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Abstract

BioXpress is a gene expression and cancer association database in which the expres-

sion levels are mapped to genes using RNA-seq data obtained from The Cancer

Genome Atlas, International Cancer Genome Consortium, Expression Atlas and publica-

tions. The BioXpress database includes expression data from 64 cancer types, 6361

patients and 17 469 genes with 9513 of the genes displaying differential expression be-

tween tumor and normal samples. In addition to data directly retrieved from RNA-seq

data repositories, manual biocuration of publications supplements the available cancer

association annotations in the database. All cancer types are mapped to Disease

Ontology terms to facilitate a uniform pan-cancer analysis. The BioXpress database is

easily searched using HUGO Gene Nomenclature Committee gene symbol, UniProtKB/

RefSeq accession or, alternatively, can be queried by cancer type with specified signifi-

cance filters. This interface along with availability of pre-computed downloadable files

containing differentially expressed genes in multiple cancers enables straightforward

retrieval and display of a broad set of cancer-related genes.

Database URL: http://hive.biochemistry.gwu.edu/tools/bioxpress

Introduction

Gene expression is considered a key molecular marker for

diagnostic and prognostic assessment of cancer (1–8).

More than a decade ago, gene expression analysis was pro-

posed as a method to complement classification schemes

based on tumor morphology because it was well known

that tumors with similar histopathological appearance can

have considerably different clinical outcomes (6, 9).

These efforts provided the framework by which linking

gene expression with cancer research could be realized (10).

Hanahan and Weinberg (11) in their seminal paper

‘The Hallmarks of Cancer’ discussed the role of over- and

under-expression of key genes in several cancers. The con-

jectures that both diagnosis of somatically acquired lesions

in tumors and genome-wide expression profiling of tumors

would become routine (11) have not yet been realized, but

VC The Author(s) 2015. Published by Oxford University Press. Page 1 of 13
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2015, 1–13

doi: 10.1093/database/bav019

Database tool

http://hive.biochemistry.gwu.edu/tools/bioxpress
since
``
''
 (11).
http://www.oxfordjournals.org/


we anticipate that this will likely change within the next

decade. With advances in next-generation sequencing

(NGS) technologies, several national and international pro-

jects are underway that aim to capture and analyze the ex-

pression profiles of thousands of tumors (12–14).

Additionally, there are already thousands of publications

that describe over- and under-expression of specific genes

in cancer. Currently, to the best of our knowledge, there is

no integrated view of the expression profiles of the human

genes obtained from NGS technology such as RNA

sequencing (RNA-seq). Moreover, no singular effort is

underway to manually curate data from publications on

cancer-related gene expression, enabling easy comparison

of expression data and knowledge from both small publi-

cations and large-scale studies like The Cancer Genome

Atlas (TCGA: http://cancergenome.nih.gov/) and

International Cancer Genome Consortium (ICGC: https://

icgc.org/). Lack of such efforts prevents us from tracking

our knowledge of expression profiles of genes in different

cancer types as technology improves and more data and in-

formation accumulate. Furthermore, as we move toward

the translation of expression analysis through genomic or

proteomic technologies to the clinic, there is no easy way

to compare a patient’s expression data with that extant

data. BioXpress has been developed as the first step toward

the provision of easy access to gene expression data from

tumor and normal samples, which will be useful for clin-

ical research, diagnostics and prognostics of cancer.

The specific technology used to measure gene expres-

sion significantly affects the cost, comprehensiveness and

the time consumed to perform expression analysis. DNA

microarray and quantitative polymerase chain reaction (q-

PCR) are powerful approaches for measuring gene expres-

sion and have been used for many years. DNA microarray

technology is efficient and cost-effective at the gene expres-

sion level, while q-PCR is considered more sensitive.

However, neither of these approaches can meet the sensi-

tivity and comprehensiveness of the newer RNA-seq tech-

nology (15, 16). Despite the benefits of RNA-seq,

microarrays are often preferentially used due to the higher

cost and lack of standardization of pipelines using the

RNA-seq technology. Once these obstacles are overcome,

it is clear that RNA-seq will become the predominant tool

for expression analysis (17). In addition to expression ana-

lysis, RNA-seq provides a number of other benefits. A sin-

gle RNA-seq experiment output can aid in the discovery of

novel and unannotated transcripts (18), single nucleotide

variation (SNV) identification (19) and more (20). As

RNA-seq technology and the corresponding analytical

approaches grow, the application of this method is becom-

ing indispensable for many scientific disciplines (21–23).

To address this growing presence of RNA-seq data, we

currently focus on large-scale integration of RNA-

seq-based expression data in BioXpress complemented by

manual curation of information from publications report-

ing gene expression associated with cancer. The manual

curation process allows us to collect valuable expression-

related information from peer-reviewed publications from

diverse platforms. Integration of information from both

large-scale studies and publications allows users to easily

compare and contrast expression profiles of their gene(s)

of interest.

The advancement of expression analysis technology has

led to the development of corresponding databases and

standards. For example, the Minimum Information About

a Microarray Dataset initiative (24) provides standards for

microarray data, while databases like the National Center

for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO) (25) and Array Express (26) have signifi-

cant amounts of microarray data. Secondary databases

that store and provide results and analysis of microarray

and other gene expression data related to cancer such as

CGED (Cancer Gene Expression Database) (27), GENT

(Gene Expression across Normal and Tumor tissue) (28)

and Oncomine (29) are also available. Finally, TCGA and

ICGC data portals and databases, such as Expression Atlas

(30), provide RNA-seq-generated data. All the above-men-

tioned databases provide mechanisms to retrieve gene-spe-

cific information, but, to the best of our knowledge, none

of them allows integrated pan-cancer analysis across mul-

tiple projects. NCBI GEO and European Bioinformatics

Institute (EBI) ArrayExpress, e.g. are public repositories

for high-throughput microarray and NGS functional gen-

omic datasets. A gene symbol-based search can result in

thousands of profiles from GEO Profiles Database. CGED,

on the other hand, provides data specifically obtained

through collaborative efforts of Nara Institute of Science

and Technology, Osaka University Medical School, Kyoto

University Medical School and Osaka Medical Center for

Cancer and Cardiovascular Diseases. GENT provides

Affymetrix microarray data from tumor and normal sam-

ples, while Expression Atlas at EBI provides differential

and baseline expression from several organisms. Similar to

other public repository data, a single search can retrieve

data from many experiments in these resources.

Furthermore, although tools do exist which aim to analyze

the same scope of data, the tools and databases of which

we are aware do not facilitate the expression analysis on

RNA-seq desired here. cBioPortal (31) is a widely popular

resource with an emphasis on mutation analysis.

Currently, Oncomine (29) does provide the means to ana-

lyze expression for microarray data, but not for RNA-seq.

Thus, there is no single tool/resource available

which integrates RNA-seq information that allows
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expression analysis to identify, e.g. cancer relatedness.

Although hundreds of cancer RNA-seq studies are pub-

lished each year, a cancer-centric RNA-seq expression

database that integrates all cancer-related RNA-seq-based

expression data from databases and publications is not

available to the community. Portals like TCGA data portal

and ICGC data portal, which provide RNA-seq-based ex-

pression data, only provide access to raw read counts and

normalized counts: such data cannot be easily used for

comparative analysis across several cancer types and exist-

ing experimental results in publications. In addition, differ-

ent normalization methods are employed by different data

providers, making comparison and cross-type analysis

even more challenging.

The BioXpress database project collects RNA-seq data

from several publicly available sources such as TCGA

(http://cancergenome.nih.gov/), ICGC (12) and Gene

Expression Atlas (30), and uses a standardized method to

identify the expression levels of the genes. Expression levels

of genes are also manually extracted from publications to

supplement information gathered from large-scale studies.

Additionally, all cancer types are mapped to Disease

Ontology (32) terms to facilitate pan-cancer analysis.

Finally, all genes are linked to a comprehensive cancer-

related non-synonymous SNV database, BioMuta (33).

Together, BioMuta and BioXpress provide a detailed view

of the expression and mutations of genes in cancer and

therefore can be used for pan-cancer studies like the one

performed by our group recently (34) and described in this

manuscript.

Data Source and Metrics

The majority of RNA-seq databases provide data either in

FASTQ format (sequence reads) and/or raw read count

data. Read count data are calculated by analyzing the map-

ping file where the reads have already been aligned to a ref-

erence genome. As shown in Figure 1, BioXpress processes

data based on the availability of expression data from

paired data that have both normal and tumor samples

TCGA raw counts TCGA 

data portal
ICGC

Expression Atlas

Tumor Normal

HIGH QUALITY

DATA SOURCE

UNIFIED

STATISTICAL

APPROACHES

NORMALIZED

EXPRESSION

RESULT

GENE CENTRIC

EXPRESSION

PROILE

Raw Counts Raw Counts Normalized Counts

DEseq normalization and 

differential expression 

analysis

Deseq normalization Directly passing the 

normalized value to 

BioXpress

Log2 fold change of 

normalized counts

Normalized counts Normalized counts

TCGA raw counts TCGA

data portal
ICGC

Expression AtAA las
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DATAA ATT SOURCE

Raw Counts Raw Counts Normalized Counts

EXPERIMENT 

DESIGN
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Heatmap
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Figure 1. Flow chart of the workflow used to create BioXpress. BioXpress processes short reads and read count data through distinct pipelines. Data

are further divided into two groups: paired data that have both normal and tumor samples from the same patient, and non-paired, tumor-only data.

Output in BioXpress is split into three different types: differential expression (stacked bar chart), tumor-only expression (box plot) and baseline ex-

pression data (heatmap). In addition to the data integration approaches shown in the figure, gene expression information is also extracted from

publications.
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from the same patient, and the non-paired data from just

tumor and also from just normal tissue.

The data sources and statistics in terms of number of pa-

tients from each data source are shown in Table 1. To

achieve comprehensiveness, data are collected from TCGA,

the Curated Short Read archive (CSR) (35), ICGC (12),

Gene Expression Atlas (30) and publications (Table 1). It is

important to note that ICGC, at the time of writing this art-

icle, did not contain any data from paired normal and

tumor samples which are not from TCGA. Therefore, the

data in BioXpress are split into three different types: differ-

ential expression, tumor-only expression and baseline ex-

pression data from Illumina Human Body Map project

(http://www.ebi.ac.uk/gxa/experiments/E-MTAB-513).

Data Processing

TCGA data portal

TCGA-Assembler was used to download RNA-seq data

from TCGA data portal. Raw counts data with paired sam-

ples (tumor and normal) were extracted and analyzed using

DEseq R package with default parameters:

method¼ ‘blind’, sharingMode¼ ‘fit-only’, fitType¼ ‘local’

(36). DEseq normalization method has been reported to out-

perform other normalization methods (37). Fold changes,

not absolute expression values, are displayed based on anal-

ysis described above (38). False discovery rates are not

defined due to the low number of replicates for samples.

This approach allows the user to determine the significance

of differentially expressed genes on an individual basis.

ICGC data portal

ICGC contains tumor-only data (normal samples are not

sequenced by the consortium currently). Gene expression

data from tumor samples was downloaded from ICGC

data portal (12) and analyzed using DEseq R package with

default parameters (36).

Expression atlas

Normalized baseline expression was downloaded via

Expression Atlas (http://www.ebi.ac.uk/gxa/download.

html) (30). Because raw read counts are not available for

all data retrieved from Expression Atlas, no additional nor-

malization was performed in BioXpress.

Manual curation from publications

Decades of research on differential expression in tumor and

normal samples has led to thousands of publications.

Although many of these studies are based on samples from

modest numbers of patients, there is value in the systematic

capture and presentation of this information alongside large-

scale studies such as those presented by TCGA and ICGC.

Although it is possible that studies may exhibit discordance,

it is equally possible for the consideration of such additional

experiments to contribute to the ‘big picture’ of differential

expression between tumor and normal samples. We leave it

to the discretion of individual users to decide the significance

of curated publications in application to their studies.

For manual curation of expression data, genes identified

in our previous pan-cancer study were prioritized (34).

In addition to this prioritization, genes annotated by

UniProtKB/Swiss-Prot as associated with cancer and

Cancer Gene Census (http://www.sanger.ac.uk/genetics/

CGP/Census/) (39) were also targeted for manual curation.

This UniProtKB/Swiss-Prot gene list was obtained using

the following search string: organism: ‘Homo sapiens

[9606]’ AND reviewed:yes AND annotation:(type:disease

cancer). Briefly, the manual curation protocol involved

searching PubMed (40) using the gene name (including

synonyms) with accompanying text ‘cancer’ and ‘expres-

sion’. The curator then reviewed the title to shortlist art-

icles which appear to contain gene expression information

related to cancer and have full text available. Abstracts

were then read to identify potential true positive articles.

All such articles were downloaded and read to extract key

information such as cancer type and expression informa-

tion. All cancer types were then mapped to Disease

Ontology terms (32) and added to the BioXpress database.

To date, 536 papers have been filtered to maintain only

those focusing on human cancer after reading the

‘Abstract’ and ‘Introduction’. Among this subset, only

papers including direct evidence reflecting gene expression

Table 1. Statistics of data collected in BioXpress

Source Data type No. of samples/individualsa Tumor/normal

TCGA Raw read count 1320/660b Tumor and normal

ICGC and TCGA Raw read count 6397/6324 Tumor

Expression Atlas baseline Normalized count 1/1 Normal

Literature Published literature Not applicable (135 publications) Tumor and normal comparison

aTypically, each patient contains more than one sequencing sample. Therefore, we provide the number of both samples and individuals.
bThe number of patients is collected from TCGA, ICGC and Expression Atlas baseline projects. Some TCGA patient IDs overlap with the ICGC patient IDs.
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differentiation between normal and cancer tissues were

kept. Filtering then continued with further inspection of

the ‘Materials and Method’ and ‘Results’ sections of each

paper. Some cancer-type abbreviations were taken from

the TCGA Code Table Report (https://tcga-data.nci.nih.

gov/datareports/codeTablesReport.htm), while the rest of

them were named using the following conventions:

first three letters from the first word and the last two let-

ters from the second word. Thus, if the cancer types have a

single word name, all five letters come from this word. In

the event of duplication, letters from the third or fourth

words are used to distinguish between types. Curators

cross-check all manual curation processes. In total, 135

papers concerning 87 genes have been added to the

BioXpress database through biocuration (supplementary

Table S2).

Data Normalization and Analysis

DEseq method is regarded as one of the most robust RNA-

seq normalization methods (37). In the BioXpress pipeline,

raw counts data were normalized by DEseq method fol-

lowed by differentially expressed gene analysis. To com-

pare non-paired samples with normalized results from

DEseq pipeline, the DEseq normalization method was used

[Parameters: library(‘DESeq’), cds¼ newCountDataSet

(data,condition), cds¼ estimateSizeFactors(cds), result¼
counts(cds,normalized¼TRUE)]. For differential expres-

sion analysis, gene expression was normalized based on

each patient, and case and control were considered to-

gether. For tumor expression, all samples were collectively

analyzed across different cancer types and then normal-

ized. Heat map and clustering analysis were performed

using the ‘heatmap’ function from the R package (http://

www.R-project.org/).

Usage and Utility

Scientists can find querying datasets useful to identify ex-

pression levels between disease and normal pairs to dis-

cover differential expression for a gene. They may also

want to research on potential biomarkers or pathways

that lead to tumor formation or want to explore the over-

all expression of specific genes across multiple

cancer types. Users can search BioXpress using HGNC-

approved gene symbols (HUGO Gene Nomenclature

Committee), UniProtKB/Swiss-Prot accessions or RefSeq

accessions. Differentially expressed genes for a specific

cancer type can also be retrieved. Additionally, all data in

BioXpress, including lists of genes significantly differen-

tially expressed in two or more cancer types, can be

downloaded.

Searching using gene name (gene/protein-centric

search)

A search using the HGNC-approved gene symbol or

UniProt/RefSeq accession retrieves differential expression

information (cancer vs. normal), tumor-only expression

data (where normal samples are not available) and baseline

expression information from normal human tissues

(Illumina Human Body Map Project). The example below

provides an overview of a gene/protein-centric search.

Differential expression

The abnormal spindle-like microcephaly-associated

(ASPM) gene is highly expressed in several tumor cell lines

(41) and cancers (42, 43). Searching the BioXpress data-

base using the gene ASPM users can retrieve the differential

expression profile of this gene in different cancers. For

ASPM gene, we can clearly see that this gene appears to be

over-expressed in almost all cancers. Figure 2 provides a

view of the BioXpress interface where the Differential

Expression tab on the top menu bar is selected, and below

it ‘ASPM Expression Profile’ is shown. The default view

provides expression frequency (over- or under-expression)

in the patients. The number of patients for a particular can-

cer type, P value and a variety of additional information is

available in the table below which can be downloaded.

Full cancer names are available on clicking the cancer ab-

breviations in figure and additional details about the data

can be viewed by clicking the ‘Table column description’

link. All columns can be sorted and users can send an e-

mail to the help desk with comments about a specific data

element by clicking on the envelope link available from

each row.

The tab at the top of the stacked bar chart provides an

alternate view where users can see the frequency (number

of patients) of significantly over- or under-expressed genes

(based on a P value cutoff of 0.05). For ASPM, on clicking

the Significant/Freq tab, we can see that this gene is signifi-

cantly over-expressed in more than 25% of the patients in

several cancers. For example, ASPM is over-expressed in

breast invasive carcinoma (DOID:3459; 113 patients),

lung adenocarcinoma (DOID:3907; 50 patients) and

others. Combining the stacked bar frequency expression

(Regulation/Freq) and the Significant/Freq, users can get a

complete overview of the differential expression of a gene

in all cancer types in the database.

Tumor expression

Clicking on the Tumor Expression tab on the top menu bar

shows the expression profile for the ASPM gene from all pa-

tient samples without paired normal data. Although ICGC

does not currently collect any paired data, tumor-only
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expression data can provide an overview of the expression of

a specific gene in different cancer types and can be used in

conjunction with differential and baseline expression data to

better understand the comprehensive expression profile of a

gene. The box plot provides the minimum lower quartile, me-

dian upper quartile and maximum expression value, and

therefore provides a snapshot of the distribution of expression

of a gene in all patients with a specific cancer. For the ASPM

gene, we see that for cervical squamous cell carcinoma

(CESC), the minimum, maximum and the lower and upper

quartile are above the theoretical mean for all cancer types

which could indicate that for CESC this gene has less variabil-

ity in terms of expression in the patients and is expressed at a

higher level compared with other cancers. Therefore, the box

plot allows the user to identify cancer types where the lower

and the upper quartile are short, signifying homogeneity in

the expression of the gene for that specific cancer. The table

below the box plot provides details such as UniProtKB acces-

sion, RefSeq accession and number of samples.

Baseline expression

Clicking the Baseline Expression tab for ASPM gene shows

the heatmap with testis being the only tissue with increased

expression of ASPM. It has been known for some time that

ASPM is over-expressed in testis (41, 44), although the pre-

cise function of this gene in testis development is still un-

known (45).

Searching using cancer type (cancer type

centric search)

Users may want to retrieve a list of genes that are signifi-

cantly differentially expressed in a specific cancer. From

the Home page, clicking on the Search by cancer type tab

allows users to select the cancer type of interest and then

retrieve genes which are either over- or under-expressed.

For example, selecting lung adenocarcinoma and the de-

fault settings (over-expressed; adjusted P value and

P> 0.1) retrieves the 2089 genes, out of which the top ex-

pressed gene is FAM83A (Protein FAM83A; also called

Tumor antigen BJ-TSA-9). It is interesting to note that

FAM83A is considered a promising tumor biomarker of

lung cancer (41). Similarly, the second highly expressed

gene GREM1 (Gremlin) is also known to be over-ex-

pressed in lung cancer (46).

Pan-cancer analysis

The ability to sort, filter and further analyze the gene ex-

pression data collected in BioXpress allows users to com-

pare and contrast expression of genes across many patients

and cancer types. In addition to listing the genes that are

significantly differentially expressed in multiple cancers (as

described in the previous paragraph), Figure 3 provides an

overview of the types of analysis that users can perform

A B C

Figure 3. Clustering and heatmap view of the top 50 differentially expressed genes as reported by BioXpress. Although these graphics were gener-

ated using external tools, the emphasis here is the ability of BioXpress to sort through large amounts of data and return candidate subsets for subse-

quent analysis. (A) Clustering of these genes in different cancer types based on the frequency of patients who have significant differential expression.

Darker colors indicate a higher percentage of patients with such differential expression. (B) For genes which do not have normal samples, the heat-

map shows clustering based on normalized count. Darker colors indicate a higher expression level. (C) Clustering based on baseline expression for

the 50 genes in different tissues. Darker colors indicate higher expression level.
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using the downloaded data. Figure 3A heatmap and clus-

tering were performed based on the percent of patients

who have significantly differentially expressed genes.

Clustering of samples or datasets across multiple cancer

types, known as one type of pan-cancer analysis, is widely

conducted by the community, especially by TCGA

Research Network (47, 48), and is of great interest from

the aspect of personalized and translational medicine. To

select genes that have strong association with transcrip-

tomic changes of tumors, we picked the top 50 genes that

are differentially expressed in the highest percent of sam-

ples. The darker colors in the figure show that several can-

cer types have genes which are differentially expressed in a

majority of the patients (red boxes). The clustering based

on the heatmap indicates that several cancer types have

similar patterns [kidney renal clear cell carcinoma (KIRC)

and kidney renal papillary cell carcinoma (KIRP); head

and neck squamous cell carcinoma (HNSC) and stomach

adenocarcinoma (STAD); lung squamous cell carcinoma

(LUSC) and pancreatic adenocarcinoma (PAAD); thyroid

carcinoma (THCA) and lung adenocarcinoma (LUAD)].

Figure 3B shows analysis results of expression data where

no normal samples are available. The figure provides a

view of cancer types that cluster together based on gene ex-

pression from cancer samples only. On the basis of the

color distribution, it can be seen that several cancers have

similar expression patterns and hence cluster together:

breast cancer (BRCA) and lymphoma (Lymph); ovarian

cancer (OV) and endometrial cancer (Endca); close to

them are endocrine pancreas cancer (PAEN), prostate

adenocarcinoma (PRAD), lung squamous cell carcinoma

(LUSC), leukemia (Leuke) and brain cancer (Braca); KIRC

and THCA; colon adenocarcinoma (COAD), PAAD and

rectum adenocarcinoma (READ) are also clustered. Liver

cancer (Livca) shows a distinct gene expression profile

with all other cancer types listed based on the selected

genes. Figure 3C provides a view of tissues which have

similar expression patterns.

Collection of expression data from multiple cancers as

presented in supplementary Table S1 allow us to identify

genes that are differentially expressed in more than one

cancer type. For example, from this table we can see that

nine genes are differentially expressed in all cancer types

(Table 2). It is important to note that in this particular case

we do not consider the number of patients who have these

genes over- or under-expressed. Therefore, each gene and

its expression in a cancer type needs to be carefully eval-

uated on a case-by-case basis if one is interested in identify-

ing genes which are differentially expressed in majority of

the patients (please see examples in the next paragraph). It

is interesting to note that five of the nine proteins are

glycoproteins, two are phosphoproteins, six of them are

secreted and seven are involved in biological process regu-

lation (based on UniProtKB keyword and Gene Ontology

annotation). This type of filtering and sorting can reveal

ideal candidates for further evaluation as diagnostic or

therapeutic targets. Furthermore, literature evidence re-

veals that eight of the 9 genes in Table 2 are genes known

to be associated with cancer. For example, the first gene

listed in Table 2, CCL21, participates in leukocytes and

cancer cell migration through the CCR7/CCL19 (CCL21)

axis to promote the growth and metastasis of various

tumors such as breast cancer, melanoma, non-small cell

lung cancer, head and neck, gastrointestinal and hemato-

logic cancer (49). Second, c-glutamyltransferase is involved

in cellular glutathione homeostasis, its expression is often

significantly increased in human tumors and its role in

tumor progression, invasion and drug resistance has been

repeatedly suggested (50). Third, alterations in the ubiqui-

tin system have direct or indirect roles in the genesis of

various tumors due to defects in the ubiquitin-dependent

proteolysis of critical house-keeping genes or cell–cycle

elements—p53 is a good example (51). The next genes,

Matrilysin (MMP7), are frequently over-expressed in

human cancer tissues and are associated with cancer pro-

gression (52) and NCAM1 has been demonstrated to be

one of the immunohistochemical markers for lung neuro-

endocrine tumors diagnosis (53), its expression level is up-

regulated in large cell lung tumor cell line H460-M (54).

CHRDL1 is down-regulated (79–89% of 19) in follicular

thyroid carcinoma (55) and the gene, WFDC2 (HE4), con-

tains dispersed evidence: it has been demonstrated to be a

biomarker for ovarian carcinoma (56) and it is known to

be over-expressed in a range of different cell lines including

ovarian, renal, lung, colon and breast lines, and cancers

such as endometrial adenocarcinomas (57, 58) and lung

adenocarcinoma (59). The next gene, LCN2, has a wide

range of functions in different types of cancers (thyroid,

pancreatic, breast and colon cancer), and it is a potential

diagnostic and prognostic marker in both benign and ma-

lignant human diseases (60). Finally, KRT80 and its role in

cancer is not well studied although there is some evidence

that this gene is differentially expressed in certain types of

cancer (61, 62). In addition to this list, a separate, pre-

computed table which lists all genes and their normalized

expression values in tumors across all cancer types is also

provided for download. This table can be used to identify

genes which have, e.g. high variability in expression in cer-

tain cancers or low variability (possible house-keeping

genes).

As mentioned above, one of the key questions in pan-

cancer analysis of gene expression is—are there any genes

which are significantly over- or under-expressed in mul-

tiple cancers in a large number of the patients.
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Table 2. Genes significantly differentially expressed in tumor and normal samples in all cancer types in one or more patients

Gene UniProtKB

AC

Protein name Over-expressed cancer types Under-expressed cancer types

CCL21 O00585 C-C motif che-

mokine 21

KIRC, LIHC, BRCA, THCA, KICH KICH, BRCA, THCA, PAAD, ESCA, KIRC,

COAD, KIRP, STAD, CESC, LIHC, HNSC,

READ, PRAD, BLCA, LUAD, LUSC, UCEC

GGT6 Q6P531 c-glutamyltrans

ferase 6

BRCA,THCA, PAAD, BLCA, STAD,

CESC, LIHC, KIRC, LUAD, UCEC

BLCA, BRCA, STAD, ESCA, KIRC, COAD,

KIRP, HNSC, READ, PRAD, KICH, LUAD,

LUSC

UBD O15205 Ubiquitin D KICH, BRCA, THCA, ESCA, KIRC,

COAD, STAD, CESC, LIHC, HNSC,

READ, PRAD, BLCA, LUAD, LUSC,

UCEC

BRCA, THCA, PAAD, KICH, KIRP, LIHC,

HNSC, PRAD, BLCA

MMP7 P09237 Matrilysin BRCA, STAD, THCA, ESCA, BLCA,

COAD, PAAD, LIHC, HNSC, READ,

PRAD, KIRC, LUAD, LUSC, UCEC

KICH, BRCA, BLCA, KIRP, CESC, LIHC,

HNSC, PRAD, KIRC, LUAD

NCAM1 P13591 Neural cell adhe-

sion molecule

1

BRCA, THCA, KIRC, KIRP, HNSC,

KICH, LUAD, LUSC

KICH, BRCA, STAD, KIRP, THCA, ESCA,

KIRC, COAD, PAAD, CESC, LIHC, HNSC,

READ, PRAD, BLCA, UCEC

CHRDL1 Q9BU40 Chordin-like

protein 1

PRAD, KICH, LIHC, THCA, KIRC PAAD, BRCA, STAD, THCA, ESCA, BLCA,

COAD, KIRP, KIRC, CESC, LIHC, HNSC,

READ, PRAD, KICH, LUAD, LUSC, UCEC

WFDC2 Q14508 WAP four-disul

fide core do-

main protein 2

BRCA, STAD, PAAD, ESCA, KIRC,

CESC, LIHC, HNSC, BLCA, LUAD,

UCEC

KICH, BRCA, THCA, BLCA, COAD, KIRP,

STAD, LIHC, HNSC, READ, PRAD, KIRC,

LUAD, LUSC

LCN2 P80188 Neutrophil gelat

inase-associ-

ated lipocalin

BLCA, BRCA, THCA, PAAD, ESCA,

KIRC, COAD, KIRP, STAD, CESC,

LIHC, READ, PRAD, KICH, LUAD,

LUSC, UCEC

BRCA, THCA, KIRC, KIRP, LIHC, HNSC,

PRAD, BLCA, LUAD, LUSC

KRT80 Q6KB66 Keratin, type II

cytoskeletal 80

BRCA, THCA, PAAD, ESCA, BLCA,

COAD, KIRP, STAD, CESC, LIHC,

READ, PRAD, LUAD, LUSC, UCEC

BLCA, BRCA, THCA, KIRC, LIHC, HNSC,

PRAD, KICH

LIHC¼ liver hepatocellular carcinoma; BLCA¼ bladder urothelial carcinoma; KICH¼ kidney chromophobe; UCEC¼ uterine corpus endometrial carcinoma;

ESCA¼ esophageal carcinoma; CESC¼ cervical squamous cell carcinoma and endocervical adenocarcinoma.

Table 3. Top five genes significantly differentially expressed in tumor and normal samples in >50% of the patients

Gene UniProtKB AC Protein name Over-expressed cancer types Under-expressed cancer types

COL10A1 Q03692 Collagen alpha-1(X) chain BRCA, STAD, BLCA, COAD, HNSC,

LUAD

COL11A1 P12107 Collagen alpha-1(XI) chain BRCA, COAD, HNSC, LUAD, LUSC,

MMP11 P24347 Stromelysin-3 BRCA, BLCA, COAD, HNSC, LUAD

TMPRSS4 Q9NRS4 Transmembrane protease

serine 4

KIRC, LUAD, LUSC, THCA, UCEC

MMP1 P03956 Interstitial collagenase COAD, LUAD, LUSC, HNSC

ADH1B P00325 Alcohol dehydrogenase 1B BLCA, THCA, KIRC, COAD, KIRP,

HNSC, KICH, LUSC, UCEC

MT1H P80294 Metallothionein-1H KICH, KIRC, KIRP, LIHC, THCA

MT1G P13640 Metallothionein-1G KICH, KIRC, KIRP, LIHC, THCA

CHRDL1 Q9BU40 Chordin-like protein 1 BLCA, KICH, KIRC, THCA, UCEC

CA4 P22748 Carbonic anhydrase 4 BRCA, COAD, KIRP, LUAD, LUSC

The genes were sorted based on the number of cancer types they were differentially expressed in.

LIHC¼ liver hepatocellular carcinoma; BLCA¼ bladder urothelial carcinoma; KICH¼ kidney chromophobe; CESC¼ cervical squamous cell carcinoma and

endocervical adenocarcinoma.
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Supplementary Tables S3 and S4 provide the list of genes

that are significantly differentially expressed in greater

than 30% and 50% of the patients. Table 3 lists the top 5

genes (sorted based on the number of cancer types it is dif-

ferentially expressed in) that are significantly over- and

under-expressed in more than 50% of the patients. The

first gene COL11A1 is known to be over-expressed in

various epithelial cancers and is prominently correlated

with invasion and metastasis (63). Its over-expression is

associated with colorectal cancer (64), non-small cell lung

cancer (65) and several other cancers (66). The next gene

MMP11 over-expression is correlated with the aggression

and invasion status of various types of carcinoma and is

almost absent in normal adult organs and can be con-

sidered as a biomarker for diagnosis and prognosis (67,

68). TMPRSS4 is highly expressed in pancreatic, colon,

lung and gastric cancers, and is also expressed in a wide

range of human cancer cell lines and has been demon-

strated to facilitate the invasion, migration and metastasis

of tumor cells (69, 70). MMP1 is highly expressed in gas-

tric carcinoma, breast cancer, lung and other cancers

(71–78). ADH1B is the first gene in the table that is

known to be under-expressed in multiple cancers such as

oral tongue squamous cell carcinoma (79) and intrahe-

patic cholangiocarcinoma (80). MT1H is under-expressed

in adenoid cystic carcinoma of salivary gland, prostate

and liver cancer due to hypermethylation of its promoter

(81, 82). In the next gene MT1G, the promoter is hyper-

methylated which results in its down-regulation in hepato-

blastoma and prostate cancer (83, 84). CHRDL1

interestingly is under-expressed in colorectal cancer (85)

while over-expressed in pancreatic cancer (86) and for

CA4 there is currently no publication associated with ex-

pression of these gene in cancers. We believe that filtering

and sorting of data in BioXpress will help researchers to

focus on expression profiles of genes which currently have

very little published information. Another gene SFRP1

which is also found to be under-expressed in our dataset

in five cancers (>50% of the patients) is known to be

under-expressed in nine cancer types: cancers of the kid-

ney, stomach, small intestine, pancreas, parathyroid, ad-

renal gland, gall bladder, endometrium, renal cell

carcinoma and testis (87).

Downloadable files

Websites are ideal for performing gene and cancer-centric

searches as described above. Some users may wish to per-

form large-scale analysis or filter the data based on add-

itional parameters. To accommodate such users, all data

can be downloaded in tab-delimited format. Additionally,

a table of significantly under- or over-expressed genes in

one or more patients is provided that has the following col-

umns: gene name, UniProtKB accession, protein name,

cancer types where the gene is expressed and count of the

number of cancer types (supplementary Table S1). This

table can be used to quickly identify genes that are differ-

entially expressed in multiple cancer types in one or more

patients. Additional downloads include PubMed

Identifiers (PMIDs) and accessions that were manually

curated (supplementary Table S2) and all data associated

with differential and tumor-only expression. Future plans

include addition of additional tables based on user

requests.

Future Perspective

BioXpress will be updated every 6 months and detailed

statistics for each release will be provided. Such statistics

will allow users to track changes in the database over time.

We will also integrate BioXpress in the High-performance

Integrated Virtual Environment (HIVE) NGS and prote-

omics analysis platform. This integration will allow users

to upload RNA-seq data, map reads to the reference gen-

ome using HIVE Hexagon (88), perform expression ana-

lysis and directly compare results with those available from

BioXpress. As proteomic data become available for differ-

ent cancer types through programs similar to the Clinical

Proteomic Tumor Analysis Consortium (CPTAC) (89), we

will map such data to the genes. We also plan to augment

both data and function based on input from our users.

Some potential new features include the following: add-

ition of cancer subtypes; linking BioXpress to BioMuta

(33) to obtain comprehensive view of expression as it may

relate to mutation; integration of clinical annotations; in-

clusion of additional graphical elements and more. Our

preliminary results show that there is a correlation between

mutation density of a gene and its expression in certain

types of cancer. We intend to explore this further in our fu-

ture studies.

Supplementary Data

Supplementary data are available at Database Online.
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