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Small‑molecule metabolome 
identifies potential therapeutic 
targets against COVID‑19
Sean Bennet1,7, Martin Kaufmann1,7, Kaede Takami1, Calvin Sjaarda2, Katya Douchant1, 
Emily Moslinger1,6, Henry Wong3, David E. Reed1, Anne K. Ellis4, Stephen Vanner1, 
Robert I. Colautti5,8 & Prameet M. Sheth1,3,6,8*

Respiratory viruses are transmitted and acquired via the nasal mucosa, and thereby may influence 
the nasal metabolome composed of biochemical products produced by both host cells and microbes. 
Studies of the nasal metabolome demonstrate virus‑specific changes that sometimes correlate with 
viral load and disease severity. Here, we evaluate the nasopharyngeal metabolome of COVID‑19 
infected individuals and report several small molecules that may be used as potential therapeutic 
targets. Specimens were tested by qRT‑PCR with target primers for three viruses: Influenza A 
(INFA), respiratory syncytial virus (RSV), and SARS‑CoV‑2, along with unaffected controls. The 
nasopharyngeal metabolome was characterized using an LC–MS/MS‑based screening kit capable 
of quantifying 141 analytes. A machine learning model identified 28 discriminating analytes and 
correctly categorized patients with a viral infection with an accuracy of 96%  (R2 = 0.771,  Q2 = 0.72). 
A second model identified 5 analytes to differentiate COVID19‑infected patients from those with 
INFA or RSV with an accuracy of 85%  (R2 = 0.442,  Q2 = 0.301). Specifically, Lysophosphatidylcholines‑
a‑C18:2 (LysoPCaC18:2) concentration was significantly increased in COVID19 patients (P < 0.0001), 
whereas beta‑hydroxybutyric acid, Methionine sulfoxide, succinic acid, and carnosine concentrations 
were significantly decreased (P < 0.0001). This study demonstrates that COVID19 infection results 
in a unique nasopharyngeal metabolomic signature with carnosine and LysoPCaC18:2 as potential 
therapeutic targets.

COVID-19 represents one of the greatest public health challenges of the twenty-first century. Unlike most res-
piratory viruses, SARS-CoV-2 has a longer incubation period and infected individuals present with a spectrum 
of symptoms ranging from asymptomatic to severe clinical disease requiring hospitalization. The majority of 
SARS-CoV-2 infections occur via the nasal  mucosa1. Understanding the host–pathogen interactions in the nasal 
mucosa may provide valuable insight into the identification of novel therapeutic targets. These targets may be 
used to interrupt the acquisition and limit disease progression of SARS-CoV-2. We thus examined if the nasal 
metabolomic profile for COVID-19 was distinct from those of other respiratory viruses, and whether examining 
the metabolome of the nasopharynx (NP) would provide insight into host–pathogen interactions in the nasal 
mucosa.

Previous studies involving the nasal metabolome in individuals infected with respiratory viruses, including 
rhinovirus (RV) and respiratory syncytial virus (RSV), reported that the nasal metabolome was virus-specific, 
despite indistinguishable clinical presentations in infected  individuals2. Furthermore, the concentrations of spe-
cific nasal metabolites positively correlated with viral load and disease severity and predicted the need for positive 
pressure ventilation in patients with a high degree of sensitivity and specificity (84% and 86%, respectively)3. 
The predominant changes in the nasal metabolome observed in response to respiratory viruses were identified 
to be host-derived, although some metabolite concentrations correlated with colonization with Haemophilus 
influenzae, Streptococcus pneumoniae and Moraxella catarrhalis2. These studies suggest that evaluating metabolic 
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signatures in the nasopharynx of COVID-19 patients compared to other respiratory viruses may provide insight 
into important host-mediated antiviral responses, further elucidate changes that may be occurring in the nasal 
microbial environment and potentially identify new therapeutic targets against COVID-19.

In this study we hypothesized that SARS-CoV-2 induces a characteristic change to the nasal metabolome 
of patients and that could be used to both identify metabolites important in pathogenicity, as well as potential 
therapeutic targets. We thus implemented a targeted metabolomics approach based on liquid chromatography 
tandem mass spectrometry (LC–MS/MS) to (1) characterize small-molecule profiles in viral transport media 
(VTM) from NP swabs of patients infected with INFA, RSV or COVID-19 and unaffected controls; (2) identify 
COVID-19 specific metabolite patterns; and (3) explore potential therapeutic pathways based on significant 
metabolites identified by a supervised machine learning model (Fig. 1).

Results
Small molecule profiling of NP swabs from patients with respiratory infection. We studied the 
nasopharyngeal metabolome in patients who underwent standard-of-care or screen testing for respiratory infec-
tion. VTM from clinical samples were analyzed using a targeted, small-molecule screening kit (TMIC Prime) 
capable of quantifying 141-analytes over six chemical classes using a combination of LC–MS/MS and flow-
injection analysis-MS/MS (Fig. 1). A total of 210 individuals were included in this study, comprising 44 unaf-
fected controls (AC) and three patient groups: 55 patients positive for SARS-CoV-2 (COV), 55 patients positive 
for INFA and 56 positive for RSV (Table 1). PCR Cycle Threshold (CT) values were used as a surrogate for viral 
load (VL) and samples were stratified according to CT’s of 30–35 (low VL), 25–30 (intermediate VL) and < 24.9 
(high VL).

As the TMIC Prime kit was developed for profiling biological matrices such as serum, urine and stool, we 
first surveyed which analytes could be detected in VTM from clinical NP swabs. All patients and subjects were 
sampled using nasopharyngeal swab kits from the same manufacturer (Copan Diagnostics, USA). The mean 
concentration of 46 of the 141 analytes measured was found to be at least 2X greater in all clinical samples, as 
compared with blank VTM obtained from unused swab kits. Analytes comprised amino acids (N = 18), organic 
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Figure 1.  Experimental workflow. Viral transport medium from clinical nasopharyngeal swabs was analyzed 
using a TMIC Prime kit involving chemical derivatization, and liquid chromatography-tandem mass 
spectrometry. Multivariate and univariate statistical analyses were conducted to identify significant analytes, 
which we attempt to rationalize in the context of the pathogenesis of viral infection.

Table 1.  Patient demographics. a PCR cycle threshold values (CT).

Patient group

SARS-COV-2 (COV) Influenza A (INFA)
Respiratory Syncytial 
Virus (RSV) Unaffected Controls

N 55 55 56 44

Year of collection (range in 
months) 2020 (Jan–Apr) 2019–2020 (Dec–Mar) 2019–2020 (Dec–Mar) 2020 (Sept)

Median age (range) 55 years (20–85 years) 62 years (27 days–94 years) 16 months (21 days–
91 years) 24 years (19–43 years)

Sex (%)
M 27%
F 42%
n/a 31%

M 54%
F 44%
n/a 2%

M 40%
F 46%
n/a 14%

M 25%
F 75%

Median  CTa (range) 26.2 (17.76–37.24) 28.6 (21.43–38.6) 26.3 (18.54–36.87) N/A
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acids/derivatives (N = 5), biogenic amines (N = 11) acylcarnitines (N = 2), polar lipids (N = 8), sphingomyelins 
(N = 1), and organic nitrogen-containing compounds (N = 1); suggesting that a range of analytes can be sampled 
from the nasopharynx and then recovered from VTM (Supplementary Table S1).

When comparing all patient samples (SARS-CoV-2, INFA and RSV) with unaffected controls, the feature 
selection step of our machine learning pipeline identified a subset of 28 significant metabolites which differenti-
ated patients and controls. This method was also used to identify 5 metabolites that distinguished SARS-CoV-2 
from Influenza and RSV, resulting in 30 unique metabolites that we prioritized for multivariate analysis, including 
amino acids (N = 15), organic acids (N = 4), acylcarnitines (N = 1), polar lipids (N = 4), biogenic amines (N = 5) 
and total hexoses (N = 1) (Supplementary Tables S1 and S2).

Multivariate model creation and testing. Exploratory modelling of metabolite profiles scaled to blank 
VTM using partial-least discriminant analysis (PLS-DA) revealed some separation of the four patient groups 

 
-10 -5 0 5 10

-4

-2

0

2

Resp1

R
es

p2

Control

COVID19
INFA

RSV

-4 -2 0 2 4

-2

0

2

COVID1

C
O
VI
D2

COVID19
INFA

RSV

DC

BA

-10 -5 0 5 10

-2

0

2

4

P1

P2

Control
COVID19

INFA

RSV

-2 0 2 4

-2

0

2

4

P2

P3

Control
COVID19
INFA

RSV

Figure 2.  Multivariate analysis and classification of patients with respiratory illness based on metabolite 
profiles. Supervised partial least squares discriminant analysis was used to plot analyte profiles in VTM from 
clinical nasopharyngeal swabs scaled to control VTM. Plots of components 1 and 2 (A) and 1 and 3 (B) are 
shown where optimal separation of patient groups was observed. Orthogonal partial least squares discriminant 
analysis was used to plot analyte profiles among patient groups. In (C), all patients with a respiratory illness were 
grouped into a single category and compared to unaffected controls. In (D), COVID19 patients were compared 
to all other patients with influenza A and RSV were tr into a single category. The 95% confidence region is 
circled for each category.
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(Fig. 2A, B). A second model using orthogonal partial least squares discriminant analysis (OPLS-DA) focused 
on differences between all patients with respiratory illness (SARS-CoV-2, INFA and RSV) and unaffected con-
trols, where the two groups appeared well-separated (Fig. 2C). Using half of the data for training and the other 
half for testing, this model had an accuracy of 96%, a sensitivity of 98% and specificity of 86%  (R2 = 0.771, 
 Q2 = 0.72) in differentiating between groups (Fig. 3A). Both training and testing sets exhibited area-under the 
curve measurements based on receiver operating characteristic curves of > 0.90, shown in the Supplementary 
Methods (AUROC; training = 0.98, testing = 0.91). A third model compared COVID19 patients and those with 
other respiratory illnesses (INFA or RSV) (Fig.  2D) Using the same cross-validation analysis as above, this 
model distinguished COVID19 from other patients with an accuracy of 85%, sensitivity of 74% and specificity 
of 90%  (R2 = 0.442,  Q2 = 0.301) (Fig. 3B). AUROC measurements for both training and testing sets were similar 
(AUROC training = 0.85, testing = 0.84, Supplementary Methods).

Five analytes are specifically altered in patients with SARS‑CoV‑2 infection. OPLS-DA load-
ings for the 30 unique metabolites that differed significantly among patient groups and controls are shown in 
Fig. 4A. Twenty-eight analytes exhibited increased concentrations in patients with respiratory infections as com-
pared with unaffected controls, including amino acids, polar lipids, organic acids, and biogenic amines. Most 
importantly, a smaller subset of analytes was observed to be specifically increased (LysoPCaC18:2) or decreased 
(MetSO, beta hydroxy-butyric acid, carnosine, and succinic acid) in COVID19 patients as compared with INFA 
or RSV (Fig. 4B). Interestingly, carnosine and succinic acid were not found to be important factors in differenti-
ating all respiratory patients from controls (Fig. 4A, B).

Despite their ability to distinguish among patient groups, none of these five metabolites correlated signifi-
cantly with VL (qRT-PCR CT) for any of the three respiratory viruses (Supplementary Fig. S1). There is a lack of 
consensus regarding the correlation between CT and COVID19 disease severity, particularly in non-hospitalized 
 patients4. Our COVID19 patients were all symptomatic, and sampled during acute phase of infection, but were 
not considered severe and did not require hospitalization. Our INFA and RSV cohorts likely exhibited a range of 
severities as they were sampled in a variety of clinical settings such as outpatient clinics, emergency departments 
and upon hospital admission. We were unable to assess the relative severity of symptoms in our INFA and RSV 
cohorts, as there was no quantifiable severity scale for these infections. While biological sex did not appear to 
have an effect on metabolite profiles, we must acknowledge the possibility that age had an effect, as median age 
in the control group (24 years) was lower than in COVID19 (55 years) or INFA (62 years) and the RSV group 
had the lowest median age of 16 months (Table 1, and Supplementary Figure S2 and Supplementary Methods). 
We conclude that age likely had minimal impact on metabolite profiles in the Resp and COVID models, as RSV 
patients were grouped with either INFA and/or COVID19. Furthermore, when treated as individual classes, 
INFA and RSV metabolite profiles overlapped despite having different age profiles, and minimal overlap occurred 
between the younger control and RSV cohorts (Fig. 2A, B).

Discussion
Using targeted LC–MS/MS-based metabolomics, we identified unique metabolite profiles associated with the 
nasopharynx of patients with common respiratory infections. We observed striking differences in signatures 
that could be used to differentiate unaffected controls from patients with COVID19, INFA or RSV. Furthermore, 
we identified a COVID-19-specific signature, characterized by altered concentrations of LysoPCaC18:2, beta-
hydroxybutyric acid, Met SO, succinic acid, and carnosine, relative to INFA and RSV.

While several metabolomics studies related to COVID-19 have emerged, the use of both targeted and untar-
geted approaches applied to a range of biosamples makes comparing results among studies  challenging5. The 
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Figure 4.  Feature selection from OPLS-DA models. (A) Metabolite loadings for respiratory infection and COVID19 models 
highlighting the most significant features. For the respiratory infection model, the heatmap denotes the relative association 
of each metabolite with respect to unaffected controls. For the COVID19 model, the heatmap denotes the relative association 
of each metabolite with respect to influenza A/RSV patient group. (B) Boxplots showing relative concentrations of significant 
metabolites from the COVID19 model are mean-centered at zero. For metabolites presented in (B), P < 0.0001 by Kruskal–
Wallis test. Significance of between-group means by post hoc Dunn’s test is given in each plot.
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current study is unique as it employed a targeted approach to profile VTM acquired from standard-of-care swab 
kits from a diverse cohort of patients with qRT-PCR-confirmed COVID-19, IFNA or RSV, as well as unaffected 
controls. Although two previous studies have analyzed NP swabs, one study assessed VTM using matrix-assisted 
laser desorption/ionization mass spectrometry (MALDI-TOF MS)6. The other study analyzed fresh swabs directly 
by ambient ionization methods including DESI and LD-REIMS and focused on lipid  profiling7. Both studies 
revealed diagnostic accuracies of > 80%. At least three studies investigating the serum metabolome of COVID-19 
patients identified changes in the tryptophan-kynurenine pathway associated with regulation of  inflammation8. 
We also observed an increase in kynurenine concentration in our model comparing patients with all respiratory 
diseases with controls, but this metabolite was not COVID-19 specific. Our results are consistent with Shen et al.9 
who also observed increased kynurenine concentration in the serum of non-COVID-19 patients presenting with 
symptoms of respiratory infection. Amino acids are decreased in interleukin-6 stratified COVID-19 patients 
compared to controls purportedly due to renal dysfunctional and marked alterations in nitrogen  metabolism8. 
In contrast, we saw an increase in amino acids in respiratory virus infection compared to control, yet with the 
above studies including Shen et al., this may reflect a difference in systemic (serum) vs local (nasopharynx) 
compartments sampled. Of the three studies involving serum metabolome analysis, Blasco et al.10 calculated a 
diagnostic accuracy for COVID-19 as 74%.

The COVID-19-specific metabolomic profile yields potential insights into the mechanism of infection of 
SARS-CoV-2 (Fig. 5). Carnosine and LysoPCaC18:2 had strong loadings in the OPLS-DA model, with the former 
decreasing, and the latter increasing, in COVID-19 patients relative to patients with INFA or RSV. Carnosine, 
a naturally occurring dipeptide, has a wide range of protective effects in humans, which are largely attributed 
to its powerful antioxidant  actions11. Several mechanisms could explain the depleted levels of carnosine in 
COVID-19 patients. First, decreased carnosine levels may signify decreased production of the dipeptide by the 
host. The olfactory system is among the richest sources of carnosine in  humans12,13, and carnosine present in 
the nasal swabs likely originated from the olfactory epithelium at the roof of the nasal cavity. The downregu-
lation of carnosine could reflect decreased biosynthesis/secretion by olfactory sensory nerves or progressive 
loss of these neurons. Second, reduced carnosine levels may be the result of increased dipeptide degradation. 
Carnosine is largely metabolized by carnosinase-1 (CN1)11. Although CN1 is expressed by the human olfactory 
 epithelium14, the nasal cavity is not typically considered a site of high carnosinase activity, such that intranasal 
administration of carnosine has been employed in a preclinical model of Parkinson disease as a means to avoid 

Figure 5.  Schematic view of SARS-CoV-2 infection and potential mechanisms of symptom generation 
involving significantly altered metabolites. (1) After viral entry into the cell an increase in lipid generation 
occurs through viral hijacking of cell machinery. (2) Lipids are used to generate double membrane vesicles 
for replication. (3) Release of new Coronavirus. (A) SARS-CoV-2 leads to an elevation in oxidative stress by 
generation of reactive oxygen species (ROS). (B) Decreased levels of Carnosine results in a reduced ability for 
antioxidant clearance of ROS. (C) Oxidative stress and inflammation can damage the lungs and lead to further 
symptoms of COVID-19. (D) Reduction of Carnosine within the cells of the olfactory may be implicated in 
anosmia, a common symptom of COVID-19.
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degradation by  carnosinase15. A third, and more probable explanation, is that the diminished carnosine levels 
indicate depleted carnosine stores. Our data show that even basal levels of the dipeptide are completely exhausted 
in COVID-19 patients. Saadah et al.16 predicted that COVID-19-induced oxidative stress would result in car-
nosine depletion. The protective effects of carnosine are widely attributed to its antioxidant, anti-glycation, and 
anti-inflammatory  properties11. For instance, reduced circulating levels of low-density lipoprotein (LDL) has 
been associated with increased risk of acute kidney injury in COVID-19  patients17, and carnosine, known to 
block lipid peroxynitrite-mediated modification of human LDL at physiological  levels18, may protect against LDL 
degradation. Intriguingly, recent studies suggest that carnosine may also protect against SARS-CoV-2 infection 
through more specific mechanisms. Molecular docking and modelling studies identified carnosine as the most 
promising drug candidate to prevent the binding of SARS-CoV-2 to the ACE2  receptor16. Sustentacular cells of 
the olfactory system co-express the ACE2 receptor as well as TMPRSS2, a protease that facilitates viral entry, 
making these cells highly susceptible to SARS-CoV-219 . Infection of these cells has been implicated in  anosmia9, 
a recognized symptom of COVID-1920. Given that the olfactory epithelium is a major producer of carnosine and 
this dipeptide’s vital neuroprotective role in this  system21, loss of carnosine may lead to olfactory nerve damage 
resulting in anosmia in COVID-19.

Severe cases of COVID-19 are associated with multi-organ damage arising from oxidative  stress22, raising 
the possibility of global depletion of carnosine in these patients and underscoring its therapeutic  potential23. 
Recently, Kulikova et al.24 developed an analogue of carnosine, salicyl-carnosine, designed to circumvent the 
rapid degradation by serum carosinase. Salicyl-carnosine effectively mitigates the three prominent pathogenic 
hallmarks of COVID-19—oxidative stress, thrombosis, and inflammation—and has been proposed as a promis-
ing means to treat severe cases of COVID-1925.

Lysophosphatidylcholine (LysoPCaC18:2) is an endogenous bioactive phospholipid suggested to be important 
in coronavirus infection. The hijacking of host cells by the virus to create a proper environment for replication 
involves the generation of specialized vesicles of which LysoPCaC18:2 is  required26. Our study identified signifi-
cantly elevated levels of LysoPCaC18:2 in COVID19 positive samples compared to INFA and RSV. In COVID19 
viral infection, a change towards an increase in lipid generation has been demonstrated and further supports our 
 finding27,28 especially whereby LysoPCaC18:2 was higher in COVID19 samples compared to healthy  controls29. 
Additionally, a study inhibiting Cytosolic Phospholipase A2α (cPLA2α) which produces lysophospholipids, had 
significant effects on lowering coronavirus RNA and protein accumulation due to the importance of phospholip-
ids in the creation of replicative organelles, emphasizing the therapeutic potential of lipid metabolism pathways. 
Moreover, the same study found that inhibition of cPLA2α had no impact on the replication of influenza A thus, 
consistent with the COVID19-specific pattern of LysoPCaC18:2 concentration observed in our  study30.

During fasting or glucose depletion, beta-hydroxybutyric acid serves as the primary energy source to periph-
eral tissues, including the heart, brain, and  muscles31. It also acts as a signaling molecule, participating in neural 
protection, lipid metabolism and gene  expression31–33. Contrary to our results based on NP fluid, others studies 
have observed increased beta-hydroxybutyric acid in the serum of COVID-19  patients34–36. In each of those stud-
ies, beta-hydroxybutyric acid was elevated in patients with severe COVID-19, such that Shi et al. concluded that 
increased serum beta-hydroxybutyric acid predicted progression from mild to more severe  disease34. In contrast, 
the COVID-19 cases in our study were not considered to be severe. The health benefits of beta-hydroxybutyric 
acid have prompted researchers to advocate for metabolic therapies that raise beta-hydroxybutyric acid levels to 
treat severe COVID-1937,38; as beta-hydroxybutyric acid was found to reduce coronavirus-dependent inflamma-
tion in  mice39 and, protect COVID-19 antibodies against degradation through a post-translational  modification40. 
To address the discordance between the therapeutic potential of beta-hydroxybutyric acid and its association 
with worsening COVID-19 disease, we speculate that in the acute phase of COVID-19, the liver synthesizes 
beta-hydroxybutyric acid, in part, to replenish depleted energy stores; however, as the patient deteriorates, liver 
function becomes  impaired36, resulting in dysregulated overproduction of beta-hydroxybutyric acid and other 
ketone bodies.

We observed a decrease in levels of MetSO, a product of oxidative  stress41 in patients with COVID-19 com-
pared to those with Influenza and RSV. While previous studies have documented an increase in MetSO in the 
serum and plasma of COVID-19 patients compared to healthy  controls8,42–44 there have been no studies prior 
to ours comparing such levels between COVID-19, Influenza and RSV respectively in the respiratory tract. In 
influenza an increase in pro-oxidative markers such as NAPDH oxidase occurs in infection and can cause severe 
lung  injury45 while in RSV expression of antioxidant markers including catalase is  decreased46. In one study by 
Olagnier et al. levels of Nuclear factor-erythroid 2 related factor 2 (NRF2), a protective antioxidant signaling 
was suppressed in both lung autopsies from patients with severe COVID-19 infection and an in-vitro infection 
model of SARS-COV-247. These studies demonstrate that the host reaction to respiratory infection within the 
context of oxidative stress is arbitrated by the infecting virus. However, a study by Sharif-Askari et al. did not find 
significant difference between the expression of methionine sulfoxide reductase A between severe COVID-19 
infection, influenza and  RSV48. Studies regarding succinic acid in the context of COVID-19 in respect to other 
respiratory infection are lacking. Moreover while compared to healthy controls succinic acid was enriched in the 
serum of patients with COVID-1934 subjects who had recovered from COVID-19 infection but had a moderate 
and severe or critical illness 3 months after discharge had decreased plasma levels of succinic acid compared to 
healthy  controls49. Further investigation will be needed to identify the significance of lower MetSO and succinic 
acid in COVID-19 infection.

A limitation of our study was that extensive validation of the TMIC Prime kit for use with VTM was not con-
ducted, including evaluation of matrix effects. While recovery of most synthetic metabolites was demonstrated 
at a single level in VTM, accuracy and precision may have been affected by matrix interferences (Supplementary 
Table S2). Other aspects that should be evaluated include recovery of analytes from the swab, and how recoveries 
and metabolite profiles might differ when using swab kits from other manufacturers. For the purposes of this 
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pilot study, we used TMIC Prime as a rapid screening method to evaluate broad metabolite profiles in patients 
with respiratory diseases that will form the basis of more refined assays for individual metabolites in future 
studies. Although broad, 141 metabolites screened within the nasopharynx is comparatively limited compared 
to other untargeted techniques, TMIC Prime has the advantage of being quantitative for most analytes, and the 
number of analytes screened could be extended in future studies. Our observation that only 46 analytes were 
detectable in VTM (out of 141) implies a unique composition of the NP metabolome as compared with other 
biological matrices that can be surveyed with TMIC Prime, but does not exclude the possibility that more small 
molecules are detectable with broader targeted or untargeted methods. Isotopically-labeled internal standards 
were used to correct for recovery of most analytes from VTM, but we were unable to specifically account for 
differences in yield of NP fluid sampled by each swab. As such, sum-normalization of analyte concentrations was 
employed to minimize the effect of variability in NP volume sampled. Furthermore, assay performance metrics 
for certain polar lipids such as LysoPCaC18:2 were not determined as we lacked a synthetic standard, and the 
internal standard used for this lipid was non-specific. Finally, while this study did not include patients with 
allergic rhinitis, it can be anticipated that the NP metabolome would be different from actual viral infection as 
different mechanisms are at play during allergy and viral infection and replication. However there are currently 
no studies which have investigated this specifically.

In conclusion, we demonstrated that the metabolome of the nasopharynx can be measured from clinical 
nasal swabs, and that metabolite profiles identified using machine learning methods can differentiate patients 
with COVID-19 from other respiratory virus infections (e.g. INFA/RSV). Our study identified key metabolites 
specifically altered in COVID19 such as carnosine and LysoPCaC18:2 that have previously been implicated in 
viral replication and symptom generation. This enables us to propose mechanisms contributing to viral infection 
and propagation as well as potential targets for COVID-19 therapy.

Materials and methods
Ethics. All experimental protocols were approved by and conducted in accordance with the Queen’s Univer-
sity Health Sciences and Affiliated Teaching Hospitals Research Ethics Board (HSREB Files 6029794, 6029811).

Sample collection and qRT‑PCR analysis. Symptomatic patients undergoing testing for SARS-CoV-2, 
INFA, and RSV at Kingston Health Sciences Centre (KHSC) and surrounding hospitals, were sampled using 
nasopharyngeal (NP) swabs which were then stored in viral transport media (Copan Diagnostics, USA). Unaf-
fected, asymptomatic participants were recruited as controls and tested for SARS-CoV-2 as part of a surveillance 
study testing medical and nursing students during the 2020 SARS-CoV-2 lockdown in Canada. All COVID19 
patients in our study were symptomatic, and sampled during the acute phase of the infection. Our COVID19 
cohort were not considered to have severe illness, and did not require hospitalization. Enrolled INFA and RSV 
patients were swabbed in a combination of clinical settings, including out-patient clinics, acute-care emergency 
departments or upon admission to hospital, and thus likely exhibited a range of symptom severities.

Total RNA was extracted from VTM on an automated nucleic acid extractor (Maxwell RSC 16) using a 
Maxwell RSC whole blood RNA/DNA kit (Promega, Madison, WI). Presence of SARS-CoV-2 was tested using 
a multiplex quantitative real-time PCR (qRT-PCR) assay, targeting the envelope (E) and RNA-dependent RNA 
polymerase (RdRp) genes as described  previously50. Samples assayed for INFA and RSV were obtained in 
2019–2020 prior detection of SARS-CoV-2 in Canada and stored at − 80 °C. Testing for INFA, and RSV was 
conducted using a clinically validated laboratory-developed multiplex qRT-PCR assay for INFA (matrix), and 
RSV (nucleoprotein).

Biological samples and demographic data for all patients were obtained within the circle-of-care. To ensure 
researchers were blinded to patient identity, samples were de-identified and anonymized, and only non-identi-
fying data including age, biological sex and travel history were provided to researchers. The HSREB waived the 
requirement to obtain written informed consent, as the samples were acquired for purposes of clinical testing, 
and were de-identified and anonymized. In accordance with the Personal Health Information Protection Act of 
Ontario, all patients possess the right to withhold or withdraw their consent to access, utilize, or disclose their 
personal health information. Patients are not disadvantaged if they choose to decline participation.

Metabolomic analysis. Sample preparation and LC–MS/MS analysis. Metabolite profiling kits (TMIC 
Prime) were acquired from The Metabolomics Innovation Centre (TMIC, Edmonton AB, Canada)51,52. The 
kit is capable of quantifying 141 analytes over six chemical classes using a combination of LC–MS/MS and 
flow-injection analysis (FIA)-MS/MS. Target analytes comprised organic acids, amino acids, biogenic amines, 
total hexoses, acylcarnitines and polar lipids (phosphatidylcholines (PC), lysophosphatidylcholines (LysoPC), 
sphingomyelins (SM), and hydroxy-sphingomyelins SM(OH)) (Supplementary Table 1). LC–MS/MS analysis 
was conducted using an ExionLC AC Series ultra-high-performance liquid chromatography system QTRAP 
5500 mass spectrometer (Sciex Canada, Concord, ON, Canada) in electrospray ionization (ESI) mode using 
optimized settings and MRM transitions provided by the manufacturer of the assay kit. For water-soluble ana-
lytes, separations were conducted on an Eclipse XDB-C18 HPLC column (3.5um, 3.0X100mm; Agilent, CA, 
USA) protected by a standard guard cartridge system (SecurityGuard Phenomenex, CA, USA). For FIA of lipid-
soluble analytes and glucose, samples were injected directly into the mass spectrometer via PEEK tubing.

50 µL of viral transport media (VTM) was supplemented with appropriate internal standards and treated 
with 150 µL of 50% ethanol, homogenized by vortex mixing and sonication, and pelleted by centrifugation. 
The supernatant was dried on an  N2 evaporator and re-dissolved in 50% ethanol. To assay organic acids, 
samples were transferred to a deep-well 96-well plate. The following 3 solutions were added to each well for 
derivatization: (1) 25 µL of 250 mM 3-nitrophenylhydrazine prepared in 50% methanol (2) 25 µL of 150 mM 
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1-ethyl-3-(3-dimethylaminopropyl) carbolimide prepared in methanol (3) 25 µL of 7.5% pyridine prepared in 
75% methanol. The plate was shaken at room temperature for 2 h. 375 µL of water was added, and the plate was 
shaken for 20 min at room temperature. 125 µL was transferred to a new plate and diluted with 375 µL of 50% 
methanol. For LC separation, 10 µL of the sample was injected into the LC–MS/MS system in negative ionization 
mode, using a flow rate of 300 µL/min where mobile phase A consisted of 0.01% formic acid (FA) in water, and 
mobile phase B consisted of 0.01% FA in methanol. The linear gradient elution profile for mobile phase B was: 
t = 0 min, 30%; t = 1.5 min, 30%; t = 12.5 min, 85%; t = 12.51 min, 100%.

For assay of amino acids, biogenic amines, and polar lipids, a second aliquot of VTM were prepared as 
described above. Samples were aliquoted onto a filter paper disc in each well of the 96-well filter plate. Samples 
were dried for 30 min on an  N2 evaporator. For derivatization of amino acids and biogenic amines, a 5% solution 
of phenyl-isothiocyanate (PITC) was prepared in equal parts ethanol/pyridine/water. 50 µL of the 5% PITC solu-
tion was added to each filter paper. The plate was covered and incubated at room temperature for 20 min. The 
plate was dried for 90 min to remove excess liquid. 300 µL of 5 mM ammonium acetate in methanol was added 
to each well, and the plate was shaken at room temperature for 30 min to extract analytes from the filter paper. 
The extract was collected by centrifugation. For LC–MS/MS analysis of derivatized amino acids and biogenic 
amines, 62.5 µL of the extract was combined with 62.5 µL of water in a new 96-well plate and shaken. 10 µL of 
the sample was injected into the LC–MS/MS system in positive ionization mode using a flow rate of 500 µL/
min, where mobile phase A consisted of 0.2% FA in water, and mobile phase B consisted of 0.2% FA in acetoni-
trile. The linear gradient elution profile for mobile phase B was: t = 0 min, 0%; t = 0.5 min, 0%; t = 5.6 min, 95%; 
t = 6.5 min, 95%. For FIA-MS/MS of underivatized glucose, acylcarnitines and polar lipids, 25 µL of the extract 
was combined with 125 µL of FIA buffer in a new plate. FIA buffer was prepared by adding 9 mL of 0.1% FA to 
260 mL of methanol and was used as the sample diluent and mobile phase. 20 µL of the sample was injected for 
FIA analysis using the following flow rate profile: t = 0 min, 30 µL/min; t = 1.6 min, 30 µL/min; t = 2.4 min, 200 µL/
min; t = 2.8, 200 µL/min. Two injections were conducted for FIA analysis: one in negative ionization mode for 
measurement of glucose, and a second injection in positive ionization mode for measurement of acylcarnitines 
and polar lipids.

Quantification of analytes measured by LC–MS/MS was based on isotope dilution and quadratic calibration 
lines for each analyte. Peak integration and analyte quantification were completed using Analyst 1.7 (Sciex). 
Analytes measured by FIA-MS/MS were quantified using a relative quantification approach using a single repre-
sentative internal standard for each analyte class. Supplementary Table 2 presents assay performance parameters 
for prioritized metabolites measured by LC–MS/MS. Four quality control samples based on solution standards 
(QC 1–3) and a low-level spiked VTM sample were measured 3 times on each of 3 assay days. 89% of measure-
ments in solution standards were within 20% of target values, and all but one analyte exhibited total Coefficient 
of variation (CVs) of < 20%. Total CVs for spiked VTM was more variable, with only 52% of analyte measure-
ments exhibiting CVs of < 20%. Mean % differences from target concentration was + 28% (range − 14.3 to 112%). 
Poorer assay performance metrics in VTM are likely due to the presence of matrix interferences that we were 
unable to fully evaluate in the current study. Blank VTM from unused NP swab kits (4 samples on each of 3 assay 
days) was used as an additional control to assess apparent baseline concentrations of targeted analytes arising 
from either low levels of analytes present in the VTM, and/or matrix interferences (Supplementary Table S2). 
Baseline concentrations of most analytes in blank VTM were within the concentration range of the lowest two 
calibrators. Mean fold-change of analyte concentrations in clinical samples as compared with blank VTM are 
shown in Supplementary Table S2 for prioritized analytes.

Statistical analysis. Our fully open and reproducible analysis pipeline, written in R (v 4.3), is available 
online (https:// github. com/ Colau ttiLab/ COVID- Metab olomi cs) and detailed in the Supplementary Methods. 
Briefly, we first scaled samples to baseline levels observed in VTM and then autoscaled each metabolite to a 
mean of zero and unit standard deviation. We used individual univariate models to test whether a metabolite 
differed among patients from the four different categories. We then imputed missing values (N = 87 of 7735) 
and randomly divided our data into a model-building test dataset (50% of data) and a model-testing validation 
dataset (50% of data) that was excluded from the model-building pipeline. Metabolites with significant dif-
ferences among groups in the test dataset, after false-discovery rate adjustment, were included in multivariate 
partial least-squares discriminant analysis (PLS-DA) models as implemented by the opls function from the ropls 
 package53. The accuracy, sensitivity, and specificity of the multivariate models were tested on the validation data-
set. Statistical analysis of individual metabolites among patient groups (i.e. univariate models) were performed 
using a non-parametric ANOVA (Kruskal–Wallis) with a post hoc Dunn’s test. Differences in metabolite con-
centrations were determined to be significant if P < 0.05.

Data availability
Raw data, and data analysis pipeline written in R (v. 4.3) generated during the current study are available on 
the DRYAD database, (DOI: TBD) and Supplementary Methods. (Reviewer note: data and code/analysis to be 
archived are available at https:// github. com/ Colau ttiLab/ COVID- Metab olomi cs for reviewing purposes).
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