
INTERNATIONAL JOURNAL OF ONCOLOGY  55:  439-450,  2019

Abstract. Colorectal cancer (CRC) is one of the most common 
malignancies worldwide. At present, CRC can often be treated 
upon diagnosis at stage I or II, or when dysplasia is detected; 
however, 60-70% of cases are not diagnosed until they have 
developed into late stages of the disease or until the malignancy 
is identified. Diagnosis of CRC at an early stage remains a 
challenge due to the absence of early‑stage‑specific biomarkers. 
To identify potential targets of early stage CRC, label-free 
proteomics analysis was applied to paired tumor-benign tissue 
samples from patients with stage II CRC (n=21). A total of 

2,968 proteins were identified; corresponding RNA‑Sequencing 
data were retrieved from The Cancer Genome Atlas-colon 
adenocarcinoma. Numerous bioinformatics methods, including 
differential expression analysis, weighted correlation network 
analysis, Gene Ontology and protein-protein interaction 
analyses, were applied to the proteomics and transcriptomics 
data. A total of 111 key proteins, which appeared as both 
differentially expressed proteins and mRNAs in the hub 
module, were identified as key candidates. Among these, three 
potential targets [protein‑arginine deiminase type‑2 (PADI2), 
Fc fragment of IgG binding protein (FCGBP) and phosphoserine 
aminotransferase 1] were identified from the pathological 
data. Furthermore, the survival analysis indicated that PADI2 
and FCGBP were associated with the prognosis of CRC. 
The findings of the present study suggested potential targets 
for the identification of early stage CRC, and may improve 
understanding of the mechanism underlying the occurrence of 
CRC.

Introduction

In recent years, a large amount of epidemiological data has 
indicated that colorectal cancer (CRC) remains a common 
and lethal cancer (1-5); adenocarcinomas are a common type 
of CRC. At present, surgery remains the primary procedure 
for treating patients with CRC, as novel effective treatments 
have not yet been developed. Additionally, the recurrence rates 
following surgery in patients with CRC of stages I-III has been 
increasing (6). This may be overcome by the development of 
primary and secondary preventative strategies for CRC (7,8). 
As such, determining early CRC in high‑risk populations and 
identifying targets to inhibit early CRC development are valid 
approaches. The occurrence and development of CRC are 
correlated with genetic mutations (9,10). Identifying specific 
gene mutations and alterations in expression in tumor tissues 
have been the main focus of cancer research, and have led 
to developments in immunotherapy (11-13). Previous studies 
of CRC have mainly involved genomic and transcriptomics 
analyses (14‑16). It is widely documented that proteins are key 
factors in biological processes; whether gene mutations can 
alter the expression of proteins is largely unknown. Therefore, 
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a direct comparison of proteomic differences between tumor 
and normal tissues may provide insight into the development 
of CRC.

The Cancer Genome Atlas (TCGA) (17) contains extensive 
data regarding tumor genomes. In addition, the Human Protein 
Atlas (HPA) provides information regarding tissues, cells and 
pathology (18‑20). TCGA and HPA are open‑access, and have 
made considerable contributions to advances in tumor research. 
Weighted correlation network analysis (WGCNA) involves 
the separation of genes with the same expression pattern into 
the same module (21); thus, different modules represent sets 
of differentially expression pattern genes. Furthermore, these 
various modules could be associated with certain features of 
the data, and those linked to these characteristics of interest 
can be filtered out.

In the present study, stage II CRC was selected to represent 
early stage CRC. To identify potential targets of early CRC, 
TCGA‑colon adenocarcinoma (COAD) stage II data were 
combined with the proteomic data of tumor and adjacent 
tissues from 21 patients with CRC for analysis.

Materials and methods

Clinical data of patients with stage II CRC. A total of 21 
pairs (13 males and 8 females; age ± SD, 60.90±8.26 years) of 
malignant tissues and adjacent benign or normal tissues from 
patients diagnosed with stage II CRC were obtained from The 
Tumor Tissue Bank at the Third Hospital of Jilin University 
between November 2015 and June 2016. All patients without 
hepatitis, tuberculosis and HIV did not receive radiotherapy 
or chemotherapy prior to surgery. Patients provided informed 
consent before surgery. The present study was approved by the 
Clinical Research Ethics Committee of the Second Hospital 
of Jilin University. The experimental scheme applied in the 
present study is presented in Fig. 1.

Protein extraction and filter‑aided tryptic digestion. Frozen 
tissues (~100 mg each) were placed into 2-ml screw-cap tubes 
pre‑filled with ceramic beads (1.4 mm; Roche Diagnostics), 
followed by the addition of 1 ml lysis buffer [8 M urea, 100 mM 
Tris, 50 mM dithiothreitol (DTT), 1 mM phenylmethylsul-
phonyl fluoride and protease inhibitor cocktail]. Tissue sample 
homogenization was then performed on a MagNA Lyser 
Instrument (Roche Diagnostics). The homogenous lysates 
were centrifuged at 40,000 x g at 4˚C for 1 h to isolate the 
proteins. The protein content of each sample was determined 
and adjusted by adding the lysis buffer. Subsequently, stage II 
CRC tissues (CT) and paired adjacent normal tissues (CN) were 
pooled. The pooled samples were aliquoted and stored at ‑80˚C 
until use; the two pooled protein samples (CT and CN) were 
then subjected to proteomics analyses. The protein samples 
were thawed on ice and further processed using a filter‑aided 
tryptic digestion method, as previously described (22). Briefly, 
samples were concentrated by centrifugation at 15,000 x g at 
room temperature for 20 min in 1.5 ml 10 kDa ultrafiltration 
centrifuge tubes (Pall Corporation). Then, the concentrated 
samples (<20 µl) were diluted with 200 µl buffer (8 M urea and 
50 mM Tris) supplemented with 10 mM DTT and stored at 55˚C 
for 1 h. The samples were centrifuged at 15,000 x g at room 
temperature for 20 min and then mixed with 200 µl buffer (8 M 
urea and 50 mM Tris) supplemented with 20 mM iodoacet-

amide. Following alkylation in the dark at 37˚C for 30 min, the 
protein samples underwent buffer-exchange twice with 50 mM 
ammonium bicarbonate solution. Digestion of the protein 
samples was initiated by adding L-1-Tosylamide-2-phenylethyl 
chloromethyl ketone‑modified sequencing‑grade trypsin 
(Promega Corporation) at an enzyme/protein ratio of 1:100. 
The reaction was conducted at 37˚C for ≥15 h and quenched 
by adding 10% formic acid to a final concentration of 1%. The 
tryptic digests were subject to centrifugation at 15,000 x g at 
room temperature for 20 min, and the filtrates were collected 
and de‑salted with C18 Ziptips (EMD Millipore). The purified 
tryptic peptides were freeze‑dried and stored at ‑80˚C until 
use.

Nano liquid chromatography (LC)‑tandem mass 
spectrometry (MS/MS). The tryptic peptide samples, 
solubilized in 20 µl 0.1% (vol/vol) trifluoroacetic acid, 
were analyzed using a TripleTOF5600+ mass spectrometer 
(AB Sciex) coupled with an Eksigent nanoLC system 
(AB Sciex). The peptide mixture was separated using a C18 
capillary column (ChromXP; SCIEX; 150 mm x 75 µm x 
3.0 µm) at 300 nl/min, using a 120 min gradient rendered 
by solvents A (2% acetonitrile/0.1% formic acid) and B 
(98% acetonitrile/0.1% formic acid). The entire gradient 
comprised 1-35% solvent B for 90 min, 35-80% solvent B for 
15 min, and 85% solvent B for 15 min. The mass spectrometer, 
fitted with a PicoView Nanospray source, which does not 
require a nebulizer gas (PV400; New Objective), was operated 
under the positive ion mode. Complete MS spectra were 
acquired for the mass range of 350‑1,250 m/z. The proteomics 
data were collected using information‑dependent‑acquisition 
mode by selecting 10 most abundant ions for MS/MS 
fragmentation under the following conditions: The number of 
charged ions is 2-5 and the collision energy is applied in the 
mode of Rolling Collision Energy.

Database searches and data processing. The collected data 
files (.wiff) were transferred to a data processing workstation. 
MS data analysis software ProteinPilot 5.0 (AB Sciex) was 
used for protein database searching against the SwissProt 
database (ftp://ftp.uniprot.org/pub/databases/uniprot/current_
release/knowledgebase/complete/uniprot_sprot.fasta.gz). The 
parameters were set as follows: i) The protease was selected as 
trypsin; ii) alkylation of Cys by iodoacetamide; and iii) biolog-
ical modifications were selected as the ID Focus. The resulting 
group files were converted into mzIDentML format using the 
GroupFileExtractor tool affiliated with ProteinPilot 
(https://download.sciex.com/ProteinPilot_502‑relNotes.pdf). 
Scaffold (version Scaffold_4.8.4; Proteome Software) was 
used to validate MS/MS‑based peptide and protein identifica-
tions. Peptide identifications were accepted if they could be 
established at >73.0% probability to achieve a false discovery 
rate (FDR) <1.0% by the Scaffold Local FDR algorithm. 
Protein identifications were accepted if they could be estab-
lished at >5.0% probability to achieve an FDR <1.0% and 
contained ≥2 identified peptides. Proteins that contained 
similar peptides and could not be differentiated based on MS/MS 
analysis alone were grouped to satisfy the principles of parsi-
mony. Proteins sharing significant peptide data were grouped 
into clusters. Spectral counting, which refers to the total number 
of spectra identified for a protein, was used to quantitatively 
estimate protein abundance in the proteomics dataset.
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RNA sequencing data acquisit ion. The mRNA 
expression profiles of TCGA‑COAD‑ Fragments Per 
Kilobase of transcript per Million mapped reads (FPKM) 
were downloaded from TCGA (https://cancergenome.nih.
gov/) (17). The datasets numbers are presented in Fig. S1. In 
the present study, there were 226 samples, including 41 normal 
tissue normal samples and 185 COAD stage II samples. The 
Encyclopedia of DNA Elements (23) (GRCh38; V22) catalog 
(https://www.gencodegenes.org/releases/22.html) was used as 
a reference to identify mRNAs. Briefly, 19,990 mRNAs from 
the RNA‑Sequencing (RNA‑Seq) data were extracted. The 
data were downloaded from R Studio v1.2.1335 (https://www.
rstudio.com/products/rstudio/download/#download) using 
R package TCGAbiolinks (24).

Differentially expressed protein (DEP) selection. The 
‘edgeR’ package (25,26) was used to select DEPs between 
CT and CN. The FDR P‑value was corrected by the 
Benjamini‑Hochberg method (26). The selection criteria 
of DEPs were FDR P‑value <0.05 and fold change (FC) >4. 

Then, the distribution of DEPs were presented as heatmaps 
and volcano plots using the ggplot2 package (27) in R.

Construction of a scale‑free network construction by 
WGCNA. To link proteomics data with mRNA data, only genes 
overlapping in the proteomics and mRNA data were selected 
for subsequent WGCNA analysis. WGCNA (21) was used to 
analyze RNA‑Seq data and two main parts comprised this 
analysis. In the first part, the correlation coefficients between 
any two mRNAs were calculated to determine whether two 
mRNAs have similar expression patterns. WGCNA employs 
correlation coefficient weights to construct a scale-free 
network. The weighted gene co‑expression network stresses 
high correlations at the cost of low correlations by increasing 
the absolute value of the correlation to a power β ≥1 (soft 
thresholding). The best-suited soft threshold value (β) was 
selected to build the scale‑free network. Then, the scale‑free 
network distribution could be tested. In the second part, 
the hierarchical clustering tree was constructed by using 
the correlation coefficients between mRNAs. Based on the 

Figure 1. Flow chart for identifying potential targets of stage II CRC. CRC, colorectal cancer; TCGA, The Cancer Genome Atlas; COAD, colon adenocarci-
noma; RNA‑Seq, RNA‑Sequencing; FDR, false discovery rate; WGCNA, weighted correlation network analysis; DEP, differentially expressed protein; PPI, 
protein‑protein interaction; GO, Gene Oncology; GSEA, Gene Set Enrichment Analysis.
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weighted correlation coefficient of mRNAs, mRNAs were 
classified according to their expression pattern, and mRNAs 
with similar patterns were grouped into the same module. 
Subsequently, the module‑trait association was determined by 
combining the sample information. A correlation test P-value 
or a regression-based P-value was used for evaluating the 
statistical significance between xi and trait (21).

Gene Ontology (GO) enrichment analysis of key genes. 
DEPs from proteomics data were screened; in addition, the 
hub gene module of mRNAs was determined. Genes that 
appeared as both DEPs and mRNAs of the hub module were 
defined as key genes. GO enrichment analysis (28) comprised 
biological process (BP), cellular component and molecular 
function; BP was selected to understand the general function 
of key genes. Then, ‘clusterProfiler’ (29) was used for GO 
enrichment analysis. The top 15 GO terms with the highest 
significance following enrichment were chosen.

Construction of a protein-protein interaction (PPI) 
network. A PPI network of key genes was constructed using 
the STRING v11.0 (30,31). Subsequently, Cytoscape v3.6.0 
(https://cytoscape.org/download.html) was used to present 
the PPI network; default settings of the Cytoscape MCODE 
plug‑in (http://apps.cytoscape.org/apps/mcode) were applied. 
The key cluster and seed node of each cluster were then 
obtained. These seed nodes were considered as critical targets 
in the PPI network.

Pathological images and survival analysis. The HPA 
(https://www.proteinatlas.org/) is a free and open database 
comprising three sub-atlases: The tissue, cell and the pathology 
atlases, which provide a large amount of public data available for 
cancer research (18-20). To screen clinically important molecules 
from critical targets, pathological images were obtained and 
survival analysis was conducted based on TCGA‑COAD 
clinical data in the HPA database (https://www.proteinatlas.
org/humanproteome/pathology/colorectal+cancer). Normal 
colonic tissue contains epithelial cells, glandular cells and 
peripheral nerves/ganglia. Of note, the tumor employed for 
analysis was adenocarcinoma; thus, the clinical significance 
of each potential target was determined based on the 
immunohistochemistry analysis of glandular cells in normal 
tissue. Additionally, Kaplan-Meier analysis revealed a 
correlation between the expression levels of mRNA and patient 
survival; P‑values were obtained using a log‑rank test. Based 
on the FPKM value of each gene, the patients were classified 
into two groups and their prognoses were examined. In the 
analysis, genes with low expression were excluded, such as 
those with a median expression among samples with FPKM <1. 
The prognosis of each group of patients was examined by 
Kaplan-Meier survival estimators, and the survival outcomes 
of the two groups were compared by log‑rank tests. To 
choose the best FPKM cut-offs for grouping the patients most 
significantly, all FPKM values from the 20th to 80th percentiles 
were used to group the patients; significant differences in the 
survival outcomes of the groups were examined and the value 
yielding the lowest log‑rank P‑value was selected (https://www.
proteinatlas.org). The data used for the survival analysis 
included all the TCGA‑COAD data in the HPA database.

Statistical analysis. Using the ‘ggstatsplot’ package 
(https://github.com/IndrajeetPatil/ggstatsplot/issues) in R, 
further statistical analysis of the critical targets was conducted 

to interpret pathological images and survival results. P-values 
were obtained by an independent samples t-test. The statistical 
significance cut‑off level was P<0.05.

Gene Set Enrichment Analysis (GSEA) and protein 
classes of potential targets. To verify the biological function 
of potential targets, their expression levels were used to 
classify samples into high- and low-expression groups. Kyoto 
Encyclopedia of Genes and Genomes (v6.2) (32) enrichment 
analysis was conducted using GSEA v3.0 (33,34). The mRNA 
data of TCGA‑COAD stage II were used for the GSEA, 
and these mRNAs were present in both the proteomics and 
transcriptomics data. The parameters of the software were set 
to default. The normalized enrichment score (NES) value and 
the P‑value of the enriched pathways were used to confirm 
the accuracy of the results. |NES| >1 and P<0.05 were used to 
filter the pathways. Then, the ‘ggplot2’ and ‘ggrepel’ packages 
(https://github.com/slowkow/ggrepel/issues) were applied to 
present the results in the R platform. Meanwhile, the protein 
classes were queried using the HPA database (https://www.
proteinatlas.org/).

Results

Distribution of protein expression regulation. In total, 2,968 
proteins were identified in the stage II CRC proteomics data. 
Most of the identified proteins (2,846 items) were identified 
in TCGA‑COAD transcriptome data (Fig. 1). 328 upregulated 
DEPs and 155 downregulated DEPs (P<0.05; FC >4) were 
reported (Fig. 2).

Construction of a scale‑free network and screening for hub 
modules. In the present study, 2,846 coincident genes coexisted 
in stage II CRC proteomics and TCGA‑COAD data. The 
hierarchical clustering tree revealed the similarity of different 
samples. The results demonstrated that the cancer tissue 
and normal sample had apparent heterogeneity (Fig. S1). In 
addition, WGCNA was used to construct a scale‑free network, 
which was built with β=8 (Fig. S2A‑D). A total of four gene 
modules (blue, brown, turquoise and grey) were generated; 
the majority of the genes were summarized into the ‘turquoise 
module’ (Fig. S2E).

According to the module-trait association, the 'blue' 
module with the highest correlation coefficient was selected 
for subsequent analysis (Fig. 3A). Gene significance (GS) was 
used to measure the degree of association between protein 
and trait. Module membership (MM) was used to determine 
the location of a global network. GS versus MM reflected the 
relationship between characteristics and proteins. The results 
revealed that the 'blue module' was essential (Fig. 3B and C).

GO enrichment analysis of key genes. There were 111 key 
genes derived from the overlapping of DEPs and mRNAs 
of the ‘blue’ module. Then, BPs associated with these genes 
were identified by GO enrichment analysis; only the top 15 
most significant GO terms were used to determine the general 
function of these genes. A total of 12/15 GO terms were mainly 
involved in immunity, including ‘neutrophil degranulation’, 
‘neutrophil activation involved in immune response’, ‘neutrophil 
activation’, ‘neutrophil mediated immunity’, ‘lymphocyte 
mediated immunity’, ‘leukocyte migration’, ‘B cell mediated 
immunity’, ‘immunoglobulin mediated immune response’, 
‘protein activation cascade’, ‘complement activation, classical 



INTERNATIONAL JOURNAL OF ONCOLOGY  55:  439-450,  2019 443

Figure 2. Distribution of DEPs. (A) A heatmap of DEPs of stage II CRC. The horizontal axis represents the name of the sample, while the vertical axis indicates 
the genes. (B) A volcano plot of DEPs of stage II CRC. The horizontal axis represents the ‘log2Fold Change’, while the vertical axis indicates the ‘‑log10FDR’. 
P<0.05; Fold Change >4. DEPs, differentially expressed proteins; CRC, colorectal cancer; FDR, false discovery rate.

Figure 3. Module‑trait association and members of a module versus gene significance of the hub module. (A) Module‑trait association of data. The first row of each 
cube represents the correlation coefficient between the module and the trait, and the second row indicates the significance of the correlation coefficient. The correla-
tion coefficient is presented by the color of the cube; red indicates positive correlation, while green represents negative correlation. (B) Members of the blue modules 
vs. gene significance for normal. (C) Members of the blue module vs. gene significance for stage II COAD. COAD, colon adenocarcinoma; ME, module eigengene.
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pathway’, ‘humoral immune response mediated by circulating 
immunoglobulin’ and ‘complement activation’. ‘Complement 
activation’ was the most significant. The remaining 3/15 GO 
terms were involved in metabolic pathways, including 
‘bicarbonate transport’ with the highest significance (Fig. 4).

Construction of PPI networks and identification of critical 
targets. Based on the STRING database, a PPI network of 
associated key genes was built. Using the MCODE plug‑in, 
six clusters were selected in the PPI network, including 
protein‑arginine deiminase type‑2 (PADI2), Fc fragment of IgG 
binding protein (FCGBP), GAR1 ribonucleoprotein (GAR1), 
phosphoserine aminotransferase 1 (PSAT1), electron‑transfer 
f lavoprotein‑ubiquinone oxidoreductase (ETFDH) and 
methyltransferase‑like 7A (METTL7A), which were the seed 
nodes in each cluster (Fig. 5).

Pathological images and statistics. To verify the clinical role 
of these critical targets, pathological images (Fig. 6) and statistical 

analysis (Fig. 7) of PADI2 (P<0.001 in RNA‑Seq and P<0.001 
in proteomics), FCGBP (P<0.001 in RNA‑Seq and P<0.001 
in proteomics), GAR1 (P<0.001 in RNA‑Seq and P=0.020 in 
proteomics), PSAT1 (P<0.001 in RNA‑Seq and P=0.003 in 
proteomics) and ETFDH (P<0.001 in RNA‑Seq and P=0.108 in 
proteomics) were obtained, but not for METTL7A. Of note, the 
pathological images of PADI2, FCGBP and PSAT1 were notably 
different from those of normal colon tissues (Figs. 6 and 7). 
Additionally, PADI2 (P=0.0084) and FCGBP (P=0.0031) were 
associated with the prognosis of COAD (Fig. 8).

Biological function and protein classes of potential gene 
targets. The results of the GSEA indicated that alterations 
in PADI2 were most likely to affect ‘fatty acid metabolism’, 
changes in FCGBP were most likely to influence ‘ubiquitin 
mediated proteolysis’ and alterations in PSAT1 were most likely 
to lead to changes in the ‘purine metabolism’ pathway (Fig. 9). 
In the HPA database, PADI2 was predicted as an intracellular 

Figure 4. GO enrichment analysis of key genes. (A) Top 15 GO terms listed by the count of genes associated with the GO term. The color of the dot indicated 
the adjusted P‑value; red indicated higher significance in association with the GO term. (B) Top 15 GO terms. The horizontal axis presents the genes associated 
with the GO term; genes of the same GO term were clustered. GO, Gene Ontology.
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protein; FCGBP was predicted as a secreted protein and an 
intracellular protein, while PSAT1 was determined to be a 
plasma protein and a predicted intracellular protein.

Discussion

In the present study, potential targets (PADI2, FCGBP 
and PSAT1) were identified in stage II CRC. In addition, 
pathological images and survival analysis confirmed the 
function of these targets. A large amount of RNA‑Seq data 
were accumulated from previous studies (35-37); at present, 
few CRC-related proteomics analyses have been conducted to 
the best of our knowledge. In the present study, WGCNA was 
conducted to analyze RNA‑Seq data. WGCNA focused on the 
expression pattern, while the differential expression analysis 
revealed differences between tumor and normal tissue. 
The information obtained from the data was extracted by 
selecting the most appropriate method of analysis. Although 
the number of samples was low, differences in the proteomics 
data of 21 patients with stage II CRC were analyzed. In 
addition, stage II CRC stage‑related key genes were screened 
by determining overlapping DEPs and mRNAs in the hub 

module. Of note, proteins mainly execute biological processes; 
alterations in proteins can reflect dysfunctional biological 
processes in cancer. Proteomics and RNA‑Seq data were 
combined prior to screening potential targets in stage II CRC. 
The GO enrichment analysis revealed that the activation of the 
immune system is vital in stage II CRC, involving regulation 
of neutrophil and ‘complement activation’ in particular. On the 
contrary, inflammatory cells are an essential part of the tumor 
microenvironment, especially neutrophils (38,39). A previous 
study demonstrated that the density of tumor-associated 
neutrophils in late CRC was significantly lower than early 
stage CRC (40). Of note, it has been suggested that complement 
activation may facilitate the development of CRC (41-43). In 
addition, the presence of neutrophils was associated with the 
prognosis of this disease (44-46).

In the present study, the PPI network revealed the expression 
of components between the proteomics and RNA‑Seq data to 
be similar. A total of six critical targets (PADI2 in cluster 1 
and FCGBP in cluster 2) were selected from the PPI network 
that was constructed with key genes; five of the key targets 
were identified in the HPA database. Furthermore, PADI2, 
FCGBP and PSAT1 notably differed between the pathological 

Figure 5. Protein‑protein interaction network of stage II CRC. The six key clusters are presented as different colors; the seed node of the cluster is presented 
as a diamond. The color of the inner ring of the node indicates the fold change in proteomics data. The intensity of the outer circle indicates the fold change in 
the mRNA. CRC, colorectal cancer; COAD, colon adenocarcinoma; PADI2, protein‑arginine deaminase type‑2; FCGBP, Fc fragment of IgG binding protein; 
GAR1, GAR1 ribonucleoprotein; PSAT1, phosphoserine aminotransferase; ETFDH, electron‑transfer flavoprotein‑ubiquinone oxidoreductase; METTL7A, 
methyltransferase‑like 7A.



YANG et al:  PROTEOMICS AND TRANSCRIPTOMICS IN COLORECTAL CANCER446

images and the normal tissue images; PADI2 and FCGBP were 
associated with prognosis. Through signal‑gene GSEA, PADI2 
tended to affect ‘fatty acid metabolism’; FCGBP changes were 
most likely to influence ‘ubiquitin mediated proteolysis’; and 
PSAT1 changes were most likely to lead to changes in the 
‘purine metabolism’ pathway.

Certain findings of the present study were consistent 
with previous literature. PADI2 was downregulated in 
CRC tissue; the occurrence of early CRC has been associ-
ated with downregulated PADI2 (47,48) and indicated poor 
prognosis (49,50). It was demonstrated that PADI2 could 
enhance the effect of nitazoxanide in promoting β-catenin 
citrullination and inhibiting Wnt signaling in cancer, and 
this effect was observed in CRC (51). It was previously 
identified that FCGBP was associated with immunity as a 
component of intestinal mucus, which forms the first‑line of 
defense in the gastrointestinal tract (52,53). Previous studies 
have revealed that transforming growth factor-β (TGF-β) 

molecules were involved in the inhibition of FCGBP expres-
sion, which in turn affected the occurrence of various cancer 
types, including CRC (54), gallbladder cancer (55) and head 
and neck squamous‑cell carcinoma (56). Additionally, cross 
talk between the Wnt and TGF‑β signaling pathways has 
been reported to be involved in regulating epithelial-mesen-
chymal transition (57,58). Wnt and TGF-β were associated 
with consensus molecular subtypes of CRC (59). Of note, 
PADI2 and FGCBP were particularly prominent in the 
present results. In addition, PSAT1 was upregulated in CRC 
tissue, and overexpression of PSAT1 could promote the 
progression of CRC (60,61). Based on the HPA database, 
PADI2 was predicted as an intracellular protein; FCGBP 
was predicted as a secreted protein and an intracellular 
protein, while PSAT1 was determined to be a plasma 
protein and a predicted intracellular protein. Whether these 
potential targets in the serum were similar to those in cancer 
tissue remain unknown; however, PADI2 and FCGBP may 

Figure 6. Pathological images of critical targets. The pathological and normal images of (A) PADI2, (B) FCGBP, (C) GAR1, (D) PSAT1 and (E) ETFDH. The 
information was obtained from the Human Protein Atlas. Magnification, x20. PADI2, protein‑arginine deaminase type‑2; FCGBP, Fc fragment of IgG binding 
protein; GAR1, GAR1 ribonucleoprotein; PSAT1, phosphoserine aminotransferase; ETFDH, electron‑transfer flavoprotein‑ubiquinone oxidoreductase; CRC, 
colorectal cancer.
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be considered as potential biomarkers for the prognosis of 
CRC. There were some limitations of the present study. The 
proteomics data were derived from Chinese patients and the 
mRNA expression data were derived from TCGA‑COAD 
(including African American, Caucasian and Asian). While 
the ethnic differences could have potential effects. Therefore, 
the analysis was selected to assess the two types of data to 

ensure that the potential target screened are meaningful. 
However, functional enrichment analysis of key genes only 
provides more general results. The function of the gene is 
instructive for further research. Although experimental vali-
dation was not performed in the present study, a single-gene 
GSEA was conducted to obtain more accurate functional 
annotations.

Figure 7. Statistical analysis of critical targets. Statistical analysis of (A) PADI2 (P<0.001 in RNA‑Seq and P<0.001 in proteomics), (B) FCGBP (P<0.001 
in RNA‑Seq and P<0.001 in proteomics), (C) GAR1 (P<0.001 in RNA‑Seq and P=0.020 in proteomics), (D) PSAT1 (P<0.001 in RNA‑Seq and P=0.003 in 
proteomics) and (E) ETFDH (P<0.001 in RNA‑Seq and P=0.108 in proteomics). PADI2, protein‑arginine deaminase type‑2; FCGBP, Fc fragment of IgG 
binding protein; GAR1, GAR1 ribonucleoprotein; PSAT1, phosphoserine aminotransferase; ETFDH, electron‑transfer flavoprotein‑ubiquinone oxidoreduc-
tase; RNA‑Seq, RNA‑Sequencing; COAD, colon adenocarcinoma.
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Figure 8. Survival analysis. (A) PADI2 (P=0.0084) was associated with prognosis in stage II CRC. (B) FCGBP (P=0.0031) was associated with prognosis in 
stage II CRC. The information was obtained from the Human Protein Atlas. CRC, colorectal cancer; PADI2, protein‑arginine deaminase type‑2; FCGBP, Fc 
fragment of IgG binding protein.

Figure 9. Gene Set Enrichment Analysis of potential targets. (A) Biological function of PADI2. (B) Biological function of FCGBP. (C) Biological function 
of PSAT1. The size of the dot indicates the number of enriched genes. The red dots indicate that the function was facilitated by the potential targets, while 
dark green dots indicate that the function was inhibited by potential targets. PADI2, protein‑arginine deaminase type‑2; FCGBP, Fc fragment of IgG binding 
protein; PSAT1, phosphoserine aminotransferase; KEGG, Kyoto Encyclopedia of Genes and Genomes; NES, normalized enrichment score.
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In summary, three potential early stage CRC-related targets 
(PADI2, FCGBP and PSAT1) were identified by combining 
proteomics and transcriptomics data. These targets could be 
applied in screening for early stage CRC. Furthermore, the 
present findings may provide a basis for further investigation 
into the mechanism underlying the occurrence of CRC.
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