarker discovery is classically 
performed on treatment-naive tissue samples from surgery. 
While this is a logical choice from a clinical perspective, it 
may not be the most ideal setting for predicting response to 
therapy. This notion was stressed by the recent discovery 
of specific ESR1 (the gene that encodes for ERα) 
mutations in relapsed tumor tissue, after having received 
adjuvant tamoxifen or aromatase inhibitor therapy 
[57, 58]. These findings illustrate that ESR1 mutations 
do occur in breast cancer and that, more importantly, 
clinically relevant data may only be discovered when the 
clinicopathological or molecular assessment is performed 
after treatment pressure has occurred. 

Inter-tumor heterogeneity of breast cancer, both 
histopathological and molecular, is well documented [2 9] 
and recent findings indicate the tumor itself is frequently 
genomically heterogeneous [59, 60]. Using DNA copy 
number profiling we did not observe substantial differences 
in biological replicates from the same tumor as Wang et al. 
also previously reported using single cell whole genome 
sequencing [61]. When analyzing biological replicate 
ChIP-seq samples we found a high correlation within 
pairs with respect to read count in known ERα binding 
regions compared with un-related samples indicating 
the changes observed in ERα binding are induced by 
neoadjuvant tamoxifen treatment and not inherent to 
intra-tumor variability in ERα binding. In addition, we 

found no evidence that treatment induces differences at 
the copy number or single nucleotide level suggesting that 
tamoxifen treatment did not select for certain sub-clones, 
defined by copy number aberrations and alternate allele 
frequency. Moreover, when examining the gene expression 
data alone (Mammaprint, Supplemental File 1) [7] and the 
integrated DNA copy number and gene expression data 
using IntClust classifications (Supplemental Data File 
1) [36, 37] we found few changes between classes and 
an enrichment for the Luminal/ERα-positive subtypes. 
We are unable to rule out the possibility that there are 
differences in the DNA at the global level of single 
nucleotide variations with these data.

When examining the 126 tamoxifen-induced ERα 
bound sites in additional datasets we found a higher level 
of binding in metastatic samples compared with primary 
tumor samples from breast cancer patients. The metastatic 
patients from this series (Ross-Innes et al. 2012), failed to 
respond to endocrine therapy so we can categorize these 
samples as comparable to the post-treatment situation in 
our series. In this respect, our findings recapitulate the 
original observation of higher ERα binding site signal 
intensity in metastases relative to primary tumors. In 
addition, we found in MCF7 cells that PR binding is 
not present in the 126 tamoxifen synchronized sites 
indicating the binding at these regions is not modulated 
by PR. As expected, tamoxifen, estradiol and full medium 
conditions resulted in more binding at these sites than 
vehicle conditions. Interestingly, FOXA1 binding at these 
sites had a similar pattern in response to tamoxifen and 
estradiol as ERα, showing FOXA1 is dynamic at these 
sites while the vast majority of FOXA1 sites are not [50]. 
Dynamic FOXA1 sites are indicative of outcome [26] and 
affected by growth factors [26, 52, 54].

It has been previously reported that tamoxifen 
treatment induces ERα chromatin binding in MCF7 
luminal breast cancer models at the same genomic sites 
as estradiol treatment [50]. Importantly, these data are 
not in line with our observation in vivo in 4 independent 
tumors treatment pairs, where tamoxifen treatment 
resulted in a relocation of ERα chromatin interactions to 
other sites. The overlap of ERα binding sites of estradiol 
and tamoxifen conditions for MCF7 cells is substantial 
[50]. We observed in our paired tumor data a far greater 
proportion of post-tamoxifen treatment only sites (56.3%) 
in contrast to what is known from cell-line data (7%). 
Ingenuity Pathway Analysis indicated EGF to be an 
upstream regulator of relocation of ERα to these sites. 
We found a substantial proportion of overlap of these 
synchronized sites with EGF-induced sites in MCF7 cells 
further implicating EGF as a regulator by which ERα is 
relocated to these sites after tamoxifen. Importantly, we 
also observed at these sites that FOXA1 is responsive to 
tamoxifen and estradiol in tumors. With this, we suggest 
a possible mechanism by which ERα and FOXA1 are 
reprogrammed to these sites after tamoxifen mediated by 
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Figure 5: 96 genes survival analyses. A., Venn diagram depicting overlapping peaks (paired samples) for post-treatment tamoxifen 
synchronized sites (I) and an unsupervised hierarchical clustering heatmap depicting gene expression in our series of those genes. Top 
row indicates pre-treatment samples (red) and post-treatment samples (blue). b., Kaplan Meier survival curves of distant metastasis-free 
survival for tamoxifen treated datasets (left panels) and non-endocrine therapy treated datasets (right panels).
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EGF. Also, our findings that FOXA1 is dynamic in these 
regions suggest that this specific subset of FOXA1 binding 
sites may be dependent on ERα.

Interestingly, our findings in both tamoxifen 
treated cohorts indicate genes associated with tamoxifen-
induced ERα-synchronization are capable of specifically 
identifying breast cancer patients, who may not benefit 
from tamoxifen treatment. Furthermore, the observations 
from non-endocrine therapy treated cohorts suggest 
these genes are not associated with prognosis. These 
data are highly clinically relevant as around 50% of 
patients that receive tamoxifen experience a recurrence. 
With the 96-gene classifier reported here, 57% and 63% 
of patients are predicted to be tamoxifen resistant in the 
two tamoxifen-treated cohorts examined. Although these 
findings were reproducible between multiple publically 
available cohorts, they must be validated in the context of 

a prospective randomized clinical trial in order to examine 
the robustness of the gene set’s capacity to predict 
tamoxifen benefit. In addition, one would like to adjust the 
hazard ratios reported in this study for standard prognostic 
factors, such as age, histological grade etc. Unfortunately, 
for all datasets these additional clinico-pathological data 
are not publicly available.

A portion of ERα-positive breast cancers also 
express EGFR (see review by Osborne and Schiff and 
references therein) [62, 63]. We have observed in our own 
data an indication that EGF is an upstream regulator at the 
126 tamoxifen-synchronized sites. From our exploration of 
genes associated with these sites, we determined a subset 
of patients do not respond well to tamoxifen treatment. 
These patients may benefit from a combined therapy of 
tamoxifen and cetuximab, an anti-EGFR antibody, or an 
EGFR tyrosine kinase inhibitor. Two studies in metastatic 

Table I: Patient characteristics
Male Premenopausal Postmenopausal

N = 2 N = 14 N = 12
Variable No. (%) No. (%) No. (%) P*
Year of diagnosis 0.004a

   Mean 2011 2012 2010
   Range 2011 - 2011 2011 - 2013 2008 - 2012
Age at diagnosis <0.001a

   Mean 63 47 62
   Range 52 - 73 41 - 54 52 - 79
Treatment duration 0.189a

 (days)
   Mean 26 22 18
   Range 25 - 26 9 - 45 8 - 35
Tumor size by ultrasound  
(mm) 0.954a

   Mean 20 13.6 13.8
   Range 18 - 22 0 - 27 0 - 30
Lymph node status 0.108b

   micrometastasis 0 (0.0) 3 (10.7) 1 (3.6)
   positive 1 (3.6) 0 (0.0) 3 (10.7)
   negative 1 (3.6) 11 (39.3) 7 (25.0)
   other 0 (0.0) 0 (0.0) 1 (3.6)
Tumor histological grade 0.125b

   1 1 (3.6) 5 (17.9) 4 (14.3)
   2 0 (0.0) 5 (17.9) 8 (28.6)
   3 1 (3.6) 4 (14.3) 0 (0.0)
Tumor histology 0.209b

   IDC 2 (7.1) 11 (39.3) 11 (39.3)
   ILC 0 (0.0) 3 (10.7) 0 (0.0)
   IDC + invasive                      
   carcinoma                0 (0.0) 0 (0.0) 1 (3.6)

P*Tests are performed only on premenopausal and postmenopausal data; aWilcoxon-rank-sum-test; bPearson’s chi-squared 
test
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breast cancer patients explored either tamoxifen [64] 
or anastrozole [65] with or without gefitinib and found 
a numerical advantage for the addition of gefinitib to 
endocrine therapy regarding clinical benefit rate and 
progression-free survival, but only in endocrine-therapy 
naïve patients, or patients who had come off adjuvant 
tamoxifen at least 12 months before recurrence [64, 65]. 
In the neoadjuvant setting postmenopausal patients with 
EGFR-positive, and ERα-positive breast cancer were 
randomized for gefitinib (EGFR tyrosine kinase inhibitor) 
alone or gefitinib plus anastrazole, an aromatase inhibitor. 
Both the single and combination agents reduced tumor 
size [63], and induced Ki67 downregulation as well as 
phospho-EGFR. Taken together, these data all support the 
existence of a subgroup of ERα-positive breast cancers 
that become endocrine therapy resistant through activation 
of the EGFR signaling pathway, which may be mediated 
by a dynamic FOXA1 DNA binding landscape. The 
current data will help to further define those patients that 
will derive benefit from the addition of an EGFR inhibitor 
to endocrine therapy. 

Although neoadjuvant tamoxifen treatment times in 
this study were relatively short and varied (Table I), we 
did observe similar trends in transcriptomic changes in the 
7 patients treated less than 2 weeks (Supplemental Figure 
5A, 5B). We did not examine the DNA copy number or 
ChIP-seq data for these samples as only one patient in 
this short-treatment subgroup had paired data available. 
Overall, we observed a significant synchronization in 
the ERα/chromatin binding regions in the post-treatment 
samples compared with pre-treatment samples. 

ERα is a key transcription factor in cellular 
proliferation and importantly we found gene expression 
proliferation module signatures are significantly less 
variable in the post-treatment samples indicating a 
synchronization of the gene expression after treatment. 
In addition, changes in gene expression modules are 
significantly correlated with changes in MKI67 levels 
indicating the power of MKI67 levels to detect changes in 
proliferation. The gene expression changes coupled with 
the overall stability of the DNA copy number profiles 
between treatment conditions suggests transcriptional 
alterations are mediated by ERα/chromatin binding 
induced changes conferred by neoadjuvant tamoxifen 
treatment. 

We present the first comprehensive assessment of 
DNA copy number, gene expression patterns and ERα/
chromatin profiles at two different time points of breast 
cancer therapy: before and after neoadjuvant tamoxifen 
treatment. The patient series investigated in this work is 
relatively small, however utilizing the power of paired 
treatment samples we are able to determine molecular 
changes conferred by neoadjuvant tamoxifen treatment. 
Large-scale alterations of ERα action were observed due to 
therapy, resulting in a substantial synchronization of ERα/
chromatin binding and gene expression patterns between 

patients. We uncovered evidence these synchronized 
sites may be important in breast cancer outcome as they 
show more binding in metastatic samples versus primary 
tumor samples. In addition, we found FOXA1 binding 
at these sites to be dynamic in response to estradiol and 
tamoxifen. Binding profiles at these sites implicate EGF 
as a potential regulator of these sites. FOXA1 dynamic 
binding is linked to outcome and critically, we identify 
genes associated with tamoxifen-induced sites to be 
capable of differentiating patients for tamoxifen benefit. 

With this, we illustrate that hormonal therapy in 
breast cancer reprograms the genomic behavior of the 
drug target, ERα, and consequently affects downstream 
proliferation gene programs linked to patient outcome. 
Due to the direct effects of therapeutics on transcription 
factor behavior and transcriptional output, biomarker 
discovery studies may be further facilitated by performing 
such studies after neoadjuvant drug exposure.

MAtErIALs AND MEtHODs

Patients and characteristics

ERα-positive breast cancer patients were recruited 
as part of the ongoing AFTER study (Anastrozole, 
Fulvestrant or Tamoxifen Exposure Response in 
molecular profile, ClinicalTrials.gov #NCT00738777) 
at two Dutch hospitals (Netherlands Cancer Institute-
Antoni van Leeuwenhoek (NKI-AVL; Amsterdam) and 
Radboud University Medical Center (RadboudUMC; 
Nijmegen). Patient accrual occurred between August 
2008 and February 2013. Local medical ethical authorities 
at both centers approved of the collection protocols. 
Pre-menopausal and male patients were treated with 
tamoxifen. Post-menopausal patients were assigned 
randomly to tamoxifen, anastrozole or fulvestrant therapy. 
Among them, only data from tamoxifen treated patients 
were analyzed (Supplemental Figure 1B). Patients were 
eligible if they had invasive, non-inflammatory breast 
cancer and were treated with hormonal therapy if the tumor 
was hormone receptor-positive by immunohistochemical 
(IHC) staining at diagnosis. Patients were excluded if they 
had multi-centric or metastatic breast cancer or if they 
received hormone replacement therapy in the previous 
12 months. Patients were treated during the time between 
core-needle biopsy for diagnosis and surgery (typically 
2-6 weeks). In a normal setting tamoxifen can take up to 
8 weeks to reach therapeutic, steady-state levels in the 
blood plasma [21, 22]. Based on pharmacokinetics studies 
by Fabian et al, we chose a loading dose of 40mg orally, 
twice daily during 7 days with follow-up standard dosage 
of 20mg orally once daily to be able to reach steady state 
levels within 2 weeks [21]. 

We attempted to collect both pre-treatment and post-
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treatment fresh-frozen (FF) and formalin-fixed, paraffin-
embedded (FFPE) material for each patient (Supplemental 
Figure 1A). Sample fixation for each assay is listed in the 
methods details below. Ten serial sections of 5μm each 
were taken from both the core-needle biopsy (14 gauge) 
and primary tumor FFPE material for analyses. Pre-
treatment FF material was in the form of core-needle 
biopsy made up of 10-15 serial sections of 30μm each. 
Post-treatment FF material was sectioned in 30 serial 
sections of 30μm each from the primary tumor taken at 
the time of surgery. All replicate experiments are from 
additional sections taken from the same tumor.

Immunohistochemical staining and assessment

Immunohistochemistry of samples was performed 
on a BenchMark Ultra autostainer (Ventana Medical 
Systems) for ERα, Progesterone Receptor (PR) and 
Receptor Tyrosine-Protein Kinase erbB2 (HER2). Briefly, 
paraffin sections were cut at 3μm, heated at 75°C for 28 
minutes and deparaffinized in the instrument with EZ 
prep solution (Ventana Medical Systems). Heat-induced 
antigen retrieval was carried out using Cell Conditioning 
1 (CC1, Ventana Medical Systems) for 36 minutes at 
950C (ERα, PR and HER2) or 32 minutes at 950C (Ki-
67). ERα was detected using clone SP1 (ready-to-use 
dispenser, 32 minutes room temperature (RT), Roche), PR 
with clone 1E2 (ready-to-use dispenser, 32 minutes RT, 
Roche), HER2 with clone 4B5 (ready-to-use dispenser, 
12 minutes RT, Roche) and Ki67 detection using clone 
MIB1 (1:250 dilution, 32 minutes RT, DAKO). Bound 
antibody (ERα, PR and HER2) was detected using 
the UltraView Universal DAB Detection Kit (Ventana 
Medical Systems), while detection for Ki67 was visualized 
using the OptiView DAB Detection Kit (Ventana Medical 
Systems). Slides were counterstained with hematoxylin. 
ERα/PR/HER2/Ki67 scoring was performed on whole 
slides by a single pathologist (JW) blinded to patient 
status. For ERα, PR and Ki67 the percent of positive 
tumor nuclei was determined. For ERα/PR, 10% was 
used as a cut-off for positive according to current standard 
European guidelines. HER2 scoring was performed on a 
0 to 3+ intensity scale examined in the nuclei (0, negative 
staining; 1+, weak staining; 2+ moderate staining, 3+, 
strong staining). There were no ≥ 2+ HER2 samples in 
the cohort.

chromatin immunoprecipitation and sequencing

Chromatin immunoprecipitations (ChIP) were 
carried out on FF material as previously described 
[23] using 5μg of ERα antibody (SC-543; SantaCruz 
Biotechnology) and 50μl Dynabeads. Subsequently, 
Illumina-indexed libraries were constructed for each 
sample using the ERα ChIP DNA (ChIP-seq) (Figure 2A). 

Indexed DNA from 9 11 samples was equimolarly pooled 
sequenced on a single Illumina HiSeq2000 flowcell lane. 
Single-end 50bp reads were generated for each sample. 
Raw sequence data were aligned to the human genome 
(Ensembl 37) using Burrows-Wheeler Aligner (BWA) 
(mapping quality ≥ 20, duplicate reads removed). As 
control, input chromatin was used. For each treatment 
category, 6-10 control samples were pooled equimolarly 
together to create a meta-pool of control input material. 
This meta-pool material was used as a reference sample 
for further analysis.

Analysis of ChIP-sequencing

To identify enriched genomic regions we used 
two peak callers, MACS [24] and DFilter [25]. We ran 
MACS using the default parameters with the exception 
of a more significant p-value threshold at 1.00e-7. DFilter 
settings were default for transcription factor detection. 
The intersection of the peaks from both peak callers was 
used for the final list of enriched regions (peaks) for each 
sample. Treatment conditions were analyzed separately 
for peaks where the corresponding treatment control input 
was used as reference. 

We used the R Bioconductor ‘DiffBind’ package 
[26] to generate Venn diagrams of peaks for samples to 
determine a core set of binding events (identified in at 
least 2 of the samples in the set). This core set of binding 
events was used to identify the top DNA binding motifs 
using SeqPos from the Galaxy Cistrome package (http://
cistrome.org/ap/) with z-score threshold set at -3.09, which 
corresponds to a p-value of 0.001 [27]. Other binding 
events were analyzed for DNA binding motifs using 
SeqPos from the Galaxy Cistrome package in the same 
manner. In addition, CEAS analysis was used from the 
Galaxy Cistrome package to characterize the genomic 
regions at binding sites.

To determine the intra-sample reproducibility of 
the ChIP-seq data we performed ERα ChIP-seq replicates 
on the same tumor sample using the same conditions. 
Additional data were analyzed for 3 supplementary ERα 
positive samples (not in the AFTER study) of similar 
overall read number. Read counts in 2,262 known non-
overlapping ERα binding regions [26] were determined 
from the ChIP-seq alignment files using BEDTools 
coverageBed [28]. A correlation matrix of the read count 
data for all 5 samples (2 replicate pairs, 3 un-related) was 
then generated using the ‘cor’ function in R version 3.1.2. 
To determine the alternate allele frequency of variants in 
ChIP-seq data variants were called in ChIP-seq data of 
4 treatment pairs using BWA, BCFTools and SAMTools. 
Only heterozygous single nucleotide variants with ≥10 
alternate reads and ≥10 reference reads were chosen for 
further analysis. Alternate allele frequency is defined as 
the DP4 (SAMTools) alternate allele count divided by the 
DP4 total reads count at each SNV.
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For analysis of public ChIP-seq datasets, raw 
sequence data were downloaded from GEO (GSE25315, 
GSE25316, GSE32222, GSE68355) and aligned and MQ 
filtered as above. We used SeqMINER version 1.3.3 [29] 
to visualize the aligned data at regions of interest (bed 
format). 

DNA copy number profiling

We employed the CopywriteR method [30] to 
detect DNA copy number from ‘off-target’ sequence reads 
taken from the ChIP-seq data without a reference sample. 
Circular binary segmentation was used to segment the data 
as previously described [30, 31].

RNA isolations, microarray hybridization and 
analysis

Total RNA was isolated from formalin fixed 
paraffin embedded tissue as described previously [32]. 
After DNase treatment samples were purified using the 
Qiagen RNeasy FFPE kit. Total RNA (50ng) was reversed 
transcribed, amplified (Rubicon; C-WTA kit C) labeled 
with Cy3 (Genomic DNA enzymatic Labeling kit; Agilent 
Technologies) and subsequently purified (Amicon ultra 
30kDa filters). Cy3-labeled cDNA was hybridized to 
custom full genome arrays—array design based on Agilent 
Catalog #G2514F—at 65°C for 17 hours and subsequently 
washed. Arrays were scanned with a dual laser scanner 
(Agilent Technologies). Image analysis of the scanned 
arrays was performed to quantify fluorescent intensities 
using Feature Extraction software version 9.5 (Agilent 
Technologies).

Feature signal intensities were processed, 
imputation of missing values and summarization of all 
genes with multiple probes was performed as previously 
described [33]. Visualization of the data was performed 
with Partek Genomics Suite (Partek) using Hierarchical 
Clustering (Pearson Dissimilarity, average linkage) with 
centered data. Top variable genes were selected based on 
variance across samples ( > 1). An ANOVA analysis was 
used to determine differentially expressed genes between 
treatment conditions of the top variable genes (Partek). 
Significant genes were selected univariately with FDR < 
0.001 and the log2 space with fold change > 2.

To examine the relationship between published 
proliferation gene expression module scores and MKI67 
gene expression levels we calculated the AURKA and 
CIN70 proliferation gene expression module scores 
(containing proliferation-associated genes (PAGs)) 
as described in the work by Martin and Dowsett and 
colleagues [34]. The percent change as described 
previously [34] between pre- and post-treatment gene 
expression module scores and MKI67 gene expression 
values were calculated and visualized with a scatterplot. 

In addition, MammaPrint® scores were calculated [35].

DNA copy number and gene expression 
integration

We used the R package ‘iC10’ to implement the 
classifier, IntClust to integrate and classify the samples 
into the 10 IntClust groups using DNA copy number and 
gene expression data [36, 37]. Classification was carried 
out as described previously using default settings [36].

statistical analysis

All statistical analyses were carried out in R version 
3.1.2 (http://www.R-project.org) including all patients 
(pre-/post-menopausal and male) unless otherwise noted. 
Strength of associations between continuous variables was 
calculated with the Wilcoxon test, either Wilcoxon-rank 
sum (paired data) or Wilcoxon signed rank (non-paired 
data). For statistical analysis of categorical IntClust data, 
Pearson’s chi-square test was used with simulated p-value 
based on 2000 replicates. For examining the uncertainty 
in DNA copy number hierarchical analysis we used the 
R package ‘pvclust’ (distance = correlation, clustering = 
Ward; number of iterations = 1000). Briefly, p-values were 
calculated via two methods, AU (approximately unbiased) 
and BP (Bootstrap probability). The AU method computes 
using multiscale bootstrap resampling and the BP method 
computes by normal bootstrap resampling. The resultant 
clusters were depicted visually as dendrograms with AU 
and BP values shown above the branch. To examine the 
relationship between the percent change in MKI67 gene 
expression and gene expression module percent change 
Spearman’s rho was calculated. In addition, ChIP-seq 
sample replicate correlation using read counts in known 
ERα binding regions [26] was examined by Spearman’s 
rho. 

For survival analysis, normalized gene expression 
datasets were downloaded from GEO: GSE6532 [38], 
GSE22219 [39], GSE2034 [40] and GSE1121 [41]. From 
the tamoxifen treated datasets [38, 39], ERα positive, 
tamoxifen treated patients were selected, respectively (n = 
250, n = 134). From the non-endocrine datasets [40, 41], 
ERα positive untreated patients were selected, respectively 
(n = 209, n = 158). ERα status for the Schmidt et al. 
dataset was determined as described previously [42]. For 
each dataset, we selected all probes matching the 96 
genes associated with 126 tamoxifen-synchronized sites 
(disregarding genes not present on the array). The patients 
were then stratified into two groups with the selected gene 
expression data using unsupervised hierarchical Ward 
linkage clustering with Pearson correlation distance. 
Following that we calculated the hazard ratio to determine 
significant difference in distant metastasis-free survival 
(DMFS) between the two groups and Kaplan Meier graphs 
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were constructed to visualize the data.
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