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Abstract

A major goal of cancer biology is determination of the relative importance of the genetic alterations that confer selective
advantage to cancer cells. Tumor sequence surveys have frequently ranked the importance of substitutions to cancer growth
by P value or a false-discovery conversion thereof. However, P values are thresholds for belief, not metrics of effect. Their fre-
quent misuse as metrics of effect has often been vociferously decried, even in cases when the only attributable mistake was
omission of effect sizes. Here, we propose an appropriate ranking—the cancer effect size, which is the selection intensity for
somatic variants in cancer cell lineages. The selection intensity is a metric of the survival and reproductive advantage con-
ferred by mutations in somatic tissue. Thus, they are of fundamental importance to oncology, and have immediate relevance
to ongoing decision making in precision medicine tumor boards, to the selection and design of clinical trials, to the targeted
development of pharmaceuticals, and to basic research prioritization. Within this commentary, we first discuss the scope of
current methods that rank confidence in the overrepresentation of specific mutated genes in cancer genomes. Then we bring
to bear recent advances that draw upon an understanding of the development of cancer as an evolutionary process to esti-
mate the effect size of somatic variants leading to cancer. We demonstrate the estimation of the effect sizes of all recurrent
single nucleotide variants in 22 cancer types, quantifying relative importance within and between driver genes.

Since the advent of whole-exome and whole-genome sequenc-
ing of tumor tissues, studies of somatic mutations have
revealed the underlying genetic architecture of cancer (1), pro-
ducing lists of statistically significantly mutated genes whose
ordering implies their relative importance to tumorigenesis and
cancer development. Typically, differentiation of selected muta-
tions from neutral mutations is performed by quantifying the
overrepresentation of mutations within specific genes in tumor
tissue relative to normal tissue, and disproportionate preva-
lence of somatic mutations in a gene has been taken as prima
facie evidence of a causative role for that gene. Two quantifica-
tions have implicitly ordered the importance of discovered can-
cer “driver” genes: the prevalence of the mutation among tumor
tissues sequenced from that tumor type (2,3), the statistical sig-
nificance (P value) of the disproportionality of mutation fre-
quency (4), or both (1). Versions of these metrics have shifted
from simple ranks by mutation prevalence in a tumor popula-
tion (5–7) to calculation of statistical significance of mutation
prevalence over genome-wide context-specific background

mutation rates (8–10), to ratios of the prevalence of nonsynony-
mous and synonymous mutations (11), to P values based on a
gene-specific mutation rate and a diversity of genomic data (12).
Although the approaches used to calculate P values have be-
come more sophisticated, P values are not an appropriate met-
ric for quantifying the vital role of genes or their mutations to
tumorigenesis and cancer development, as P values are thresh-
olds for belief (13) and not metrics of effect (14,15). Failure to re-
port effect sizes is a persistent issue in the scientific and
biomedical literature that can massively misdirect research and
health-care decision making (16–21).

Although prevalence of a somatic mutation in a cancer
type has important consequences for biomarker studies (22)
and identification of the therapeutic population for a targeted
therapy (23), there is only a correlative—rather than causal—
link between prevalence of mutation and its contribution to
tumorigenesis and cancer development. The lack of causal
linkage is easily seen by considering the mutated genes that,
despite their high prevalence in tumor populations, are

C
O

M
M

EN
T

A
R

Y

Received: March 27, 2018; Revised: July 20, 2018; Accepted: August 24, 2018

© The Author(s) 2018. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

1171

JNCI J Natl Cancer Inst (2018) 110(11): djy168

doi: 10.1093/jnci/djy168
First published online October 26, 2018
Commentary

mailto:Jeffrey.Townsend@Yale.edu
https://academic.oup.com/


universally regarded as false positives. For example, the gene
TTN encodes a structural protein of striated muscle. Because it
is long, because it replicates relatively late in the DNA synthe-
sis phase of the cell cycle, and because it is inaccessible to
transcription-mediated repair in nonmuscle tissues, it has a
high mutation rate and is frequently mutated in non-sarcoma
cancer tissues. Granted, TTN is an extreme example—
sometimes showing up at the top of lists ordered by preva-
lence of genic mutation (11,12)—but it exemplifies the problem
with using substitution prevalence as a proxy for importance.
Any consideration of whether mutated genes are contributing
to tumorigenesis and cancer development—or of the degree to
which they are contributing—must address the issue of their
underlying mutation rate.

The appearance of such biologically implausible genes in
ranked mutation lists prompted the development of increas-
ingly sophisticated statistical approaches designed to “weed
out” false positives via calculation of a P value that accounted
for gene length and background mutation rate. The classical
evolutionary biology approach is to use the frequency of synon-
ymous site mutations in each gene as a proxy for mutation rate.
As in the divergence of species, synonymous site mutations are
presumably neutral (or nearly so) to the success of cancer line-
ages during the divergence from normal to resectable tumor. As
the number of mutations observed in a given gene is typically
much smaller in the somatic evolution of cancer than is ob-
served in the divergence between most species, use of synony-
mous sites within a single gene leads to many genes with zero
synonymous mutations in most cancers, and an ineffective cal-
culation of P value. Alternative approaches currently in use ob-
tain a reasonably robust estimate of genic mutation rate by
incorporating correlates of mutation rate among genes such as
gene expression levels, chromatin states, and replication tim-
ing. These approaches are largely successful at excluding
known false positives (2,12).

The sample size of tumors varies among genomic tumor sur-
veys, posing a problem for comparison of P values within or be-
tween cancer types (14,15). An even more serious issue with
using P values for ranking genes or mutations arises from the
same source that obviates use of genic mutation prevalence:
the confounding effect of mutation rate. Because the “sample
size” of overall mutations in a gene is dictated by the genic mu-
tation rate, it is much easier for genes with high mutation rates
not only to reach high genic prevalence, but also to reach statis-
tical significance despite small effect sizes. Although
approaches accounting for genic mutation rates will eliminate
false positives (2,12), and the P value will serve to exclude genes
like TTN that have no role in tumorigenesis and cancer develop-
ment, the rank order by P value of genes that do have a role in
tumorigenesis and cancer development will remain highly af-
fected by mutation rate. Genes with higher mutation rate will
(correctly) be more likely to achieve statistical significance, and
thus will appear deceptively high on a ranked list whose order-
ing suggests importance in tumorigenesis and cancer
development.

Because genic mutation prevalence and P value inade-
quately capture importance to tumorigenesis and cancer devel-
opment, we aimed to derive a more appropriate method. To
evaluate the relative importance of mutations in diverse cancer
types to tumorigenesis and cancer development, we adapted
insights from classical evolutionary theory, informed by an un-
derstanding of the development of cancer as an evolutionary
process (24,25). By applying an evolutionary concept, the impor-
tance of a mutation to tumorigenesis and cancer development

can be quantified by its “selective effect” on the cancer lineage.
The appropriateness of this metric is fairly easy to recognize.
Mutations are a major source of variation contributing to tu-
morigenesis, yet we do not conduct genomic tumor sequence
surveys to discover neutral mutation rates: we conduct them to
determine which mutations spread within cancer tissues be-
cause of the effects of mutations on proliferation and survival.
Mutation rate is a confounding phenomenon—when it is high,
it also increases allelic fraction and the probability of
substitution.

Because silent site substitutions and other correlates of
baseline mutation rate provide a means to estimate silent
mutation rate independently from the impact of natural se-
lection within the tumor, selection intensities can also be es-
timated, providing the effect sizes of each mutation. In
accordance with population genetic theory, the rate at which
neutral mutations arise and the rate at which they fix as sub-
stitutions are equivalent, and non-neutral mutations arise at
a consistent rate. Therefore, the rate that we expect to see
specific nucleotide variants within tumors in the absence of
selection can be calculated by quantifying the rate of silent
mutation at the resolution of genes (12), and adjusting this
rate at the nucleotide level so as to be consistent with the av-
erage trinucleotide mutational signatures observed in each tu-
mor type (26,27). The flux of substitutions among tumors at a
nucleotide site that occurs above the baseline silent rate rep-
resents the intensity of selection on that mutation within the
tumor population. These selection intensities quantify the
survival and proliferative advantage conferred by variants, fa-
cilitating comparisons of the relative importance of drivers
among and within tumor types.

Methods

Data Acquisition and Preprocessing

Data were obtained from the National Cancer Institute’s The
Cancer Genome Atlas (NCI TCGA) database (28) and from the
Yale-Gilead collaboration (Supplementary Table 1, available on-
line). All TCGA data were first converted to hg19 coordinates us-
ing the liftOver function of the R package rtracklayer (29) to
ensure compatibility with all software used. Nucleotide variants
that were only one or two positions apart in the same tumor
sample were removed from the analysis to ensure that we ana-
lyzed only single-nucleotide variants. We used tissue-specific
mutational covariates to inform mutation rate calculations and
thus used all available data on gene expression levels from The
Genotype-Tissue Expression (GTEx) portal (30) and the Cancer
Cell Line Encyclopedia (CCLE) database (31), replication timing
from ReplicationDomain (32), and chromatin state from the
RoadMap Epigenomics Project (33). The specific files used for
each cancer type are listed in Supplementary Table 2 (available
online). Head and neck squamous cell carcinoma (HNSC)
tumors with variant data obtained from the NCI TCGA database
were designated as positive for human papillomavirus (HPV) if
they contained greater than 100 HPV RNA viral transcript reads
per hundred million (34), and one of the 17 tumors obtained
from Hedberg et al. (35) was determined to be HPV-associated
by HPV in situ hybridization and p16 immunohistochemistry
(36). Breast invasive carcinoma (BRCA) tumors were designated
as estrogen receptor-positive and -negative as described in the
TCGA GDAC Firehose (37).
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Effect Size Calculation
Gene-level mutation rates were calculated using the maximum
likelihood estimate for the expected number of synonymous
mutations in a gene with the dndscv package and tissue-
specific covariate files. These rates were converted to the
expected average mutation rate per silent site by dividing each
rate by the number of potential silent mutations in each gene.
The mutation rate for sites across each gene was then calcu-
lated as the mutation rate of each trinucleotide context,
weighted such that the average mutation rate among all sites
equaled the average site-specific mutation rate for that gene.
Trinucleotide-specific mutation rates were calculated using
deconstructSigs, and were derived from all signatures present
in each tumor sample. This mutation rate is presumably equiv-
alent to the rate at which we would expect to observe mutations
in tumor sequence if there were no selection. It can then be
compared to the rate of which mutations are actually observed,
ie, the substitution rate, after correction of the flux of substitu-
tions given that we can only observe one substitution per site
per normal-tissue to tumor-tissue comparison, and enforce-
ment of a specification that only one substitution per gene per
normal-tissue to tumor-tissue comparison is under selection
(Figure 1, Supplementary Methods, available online). The inten-
sity of selection, or cancer effect size, per variant is then equiva-
lent to the substitution rate divided by the mutation rate. A

software package containing the tools to calculate cancer effect
size, cancereffectsizeR, is available for free download and usage
at https://github.com/Townsend-Lab-Yale/cancereffectsizeR.

Statistical Analysis

The Q values reported in figures are calculated by dndscv as de-
scribed by Martincorena et al. (2), and use multiple testing ad-
justment via the Benjamini-Hochberg false discovery rate.
Confidence intervals of all effect sizes were calculated by boot-
strapping the tumor samples 1000 times. Confidence intervals
are reported in Supplementary Table 3 (available online).

Results and Discussion

To calculate the cancer effect sizes of all recurrent single-nucle-
otide variants in 22 cancer types, we compared the rate of ob-
served substitutions to the rate that substitutions would be
expected to arise in the absence of selection (38) in data that ei-
ther were obtained from TCGA projects downloaded from the
National Cancer Institute’s Genomic Data Commons (28)
(Supplementary Table 2, available online) or were derived from
whole exome sequencing of tumors as part of a collaboration
with Gilead Sciences (Supplementary Table 1, Methods,

Figure 1. Deconvolution of prevalence by mutation rates to yield selection intensity for recurrent amino acid mutations within three oncoproteins caused by single-nu-

cleotide changes in lung adenocarcinoma. A) Observed substitution rates—after correction under an assumption of complete intragenic epistasis—are divided by (B)

the expected substitution rates in the absence of selection. Expected substitution rates in the absence of selection are calculated as (C) the average per-site synony-

mous mutation rate of the gene, normalized for (D) the average weight of trinucleotide mutational signature burden for that tissue. The quotient of observed to

expected numbers of substitutions is (E) the selection intensity, or cancer effect size, of variants.
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available online). This estimation of tissue-specific site-specific
mutation rates accounts for mutagenic exposure at the gene
level and mutational patterns at the trinucleotide level; the esti-
mation is important because these rates can vary substantially
between tissue types for the same mutation. For instance, the
rate we would expect a mutation creating a BRAF V600E variant
in a cancer cell is an order of magnitude different between lung
adenocarcinoma and skin cutaneous melanoma
(Supplementary Table 3, available online). Deconvolution by
this mutation rate reveals a wide distribution of selection inten-
sities in somatic tumors—selection intensities that vary consid-
erably from tumor type to tumor type, even among tumors that
arise from tissues exposed to similar mutational pressures. For
instance, even though lung tissues encounter similar mutagens
and hence mutations arise through similar mutational signa-
tures, lung adenocarcinoma and lung squamous cell carcinoma
variants conferring the largest effect sizes are markedly differ-
ent among the two cancers (Figure 2). Moreover, within a tumor
type, the selection intensity decouples the effects of mutation
rate on frequency: Even though EGFR L858R variants are approx-
imately twice as prevalent as KRAS G12A variants in lung ade-
nocarcinoma tumors, KRAS G12A is estimated to have a higher
effect size, because of its much lower baseline mutation rate.
Furthermore, the relative selection intensity among variants
within a single gene reveals whether “hotspots” of somatic vari-
ation are purely driven by mutational processes or, in contrast,
are under differential selective pressure. For instance, the high
prevalence of KRAS G12C relative to other KRAS position 12 sub-
stitutions within lung adenocarcinoma is often attributed to the
high G! T nucleotide mutation rate found in lung cancer tissue
caused by tobacco smoke (38,40), and is not typically attributed
to an increased proliferative advantage conferred by this partic-
ular mutation relative to other KRAS position 12 mutations.
Indeed, we calculate remarkably similar estimates of the effect
sizes of KRAS G12 variants—despite large differences in substi-
tution rates (mutation prevalence).

This calculation yielded cancer effect sizes for all fixed sub-
stitutions (Supplementary Figure 1, Supplementary Table 3,
available online) that quantify contribution to the cancer phe-
notype within 22 tumor types. As should be expected,

substitutions in previously described “hotspots” (41,42) had sta-
tistically significantly higher selection intensities than substitu-
tions outside of previously described hotspots (one-sided
Wilcoxon rank sum test, P< 2.2� 10�16). Several common
known oncogenic substitutions, such as BRAF V600E in primary
skin cutaneous melanoma and EGFR L858R in lung adenocarci-
noma (43,44), and substitutions in known tumor suppressor
genes, such as APC in rectum adenocarcinoma and TP53 in
HPV� HNSC, are highly selected. These genes are also typically
determined as statistically significantly mutated [eg, by dndscv
(2)]. However, genes that have been determined to be statisti-
cally significantly altered in cancer are well dispersed across a
large range of site-specific cancer effect sizes (Figure 3), illus-
trating how discrepant gene-specific Q values are with site-
specific cancer effect sizes. Several substitutions within genes
that are not statistically significantly overmutated are inter-
spersed among more prevalent substitutions within genes that
are estimated to be statistically significantly mutated, for in-
stance, Mastermind-like3 (MAML3) G1073A in rectum adenocar-
cinoma, a protein that is known to bind to and stabilize the
DNA-binding complex of the Notch intracellular domain (45)
and ubiquitin ligase Cullin-3 (CUL3) M299R in prostate adeno-
carcinoma, which was only recently implicated as a driver of
prostate cancer by an even higher sample-size tumor sequence
analysis (3). The cancer effect size not only captures the distinct
selective pressures underlying the development of different
cancer types, it also captures the distinct selective pressures
among tumors of the same type but different ontogeny. For in-
stance, HPVþ and HPV� HNSC and estrogen receptor-positive
and estrogen receptor-negative BRCA each have distinct var-
iants of high cancer effect size (notably, variants within TP53
rank among the highest effect sizes within HNSC and BRCA
tumors negative for HPV and negative for ER, respectively;
Supplementary Figure 1, available online). These distinct selec-
tive effects of somatic mutations likely reflect divergent evolu-
tionary landscapes driven by epistatic interactions within each
subtype (46,47). In contrast, uterine corpus endometrial carci-
noma and colon adenocarcinoma tumor types analyzed within
subsets classified by microsatellite instability—where the muta-
tion rate is elevated but the underlying selective pressures

Figure 2. The 25 single-nucleotide variants (red ¼ dndscv Q<0.05; black ¼ dndscv Q�0.05) with the highest selection intensity from (A) 675 LUAD tumors and (B) 600

LUSC tumors, within the expertly curated COSMIC list of drivers (39), ranked by selection intensity (bar, uniquely colored by gene identity, to the right of variant name),

determined by deconvolving prevalence (number to the left of the variant name), by mutation rate (bar, uniquely colored by gene identity, to the left of prevalence, and

rate � 10–6, to the left of the bar). The asterisk corresponds to a nonsense mutation. LUAD ¼ lung adenocarcinoma; LUSC ¼ lung squamous cell carcinoma.
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driving tumorigenesis are similar—exhibit little difference in
the relative selection intensity of mutations.

Here we have argued that frequencies of mutation and P val-
ues are not an appropriate metric for the importance of somatic
variants in tumor growth. We derive the appropriate metric: the
cancer effect size of mutations. This effect size—quantifying the
intensity of selection on mutations in cancer cells in patients—
conveys the replicative and survival benefit conferred by genetic
variants, and therefore is a direct metric of the contribution of a

variant to the cancer phenotype. Using our approach, we esti-
mated the effect size of all recurrent single-nucleotide variants in
22 cancer types, reevaluating their importance across single-nu-
cleotide variant effect size to cancer in disparate tumor types pro-
jected to account for approximately 82% of all new cancer cases
within the United States in 2017 (48).

Current approaches using conservative P values are particu-
larly underpowered to detect genes that are of high importance
to tumorigenesis and cancer development in some cancer cases

Figure 3. Cancer effect sizes of recurrent somatic substitutions in six of the 22 cancer types analyzed. Effect sizes greater than 1�103.5 are indicated by ticks along the

tumor-type axes. The highest 50 effect sizes are labeled within each tumor. Names of genes that have more than one mutation listed within or between tumors are

uniquely colored. Genes deemed statistically significantly overburdened with nonsynonymous mutation (2) are depicted by a red circle next to variant names, and the

prevalence of each substitution is represented by the size of this circle. NC refers to a non-coding single-nucleotide variant outside an exon (eg, 5’ or 3’ UTRs). 108

LUAD, 108 LUSC, and 28 SKCM tumors from the Yale-Gilead collaboration are included in the plot. LGG ¼ brain lower grade glioma; SKCM ¼ skin cutaneous melanoma

(primary); READ ¼ rectum adenocarcinoma; PRAD ¼ prostate adenocarcinoma; LUAD ¼ lung adenocarcinoma; LUSC ¼ lung squamous cell carcinoma.
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because the site or sites conveying the relevant phenotype are
mutated at low rates. For instance, FBXW7 R505G was estimated
to have the highest selection intensity in HPVþ HNSC, BRAF
V600E was estimated to have the seventh highest selection in-
tensity in low-grade glioma, and BRAF G469A was estimated to
have the 12th highest selection intensity in prostate adenocarci-
noma, yet these two genes were not classified as statistically
significantly mutated at the gene level within these three can-
cer types. Mutations within these two well-known oncogenes
were estimated to confer large effect sizes, and these genes
were determined to be statistically significantly mutated in
other cancer types, yet their importance in patients who have
these rarer somatic variants within HPVþ HNSC, low-grade gli-
oma, and prostate adenocarcinoma has been poorly illuminated
by gene-wide analyses of statistically significant mutation bur-
den across patients. Thus, calculating the cancer effect size at
the level of single nucleotide variants identifies drivers with an
underwhelming, low prevalence that potentially exert a very
large effect in different tumor types.

Identification of these low-prevalence, high-effect drivers is
increasingly important as precision targeting of therapeutics
becomes increasingly integrated into clinical trial design.
Targeted therapies are often developed for, and necessarily
tested in, a single tumor type with the targeted variant at high
frequency. However, the same variant often exists at lower
prevalence in other tumor types. Quantifications of the cancer
effect size can guide the selection and design of clinical trials to
target small populations that can benefit from targeted thera-
peutics developed for other cancer types. Targets for therapies
that were originally developed for variants at high prevalence in
one tumor type are expected to be effective when treating the
same variant in a secondary tumor type if the variant has simi-
larly high selection intensity in the second tumor type, even if it
is at low prevalence in the newly considered tumor type (49).

The effect sizes of somatic mutations in cancer should play
key roles in clinical decision making, providing crucial insight
into the relative upper limits of the efficacy of precision-
targeted treatments. For instance, the relative ranking of the ef-
fect sizes of the somatic variants within a tumor indicates the
variants that, when targeted, would have the largest predicted
effect on tumor progression. These predictions of evolutionary
effect given targeted therapy complement preclinical research
on drug efficacy, toxicity, and epistatic interactions (49).
Furthermore, when a therapy abrogates novel oncogenic func-
tion primarily by disabling a gain-of-function mutation, the up-
per limit of the efficacy of the precision-targeted treatment will
be dictated by the selection intensity that the somatic variant
imparted to the cancer cell lineage. Therefore, precision treat-
ments can be selected in clinical decision making on tumor
boards to target mutations with the greatest cancer effect size,
incorporating other knowledge regarding the pharmacokinetics,
efficacy, side effects, and the evolution of resistance to thera-
pies. That is, the effectiveness of a targeted therapy is expected
to scale with the selection intensity of the target for any therapy
that specifically inhibits the selective advantage conferred by
the mutant allele. Similarly, cancer effect size can be used in
the same manner to prioritize targeted development of new
therapeutics, indicating the upper limit of effect for a perfect
therapeutic ameliorating an oncogenic mutation. Importantly,
by treating each tumorigenesis event as an independent in situ
evolutionary trajectory, we can calculate the impact of variants
within the native environment of the human soma. This
inference—made directly from observations in human tissues—
is complemented by experimental data using model systems

[eg, Ng et al. (50)] that are effective in providing a systematic
and experimentally controlled methodology to assess func-
tional impact of many tumorigenic genomic variants. Context-
specific variation introduced via a model system causes imper-
fect capture of the functional impact of all variants; results from
model systems should be considered alongside human cancer
effect sizes.

Conclusions

The effect sizes of cancer mutations can inform nearly every as-
pect of basic research related to oncology, including which
genes and pathways deserve greater attention in basic research.
Although network interactions (51), epigenetic (52) and tumor
microenvironment interactions (53), and aspects of cellular dif-
ferentiation and cellular plasticity (54) mean that quantification
of the selective effect of mutations does not provide an upper
bound on the importance of a gene or pathway in the molecular
biology of particular cases of cancer, its quantification does pro-
vide a lower bound on its importance across a cancer type, as
the role of genes with a somatic variant can be no lower in im-
portance than the selection intensity the variant imparts. By fo-
cusing on single-nucleotide variants, we have dealt with only a
subset of the mutational processes observed in cancer.
Importantly, effect sizes of other mutational processes, such as
multinucleotide mutations, copy number alterations, or epige-
netic modifications, could be similarly calculated, given suffi-
cient prevalence data and accurate approaches to estimation of
the intrinsic mutation rate for each kind of oncogenic change.
Multiregion sequence datasets from large numbers of patients
will surely be gathered in the future, and they promise greater
power for increasingly fine-scale temporal resolutions of muta-
tional signatures (55), rates, and fixation events (56), as well as
cancer effect sizes.
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