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Abstract

At present, there is very limited information on the ecology, distribution, and structure of
Cambodia’s tree species to warrant suitable conservation measures. The aim of this study
was to assess various methods of analysis of aerial imagery for characterization of the for-
est mensuration variables (i.e., tree height and crown width) of selected tree species found
in the forested region around the temples of Angkor Thom, Cambodia. Object-based image
analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree
crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging
(LiDAR) data. Crown width and tree height values that were extracted using multiresolution
segmentation showed a high level of congruence with field-measured values of the trees
(Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated
from aerial imagery using multiresolution segmentation had a high level of segmentation ac-
curacy (69.22%), whereas tree crowns delineated using watershed segmentation underes-
timated the field-measured tree crown widths. Both spectral angle mapper (SAM) and
maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of
selected tree species. The latter was found to be more suitable for tree species classifica-
tion. Individual tree species were identified with high accuracy. Inclusion of textural informa-
tion further improved species identification, albeit marginally. Our findings suggest that VHR
aerial imagery, in conjunction with OBIA-based segmentation methods (such as multireso-
lution segmentation) and supervised classification techniques are useful for tree species
mapping and for studies of the forest mensuration variables.

Introduction

The concept of sacred or culturally important sites protecting small biodiversity-rich forest
tracts exists in many countries. As religious and cultural beliefs play an important role in shap-
ing policy and decision making, it has been argued that inclusion of cultural and faith-based
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beliefs into the conservation paradigm may result in positive outcomes for biodiversity conser-
vation and in protection of endangered species [1,2]. The temple forests surrounding the great
monuments of Angkor in Northwestern Cambodia are examples of forested areas that are
deeply linked to identity, culture, and sacred beliefs. These areas have evolved along a distinctly
different historical trajectory compared to other forests in the surrounding areas because of
regulatory frameworks that have defined the former as areas of cultural significance [3-6].
However, in recent decades, Cambodia has seen a sharp increase in deforestation. Culturally
important forests such as those in Angkor are facing increased pressure, mainly due to in-
creased infrastructure development and an influx of tourists [5]. Utilization of advanced forest
monitoring techniques is crucial for ensuring long-term survival of Cambodia’s forests, sacred
or otherwise.

Very-high-resolution (VHR) aerial imagery has increasingly become widely available in re-
cent years. VHR aerial imagery is expected to yield significant benefits for conservation man-
agement by facilitating improvement of monitoring of encroachment in protected areas,
development of high resolution maps, and species surveys, among other applications [7]. Cou-
pled with image analysis techniques, VHR aerial imagery has been applied to tree canopy re-
search for tree crown measurements and for mapping of tree species of tropical forests in the
Brazilian Amazon [8-10] and across the Barro Colorado Island in Panama [11]. These studies
have shown that tree crown measurements derived from aerial images correspond closely to
field measurements while offering the possibility of answering broader ecological questions
pertaining to above-ground biomass (AGB) modeling among other questions.

Image segmentation is an important component of utilization of aerial imagery for forest-
ry studies. Segmentation is intended to identify and isolate individual homogenous objects in
an image [12], in this case, tree crowns from VHR aerial imagery. A large number of studies
that were focused on individual tree identification and delineation have involved convention-
al segmentation techniques for isolation of individual tree crowns from aerial data. These
techniques may be categorized into two broad categories: (i) region growing and (ii) bound-
ary detection paradigms.

Watershed segmentation, in particular, is an important member of the boundary detection-
based segmentation family [13]. The basic assumption of this method is that treetops contain
radiometric maximums that are close to the geometric centers of the treetops [14]. Watershed
segmentation has been extensively used for individual tree crown delineation in temperate for-
ests. For instance, Ke and Quackenbush [15] successfully applied watershed segmentation to a
maple stand and achieved classification accuracy up to 40%. This algorithm was implemented
using VHR aerial imagery acquired over Japanese temperate forests to facilitate the delineation
of individual tree crowns and further tree species classification with high accuracy [16]. A mod-
ified watershed segmentation technique was implemented by Yang et al. [17] using VHR aerial
imagery collected over deciduous woodland in Ontario, Canada. Although the authors discov-
ered that tree crown delineation was strongly linked to tree crown sizes, their algorithm was
unable to approximate tree crown shapes well. Research by Jing et al. [14] indicated that the
implementation of conventional segmentation techniques such as watershed segmentation is
easier in forest ecosystems dominated by coniferous trees as opposed to those dominated by
deciduous tree crowns, owing to the relatively more complex structure of the latter.

Delineation of individual tree crowns in tropical forest ecosystems is extremely challenging
[18]. Watershed segmentation has been successfully used for identifying oil palm tree crowns
using WorldView-2 [19] and for tree crown delineation in North Borneo using IKONOS [20]
aerial imagery. However, the basic premise of watershed segmentation limits its use to subtrop-
ical and tropical forests, where the determination of radiometric maximums and geometric
centers is not straightforward [21,22]. Furthermore, the implementation of conventional
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techniques such as watershed segmentation is difficult with VHR data owing to high spatial
resolution of the latter because the response of individual pixels does not map onto a single en-
tity on the ground [23].

The object-based image analysis (OBIA) paradigm has been specifically adapted for seg-
mentation of individual objects/entities such as tree crowns in VHR imagery [24]. It revolves
around partitioning of VHR imagery into non-overlapping objects or segments [15,21], offer-
ing the advantage of creating objects that approximate the shape and size of tree crowns in the
VHR imagery [25]. OBIA-based approaches may be implemented in conjunction with differ-
ent algorithms including watershed segmentation [22]. In the present study, the OBIA para-
digm was implemented using eCognition software by applying multiresolution segmentation,
which is the most commonly used approach. Multiresolution segmentation involves a combi-
nation of spectral and spatial heterogeneity of tree crowns for hierarchical region merging
[12,26]. Based on these heterogeneity criteria, the algorithm starts by building one-pixel ob-
jects. Adjacent individual pixel objects are merged with each other to form meaningful objects
based on the heterogeneity criteria [27].

OBIA-based methods have a wide range of applications, ranging from landscape-based
analysis to individual tree crown delineation. A significant proportion of the OBIA research on
aerial data from the tropics has revolved around landscape level applications. These range from
land cover classification to monitoring of invasive species using a combination of Quickbird
and Hyperion data [28]. In this research, we briefly focused on examining the application of
OBIA-based approaches to VHR aerial imagery for facilitation of individual tree studies.
OBIA-based approaches have been implemented using VHR aerial imagery to map disease-in-
tected individual tree species in California [29] as well as to map tree species in Brazil [30,31]
and Arizona [32]. Only a handful of research groups have utilized OBIA for crown segmenta-
tion in tropical ecosystems as opposed to its application for delineation of individual tree
crowns in temperate forests. Tsendbazar [23] has used OBIA (implemented using multiresolu-
tion segmentation) for delineating individual tree crowns in high-resolution aerial images and
for modeling biomass in the subalpine hill forests of Nepal. In another example, OBIA with
multiresolution segmentation was applied to Quickbird data collected over a tropical, eucalyp-
tus-dominated savanna woodland in Australia, and the delineated tree crowns showed a strong
overlap with their corresponding reference polygons [33]. Other OBIA-based analyses have
been used in conjunction with VHR aerial imagery to distinguish palm trees from surrounding
vegetation in the Amazon [34] and for studying tree crown attributes of different species in a
tropical urban ecosystem in Brazil [35]. It should be noted that two of these studies have been
conducted on a single species within tropical forest ecosystems [33,34] and one in a subalpine
forest dominated by coniferous species [23]. Based on existing literature, it can be argued that
most methods of OBIA-based segmentation of individual tree crowns in tropical ecosystems
have been restricted to systems dominated by a single species, whereas the tree crown segmen-
tation capabilities of OBIA in mixed-species tropical systems have not yet been examined in
detail. Further review of literature reveals that OBIA has never been used for detection of indi-
vidual tree species and for classification within the forests of Southeast Asia [21-23,33].

The efficiency of a given method at isolating and segmenting individual tree crowns varies
with the characteristics of the forest itself. It is possible that a segmentation algorithm may
work for a given forest type (sparse forests, for instance) but may not work well for a different
forest type, such as denser forest stands [36]. Furthermore, most of the segmentation algo-
rithms have been designed for coniferous and temperate deciduous forest stands. These forests
have relatively simple tree crown structure compared to tropical forests. The ability of OBIA to
carry out accurate tree crown delineation in temperate forests has been established well. How-
ever, the effectiveness of OBIA-based segmentation algorithms in tropical ecosystems,
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especially in mixed-species forests located in the Asian tropics that have complex structures
and canopy height reaching 60 m [37] needs closer examination. The lack of segmentation
techniques specifically designed for tropical forest tree crowns, along with a poor understand-
ing of how existing segmentation techniques work with aerial imagery collected over tropical
forests represents a significant gap in the existing methodological toolkit. To the best of our
knowledge, only Palace et al. [8] attempted to develop an automated image segmentation tech-
nique for high-resolution aerial imagery acquired over a tropical forest.

Further challenges in segmenting of individual tree crowns and in species identification in
tropical forests are that a single species may exhibit variable physical parameters, and that two
species may have low spectral separation [38]. In other studies, textural features have been in-
cluded along with spectral information to improve aerial imagery-based tree species classifica-
tion for temperate forests. Combined bands of spectral and textural information derived from
VHR aerial imagery improve the species detection and classification of common temperate
trees species such as spruce, pines, and hardwoods by 33% compared to spectral information
alone [39]. Combined spectral and textural bands also yielded better classification accuracy
than do textural bands alone. A combination of shape, grey-level co-occurrence matrix
(GLCM)-derived information, and spectral information has been derived from high-resolution
aerial imagery to distinguish and classify commonly found tree species in Sweden [3]. A combi-
nation of LIDAR and texture variables has also been successfully employed for commercial tree
species monitoring [40,41]. Although GLCM-derived texture features have been effective at
improving tree species classification in temperate forests, they have been restricted mostly to
biomass mapping [42,43] and land use classification in the tropics [31,44,45]. To the best of
our knowledge, texture-based measures have not been previously utilized for tree species detec-
tion and classification in the Asian tropics.

Over the past few years, there has been a sharp increase in forest loss in the tropics [46].
Along with the disturbing rates of forest loss in tropical Asia, there have been growing adoption
and dissemination of high-resolution aerial imagery and LiDAR data from the tropical forests.
Thus, it is important to examine techniques and algorithms that could facilitate the identifica-
tion of tree species and quantification of forest structure in tropical forests. The development
of new algorithms is beyond the scope of this paper. However, by examining the utility of exist-
ing approaches for segmenting individual tree crowns and tree species mapping, we hope to
show that our results will serve as a benchmark for studies of the structure and species compo-
sition of similar forests in the region. The mapping of tropical tree species and evaluation of
their biophysical parameters using either aerial or LIDAR imagery have so far been mainly per-
formed on the forests of Neotropics. Here, we present a novel application of these technologies
to mapping and measuring the distribution and structure of tree species in Cambodia, with po-
tential applications across Southeast Asia.

Objectives

Cambodia is home to one of the largest remaining tracts of tropical forests in Southeast Asia
[41]. Its forests host valuable timber species and provide habitat to endangered species includ-
ing the Indochinese tiger. From 2002 to 2006, however, Cambodia lost its forests at the rate of
0.5% per annum, and between 2006 and 2010, its total forest cover declined from 59% to 57%.
Although Cambodia still has a significant forest cover, it has been classified as “high forest
cover, high deforestation” by the UN-REDD initiative because of the high deforestation rates
[47]. Illegal harvesting of trees for luxury timber has taken a heavy toll not only on the forests
of Cambodia but also on the surrounding countries. In this region, illegal removal of valuable
tree species routinely occurs even within protected areas and wildlife sanctuaries [48].
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The present research deals with the mapping of selected tree species in Angkor Thom and
the subsequent characterization of their forest mensuration variables. This study is expected to
facilitate the monitoring of trees within the tropical forests of Cambodia on a landscape scale.
We are using field-measured data alongside VHR aerial imagery and LiDAR imagery, and the
primary objectives of this study are (i) to evaluate the ability of aerial data to predict the varia-
tion in field-measured forest mensuration variables such as tree height and tree crown width
and (47) to map individual tree species of selected canopy tree species using VHR aerial imag-
ery. In conjunction with these two objectives, this study also aims (iii) to compare the perfor-
mance of two segmentation approaches- OBIA (implemented using multiresolution
segmentation) and watershed segmentation and to determine which of these approaches can
predict field-measured tree crown diameters more accurately; (iv) to examine which of two
classification approaches (maximum likelihood [ML] and spectral angle mapper [SAM]) is
best suited for tree species mapping using VHR aerial imagery; and (v) to determine how the
inclusion of texture features improves classification accuracy.

Materials and Methods
Ethics statement

This study was approved by the APSARA National Authority (Authority for the Protection
and Management of Angkor and the Region of Siem Reap), who provided permits for the field-
work described here. No extractive or destructive sampling of tree species was carried out.
Only tape measures and clinometer-based measurements of the trees were taken. The following
sections describe the study area and measurements in detail.

The overall approach

The research described here was undertaken with two primary objectives in mind. The first is
to evaluate the ability of aerial data to predict the variation in two field-measured forest mensu-
ration variables: (1) tree height and (2) tree crown width. For this purpose, segmentation analy-
sis was applied to the remotely sensed data, and the values obtained from segmentation were
compared with their field-measured counterparts. The second objective was to perform the
mapping of five individual tree species in the study area using aerial imagery alone. In addition
to the spectral bands, texture variables that were derived from these spectral bands were also
employed for classification purposes. It must be noted that segmentation approaches were ex-
clusively used to fulfill the first objective (and its associated aims), whereas the classification ap-
proaches were exclusively used for fulfilling the second objective. LIDAR data were exclusively
used for one purpose only, that is, evaluation of the variability of field-measured tree height.
Both objectives (i) and (ii) involve individual tree data collected in the field.

The study area

Our research was carried out in the heavily vegetated precinct of Angkor Thom, at the center
of the Angkor Archaeological Park [49,50]. Fig 1 shows Angkor Thom and our data collection
area (within the orange boundary in the lower panel).

The 9-km? area of Angkor Thom includes dozens of significant archaeological sites, most
notably the Bayon temple with its iconic face towers. The area also lies entirely within Zone 1
of the UNESCO World Heritage site, which means that this location is under a relatively high
level of protection [4]. One can therefore observe a large number of critically endangered tree
species (e.g., Dipterocarpus alatus) in the area, particularly in close proximity to the monu-
ments and access roadways, although there is evidence of extensive tree felling in areas further
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Fig 1. An Overview of the Study Area. Top: A map of Cambodia, shaded relief courtesy NASA/SRTM. Top
Inset: An archaeological map of central Angkor, courtesy of the Greater Angkor Project (GAP). Bottom: The
study area within the walled city of Angkor Thom, shown against a background of LiDAR intensity data,
courtesy of the Khmer Archaeology LIiDAR Consortium (KALC), and archaeological data, courtesy of GAP.
All remote sensing data for the study were provided by Damian Evans.

doi:10.1371/journal.pone.0121558.g001

away from public view. The vegetation cover in Angkor Thom, which has been variously de-
scribed as “temple forests or subhumid semi-deciduous forests” or “fragmented evergreen” has
undergone cycles of degradation and regeneration during various periods in recent history [4].

Field data collection

The data collection was conducted in December 2013. The forests around Angkor Thom con-
sist mostly of evergreen trees and relatively few deciduous trees. These forests are dominated
by tree species whose height typically ranges from 25 to 40 meters. Common tree families in-
clude Meliaceae, Dipterocarpaceae, and Annonaceae [51,52]. During the field data collection,
the leaves were fully flushed. Because these forests consist primarily of evergreen trees, the
issue of deciduous tree flushing can be ignored in this work. Field data collection was
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Fig 2. A Detailed View of the Study Area. Left: An orthophoto mosaic. Center: LiDAR intensity data with the study area delineated in orange. Right: A
combined digital terrain model and hillshade derived from ground returns in the 2012 LiDAR data, showing temples and features of archaeological interest
(all data courtesy of KALC). All remote sensing data for the study were provided by Damian Evans.

doi:10.1371/journal.pone.0121558.9g002

performed mostly within forest patches in the immediate vicinity of the Bayon and Baphuon
temples, as shown in Fig 2.

Tree height, the diameter at breast height (DBH), and crown width or diameter were mea-
sured for trees, both in the immediate vicinity of the monuments and in forest patches located
within a 1-km radius of the monuments. DBH was measured 1.3 m above the ground in accor-
dance with the RAINFOR protocol [53]. Crown width was determined as the average of two
perpendicular crown radii, which were measured from the tree bole to tree crown edge using a
meter tape [54,55]. The trees were selected using size-stratified random sampling, which en-
sured that both large trees and relatively smaller trees were sampled from each of the canopy
tree species under study.

This survey was focused on canopy trees, which included D. alatus (57 trees), Tetrameles
nudiflora (24 trees), and Lagerstroemia calyculata (32 trees) among others. The numbers of
some of these canopy trees, notably D. alatus and H. odorata, are diminishing rapidly in their
natural habitat and are therefore on the “List of Threatened Species” of the International
Union for Conservation of Nature. These tree species are of great economic importance be-
cause they are valuable sources of timber and have been used in forest restoration programs in
Southeast Asia [56].

The geographical locations of individual trees were recorded so that they could be located in
the high-resolution aerial images. The study area has many prominent architectural structures,
most of which have been rigorously surveyed and geolocated using a differential global posi-
tioning system (GPS) [57], thereby making them suitable reference points. Trees were
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geolocated within the imagery using known distances and directions from these reference
structures, similar to the strategy employed by Gougeon [58] and others elsewhere, including
tropical forest environments [10].

Aerial data processing

Aerial imagery processing. The VHR aerial images were acquired over the Angkor Ar-
chaeological Park on April 2013. The imagery consisted of three spectral bands (red, green,
and blue) and was captured using a 40-megapixel Leica RCD105 medium-format camera from
800 m above the ground. The resulting data have VHR (0.08 m) and the individual tree crowns
are visually distinguishable. Data preprocessing steps such as radiometric, atmospheric, and
geometric correction were carried out by the data provider according to factory specifications.
Other parameters such as color balancing and saturation were applied by the data provider
based on the light conditions on a given day. All of these preprocessing steps were carried out
using the manufacturer’s proprietary software and details of algorithms cannot be revealed.
These preprocessing techniques were undertaken with the goal of reducing the impact of atmo-
spheric disturbances, haze, noise, and orientation-related errors [59].

LiDAR data processing. The LiDAR data were collected during the same flights as with
the aerial imagery, but this time, using a Leica ALS60 laser system installed within an external
pod that was mounted on the left skid of a Eurocopter AS350 B2 helicopter. The instrumenta-
tion included a Honeywell CUS6 inertial measurement unit, which registered aircraft orienta-
tion at 200 Hz. Absolute positional information was acquired using a Novatel L1/L2 GPS
antenna attached to the tail rotor assembly; the antenna was logging positions at 2 Hz. Flying
height of 800 m above the ground level and the speed of 80 km/h were chosen to achieve opti-
mal point density, assuming a field of view of 45° for the laser scanner and a default field of 46°
for the camera equipped with a 60-mm lens. The ALS60 was set to the pulse rate of 120 kHz
with full waveform acquired across a swath width averaging 650 m. In the heavily forested areas
of Angkor Thom, which include our study area, the aircraft flew adjacent flight lines in oppos-
ing directions with a significant side lap between swaths, and also flew perpendicular flight lines
to maximize canopy penetration. Processing of waveform data into discrete points resulted in
point clouds averaging ~12 points per m” in the study area. The density of LIDAR point clouds
used for forestry applications can vary considerably from study to study, for example, from 1
point per m?* [10] to 164 points per m* [60]. Clearly, the latter is very high point density, and
such parameters are not commonly available for the tropics. However, it has been shown in var-
ious studies that 5-points-per-m” point density and above is adequate for tropical-forestry ap-
plications [61,62] and thus, we consider our data to be well within the acceptable range.

An important LIDAR product required for estimating forest parameters (such as above-
ground biomass [AGB], tree height, and forest structure) is the canopy height model (CHM).
A CHM is a three-dimensional (3D) surface that characterizes the height of vegetation across a
landscape [54].

Vegetation height data or the CHM is obtained by subtracting a digital terrain model
(DTM) from a digital surface model (DSM). A DTM is 3D representation of the elevation of
the ground surface without vegetation cover [63]. In contrast, a DSM includes the ground ele-
vation and all objects above it (such as trees). The DSM is obtained from the first LIDAR data
return, whereas the DTM is obtained from the final returns, which may often represent the
ground surface [54]. Because the final return might also originate from an object above the
ground, smoothing and filtering algorithms are needed to obtain an estimate of ground surface
elevation [64]. In this study, the CHM and DTM were both extracted using the FUSION soft-
ware with the Ground Filter algorithm [65] (adapted from Kraus and Pfeifer [66]). It uses a
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linear prediction algorithm for each measurement as an iterative process. Three iterations of
the algorithm are sufficient to extract the probable ground points from the 3D point cloud. To
obtain the continuous DTM, the discrete 3D point cloud was projected onto a 2D grid in the
X-Y plane. The grid was divided into grid cells of equal dimensions along the X- and Y-axes. A
mean elevation of all the points falling onto the same grid cell was assumed for each grid cell.
The result was a raster image representation of the 3D point cloud, with pixels corresponding
to the grid cells and pixel values as the mean elevation for the corresponding grid cells.

The raster obtained from coarse ground points that was returned by the Ground Filter algo-
rithm is expected to have abrupt changes of elevation within a neighborhood of grid cells,
which is not a good representation of the actual surface, as ground elevation does not change
abruptly. To prevent these problems, a Median Filter was applied using a window of 3 x 3 grid
cells. By translating a window of 3 x 3 grid cells across the whole grid, the value of each grid
cell was replaced with the median of values of all the grid cells in that window. This approach
should result in uniform elevation values throughout the raster and thus produce a better re-
presentation of the actual ground surface. A detailed workflow of how the CHM was produced
from LiDAR point cloud data is presented in the S9 Fig.

Predicting field-measured forest mensuration variables from aerial data

Multiresolution segmentation and watershed segmentation algorithms were applied to aerial
imagery to extract crown width values, as depicted in Fig 3. These extracted values were then
compared with field-measured values to determine which of the algorithms could predict
ground-measured values more accurately.

Multiresolution segmentation was also applied to the LIDAR-derived CHM to extract tree
height data, as illustrated in Fig 4. LIDAR-derived tree heights were then statistically compared
with field-measured tree heights. From the CHM, multiresolution segmentation was used to
identify individual tree canopies. The brightest pixels of each canopy were extracted to facilitate
the estimation of tree height.

Image segmentation. Segmentation is a process via which pixels in one or more images
are grouped into segments/objects that share a homogenous spectral similarity and make sense
in the real world, in this case tree crowns [24]. The watershed segmentation technique used in
this study works by converting image data into a gradient scale image that allows the image to
be viewed as a grayscale topographic surface. On the topographic surface, the darkest grey val-
ues represent low points and the brightest ones represent the high points of the surface. The
low points of the grayscale act as valleys. Starting from these minimum values of the image, the
surface is filled with water until water spills over to the watershed of the adjacent valley. Once
this water-filling is completed, the entire area is separated out into contour basins. These basins
are the delineated tree crowns [67]. Further details of this method can be found in the study of
Chen et al. [68]. This procedure was implemented using MATLAB.

Using the eCognition software, the OBIA paradigm was applied separately to the aerial im-
agery and to the LIDAR-derived CHM to extract individual tree crown widths and heights, re-
spectively. The basic assumption of the OBIA paradigm is that a group of pixels in an image
can be congregated to form a geographic object. The congregation of individual pixels into ho-
mogenous objects is based on the similarity of digital number (DN) values as well as spectral
and shape policies [69]. There are several segmentation algorithms that can be used to opera-
tionalize the OBIA paradigm. The multiresolution segmentation algorithm used in this study
employs a bottom-up approach wherein a one-pixel object is created. This one-pixel object is
expanded to mimic an actual object on the ground by joining it with adjacent objects. The pa-
rameters that were considered during joining of these pixel-objects to form an actual
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For both segmentations, compare tree crown width

distribution using Kruskal Wsllis test and Moody's
median test

Fig 3. Extraction of Crown Width Values from Aerial Imagery.

doi:10.1371/journal.pone.0121558.g003

geographic object (in this case, a delineated tree crown) included spectral and shape heteroge-
neity criteria and the compactness ratio [70]. Delineation was performed using the procedures
specified by Jakubowski et al. [71].

A very common approach to checking the accuracy of trees delineated using an automated
algorithm is to evaluate the “goodness of fit” of the segmented tree crowns. A typical method of

pixels for each
canopy

Fig 4. Extraction of Tree Height Values from LiDAR-derived CHM.
doi:10.1371/journal.pone.0121558.9004
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doing so involves using manually digitized polygons as a reference and evaluating the “close-
ness” of the algorithm of segmented tree crowns [43]. The Closeness Index (D) estimates the
“goodness of polygon matching” between the reference and the segmented tree crown polygons
[38,72]. Twenty-five random tree crowns were manually digitized from the VHR aerial images,
as shown in Fig 5. The corresponding aerial imagery-segmented tree crowns were then overlaid
on these, and the D value was calculated using the following equation:

D= \/ (Oversegementation)’ + (Undersegementation)’ (1)

This D measure accounts for the oversegmentation and undersegmentation that may have oc-
curred during automated delineation. Undersegmentation means that a segment (in this case, a
tree crown segmented from aerial imagery) contains a significant crown part of more than one
tree. Oversegmentation refers to more than one segment being associated with a ground tree.
Fig 5 provides a visual representation of oversegmentation and undersegmentation.

Both of these situations are commonly encountered during tree crown segmentation [73].
In addition, this method of overlaying segmented polygons on manually digitized polygons al-
lows researchers to evaluate the accuracy of spatial location of segmented tree crowns as well as
their topology and geometric shapes [43]. The closer the D value is to zero, the more accurate
is the segmentation [74]. For more details of this method, please see S11 Fig.

Statistical analysis. One of the main aims of this research was to determine how well aerial
data-derived forest mensuration variables correspond to field-measured values of the same.
Prior to any analysis, the adherence of the data to conditions required for most parametric
tests was verified. Conditions of normality of residual distribution, assessment of linearity be-
tween variables, and examination of association between the independent variables and residu-
als were evaluated in the R programming language. A QQ plot of the residuals revealed that
most of the points fell on the QQ line, except for the tail points. Heavy tails such as those ob-
served in this case are indicative of errors being non-normal (see S2 Table). Given the fact that
the data do not strictly adhere to the conditions requisite for parametric tests, nonparametric
alternatives have been used. Spearman’s rank correlation was used to quantify the strength of
association between values derived from the field and aerial data.

Another aim of this research was to determine which segmentation algorithm (watershed or
multiresolution) better predicts the ground-measured crown diameter. Residuals of crown
widths measured in the field and those extracted from aerial imagery using multiresolution
and watershed segmentation techniques showed deviation from normality. Hence, nonpara-
metric methods were used for the comparison of these. The Kruskal-Wallis test was employed

Over- Under- Under-
segmentation segmentation segmentation

Fig 5. Oversegmentation versus Undersegmentation. The green polygons are the manually digitized
polygons that were overlaid on multiresolution segmentation polygons (shown in pink).

doi:10.1371/journal.pone.0121558.9005
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to see whether significant differences existed between the crown widths obtained from different
sources. Mood’s median test was used to determine whether multiresolution segmentation-de-
rived crown widths or watershed-derived crown widths are significantly greater or smaller
compared to field-measured crown widths.

Tree species classification

Tree species classification was carried out using either three-band spectral data only or using
three-band spectral data in conjunction with texture data. The following section describes the
different processes undertaken to carry out tree species classification.

Classification quantifiers. Two classification algorithms were used for mapping of indi-
vidual tree species, namely, ML and SAM techniques. Seventy percent of the ground-collected
tree location information was used for classification, whereas the other 30% was used for vali-
dation. The split between classification and training datasets was performed randomly [43].
Both are supervised classifiers that use statistics obtained from the training data for classifica-
tion of unclassified data. The ML algorithm calculates the probability of a given pixel belonging
to a given class. Each pixel is assigned to a class that has the highest probability. Unless a mini-
mum probability threshold is specified, all pixels are classified [75]. SAM quantifies similarity
between training pixels and unclassified pixels by measuring the angle between the class-mean
vector obtained from the training data and the vector of unclassified pixels. The pixel is as-
signed to the class for which the angle is found to be the minimum among all classes, as shown
in Fig 6. Essentially, the spectral similarities between the reference and target objects are quan-
tified and used for classification purposes [75].

Both classification techniques were implemented using the ENVT 5.0 image processing soft-
ware. Several measures of accuracy such as overall accuracy, kappa coefficient, and producer’s
and user’s accuracy values have been utilized for validating the classification results [76]. Tree
species classification using spectral and texture bands were carried out using both of these su-
pervised classifiers. However, the following two steps were taken to generate the texture bands:
texture analysis and feature selection.

Texture analysis

The concept of GLCM was proposed by Harralick [77] in 1973 and this approach is designed
to quantify and describe regions of interests in an image. Although the concept of texture is in-
herently qualitative, for the purpose of image analysis, texture indicates the spatial variation of

Apply ML and

Extract class :

O | her
training data Saes

O

Pea:glr;ns izc:;;agﬁv <::| Obtain classified
test data BERs

Fig 6. Applying Classifiers to Aerial Imagery.

doi:10.1371/journal.pone.0121558.9g006
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Fig 7. Applying GLCM Texture Analysis to Aerial Imagery.
doi:10.1371/journal.pone.0121558.9g007

pixel values and tonal heterogeneity along a certain direction in the image [42,43]. GLCM mea-
sures are usually classified into two categories: first-order and second-order statistics. First-
order statistics or occurrence statistics (such as mean, variance, and entropy) do not take into
account the relationship among pixels. These statistics are simply designed for quantification
of variation in tonal frequency around a given pixel. Second-order statistics or a co-occurrence
matrix (such as contrast and angular second moment) is used for quantification of the frequen-
cy of association between brightness value pairs [43]. GLCM values were extracted from the
three different bands of the VHR aerial imagery using the ENVI image processing software. Fig
7 shows application of GLCM texture analysis.

Further details of the different GLCM texture measures are available in [43,59].

Feature selection. Feature selection refers to the process of selecting a subset of features
(or in this case, bands) that can best differentiate separate objects [78]. One of the aims of this
study was to determine whether inclusion of textural information can improve species classifi-
cation and differentiation. As a first step, it is important to find out which texture features best
distinguish the tree species from one another. Feature selection was focused on selecting a sub-
set from the original data (in this case, texture bands) that best describes the properties of the
target objects [79]. This has been done via a rank ordering algorithm (the gain ratio feature se-
lection algorithm). This method attempts to assign weight to each feature or band (in the case
of multispectral or hyperspectral imagery) based on how much information is contained in
each feature or band. The information content of a feature or band is estimated using the train-
ing data available. This is a standard way of ranking features or bands because the more infor-
mation contained in a feature or band, the more useful it is for classification purposes. The
bands with low weight or information content do not contribute much to improving the classi-
fication accuracy and are therefore discarded [80]. This algorithm was implemented using both
the open-source software WEKA and the FSelector package of the R programming language.

Results
Multiresolution and watershed segmentation methods

The Kruskal-Wallis test was performed among the field-measured, multiresolution-derived,
and watershed segmentation delineated individual tree crowns. The Kruskal-Wallis test of dif-
ferences between the distributions of the field-measured crown widths and multiresolution seg-
mentation-based delineated individual tree crown widths yielded a value of 3.13, which meant
that there was no statistically significant difference between these two distributions. On the
other hand, this test of the difference between field-measured and watershed-segmented aerial
tree crowns yielded a value of 84.48, with the significance level 0.001 (indicating that the latter
are significantly different from field-measured values). The median of the widths of watershed-
segmented tree crowns was 8.7 m, the median of the field-measured crown widths was 17 m,
and the median of the multiresolution segmentation segmented tree crowns was 18.18 m. To
further evaluate the medians, the Mood test of difference of medians was conducted. The test
showed no differences between the medians of field-measured and multiresolution
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segmentation-based tree crowns. However, it showed a highly significant difference between
the medians of the samples of watershed-segmented and field-measured tree crowns. The me-
dian of the width of watershed-segmented tree crowns was significantly smaller than the medi-
ans of the two other samples. On the basis of both Kruskal-Wallis and Mood’s test of median
difference, it can be concluded that multiresolution segmentation is a sound algorithm for indi-
vidual tree crown delineation, whereas watershed segmentation underestimates field-measured
crown tree widths. A histogram of crown width distributions that was obtained with these
three methods is presented in S7 Fig.

Forest mensuration variables from the aerial data

Very few forest mensuration and tree allometry data have been collected for the forests of con-
tinental Southeast Asia. To the best of our knowledge, forest mensuration data have not been
collected in the forests of Cambodia. Multiresolution segmentation was performed on aerial
imagery to extract the width of tree crowns and on the LIDAR-derived CHM for extracting
tree height. Multiresolution segmentation-based values were compared with the field-mea-
sured values of tree crown diameters and field tree heights, as shown in Fig 8.

As depicted in Fig 8, the field-measured and multiresolution segmentation-based predicted
crown widths and tree heights showed a positive correlation within each category. The Spear-
man’s rank correlation coefficient (rho) between field-measured and LiDAR-derived tree
heights was 0.589, whereas rho between field-measured and aerial imagery-derived crown
widths was 0.7825. A 1:1 line (shown in red) was also fitted, and it can be seen that the pre-
dicted values for tree crowns from multiresolution segmentation coincide strongly with the
field-measured values. The root-mean-square error (RMSE) for field-measured tree heights
and LiDAR heights was 1.28 m, whereas that for crown widths was 2.23 m. The reference aerial
data (manually digitized tree crowns) and multiresolution segmentation-based tree crowns
showed a D value of 0.318 (i.e., accuracy of 69.22%, 31.78% error) indicating that multiresolu-
tion segmentation-based tree crowns had been segmented with 69.22% accuracy.

Multiresolution Segm LiDAR Tree Height
Multiresolution Segm Aerial Imagery Crown Width

T T T T T T T

5 10 15 20 25 30 35

Field Tree Height (m) Field Tree Crown Diameter (m)

Fig 8. Comparison of Field-measured and Object-based Image Analysis (OBIA)-predicted Crown Widths and Tree Heights.
doi:10.1371/journal.pone.0121558.9008
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Table 1. Field-measured and Light Detection and Ranging (LiDAR)-predicted Mensuration Variables for Some Tree Species.

Tree Species

OBIA-Pred
Dipterocarpus alatus 34.3+1.57
Tetrameles nudiflora 30.58+2.9
Lagerstroemia calyculata 31.43+3.89

aSpearman’s rank coefficient of correlation.

doi:10.1371/journal.pone.0121558.1001

Tree Height (m) Crown Width (m)
icted Field-Measured R? OBIA-Predicted Field-Measured R?
36.5+1.3 0.416 23.53+1.37 20.9+1.2 0.777
31.81+3.49 0.717 16.08+1.84 15.26+1.91 0.754
35.8+4.28 0.743 21.514.6 21.15+4.5 0.685

Comparison of field-measured and multiresolution segmentation-measured crown width and
tree height values was performed on the three species that are commonly found in the vicinity of
the temples: D. alatus (57 trees), Tetrameles nudiflora (24 trees), and L. calyculata (32 trees).
Table 1 provides a summary of the average (+ standard error) field-measured and multiresolu-
tion segmentation-predicted mensuration variables for the three aforementioned tree species.

Furthermore, tree height and crown width are known to correlate with tree DBH [74]. The
strength of association between field-measured tree height and crown width and field-mea-
sured DBH was evaluated using Spearman’s rank correlation, which yielded a coefficient of
0.40 and 0.202, respectively, with ground-measured DBH.

Classification of tree species

Feature selection results. The gain information ratio selection algorithm ranks features in
the order of importance. Out of all the texture features, the entropy of the red band was identi-
fied as the only feature that had discriminating power between the different classes
under study.

Spectral and texture bands. Classification was carried out using the three-band aerial im-
agery and a data stack that included spectral bands along with the texture band selected using
the gain information ratio algorithm. Out of these, the results from ML classification of three-
band aerial imagery showed the highest overall accuracy (83%) and kappa coefficient (0.76).
These results were retained as the final classification map of tree species, as shown in Fig 9.

For the ML-derived tree map classification (from the three-band image), the producer’s
and user’s accuracy levels varied between 0 and 99.8% and between 0 and 85%, respectively.
A detailed summary of producer’s and user’s accuracy values of different classes is presented
in Table 2.

Examination of producer’s and user’s accuracy levels suggested that high confidence can be
placed on the detection and mapping of individual classes, except for D. alatus and L. calycu-
lata. In these two cases, both producer’s and user’s accuracy levels were zero, suggesting that
the ML classification of three-band data was not suitable for resolving these classes. The ML
classification was performed on a combination of spectral and texture bands (i.e., the texture
band entropy of red band was combined with the existing three spectral bands of the aerial
image). Although the overall accuracy and kappa coefficient did not improve, the detection
and separability of tree species—notably D. alatus and L. calyculata—improved slightly. The
former now showed producer’s and user’s accuracy of 8% and 20%, respectively, whereas the
latter showed accuracy of 1.8% and 0.7%, respectively. SAM classification with three spectral
bands yielded the overall classification accuracy of 35.78% (with kappa coefficient 0.2341) and
then 33.85% (with kappa coefficient 0.223) with the texture band (fourth band) included. This
value was low compared to that of ML classification, which was 83.27% (with kappa coefficient
0.7510) for three-band data and 73.83% (with kappa coefficient 0.6238) for four-band data.

PLOS ONE | DOI:10.1371/journal.pone.0121558  April 22,2015 15/26



" ®
@ ' PLos | ONE Aerial and LiDAR Data for Characterization of Trees in Cambodia

Legend
- Water
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Fig 9. A Classification Map of Tree Species from Three-band Aerial Imagery. CHH: Dipterocarpus alatus; KOKI: Hopea odorata; SPUNG: Tetrameles
nudiflora; SRALAQ: Lagerstroemia calyculata; CHAM: Cynometra ramiflora; and SRL: Lagerstroemia calyculata.

doi:10.1371/journal.pone.0121558.9g009

Discussion
Comparing multiresolution and watershed segmentation methods

We show comparison of multiresolution segmentation and watershed segmentation in terms
of delineating individual tree crowns from VHR aerial imagery. Multiresolution segmentation
approximates the field tree crowns with a high level of accuracy in terms of measurement of
crown width, geometry, and spatial location. The field-measured and multiresolution segmen-
tation-extracted crown widths have a strong association with each other (rho = 0.7825).
Watershed-segmented tree crowns, on the other hand, significantly underestimate tree
crown width. Review of existing literature indicates that watershed segmentation yields under-
estimated tree crown widths in other forest ecosystems as well [81]. This is because distinguish-
ing tree crowns exclusively on a radiometric basis can reduce the performance of watershed

Table 2. Comparison of Producer’s and User’s Accuracy Levels for Three-band Maximum Likelihood Classification.

Buildings CHAM CHH KOKI SPUNG SVAY SRL Water Unknown Bare-ground
Prod. Acc.% 86.3 52.9 0 87.1 85.6 93.7 0 96.2 88 99.8
User Acc.% 25.6 22,5 0 86.2 94.7 34 0 63.2 85.3 76.3

CHAM: Cynometra ramiflora CHH: Dipterocarpus alatus; KOKI: Hopea odorata; SPUNG: Tetrameles nudiflora; SVAY: Anacardiac mangifera and SRL:
Lagerstroemia calyculata.

doi:10.1371/journal.pone.0121558.1002
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segmentation [82]. Although watershed segmentation works well for coniferous trees owing to
their conical shape, the performance of the algorithm deteriorates in deciduous and other
broadleaved forest types [83]. For more complex tree crowns (such as those located in the trop-
ical forests), watershed segmentation has the drawback of oversegmentation and identifying
spurious tree tops [14]. Furthermore, watershed segmentation is known to significantly overes-
timate LIDAR-derived tree height [84]. Research by Huang et al. [85] indicated that implemen-
tation of OBIA-based techniques yields better estimates of crown width than does watershed
segmentation alone. The D value of segmentation accuracy (30.78%) indicates that the multire-
solution segmentation-based tree crowns match the corresponding field crowns in terms of
spatial location, dimensions, topology, and the geometric shape, with a 69.22% level of accura-
cy. This closeness index correlates with the analysis of multiresolution segmentation accuracy
carried out by Kumar et al. [21], Singh [43], and Mbaabu [74] in different tropical ecosystems.
The segmentation accuracy results indicate the utility of multiresolution segmentation-based
tree crown segmentation for a mixed-species tropical ecosystem in Southeast Asia.

Use of aerial data for studying forest structure variables

OBIA-based segmentation was applied to a LIDAR-derived CHM for obtaining estimates of
tree height. The LIiDAR-derived tree height data have a moderately strong correlation with
field-measured heights (rho = 0.589). Predicting tree heights (including individual tree height)
is an important part of LIDAR-based studies of forestry and is fraught with significant technical
problems. The most common source of uncertainty in LIDAR-derived tree height data stems
from deriving DTMs under the forest canopy cover, which in turn translates into errors in esti-
mating the LiDAR tree height [82]. Forest canopy cover and vegetation structure is known to
yield up to a 3.67-m error in LIDAR tree height estimates in forest ecosystems, notably for trop-
ical forests [86,87]. The presence of a dense understory or interaction with multistoried canopy
structure (as is the case in our study area) can further reduce the accuracy of height assessment.
Examination of the sources of error in field-measured heights was performed by Larjavaara
and Landau [88]. They noted that the clinometer-based approach (used in the present study)
essentially produces 1:1 correspondence with actual tree heights, but the height of taller trees is
significantly overestimated (sometimes by 100%). This approach produces low systematic
error but high random errors. Topographic factors also influence LIDAR-based estimates of
tree height. Although these are more pronounced in the presence of steeper slopes, they are not
completely absent in flat terrains [86]. Individual LIDAR tropical tree height data can have
error ranging from 3% to 20%, where RMSE between field and LiDAR tree heights (for emer-
gent trees) can be up to 7 m. Finally, LIDAR is also known to underestimate field tree height in
the tropical ecosystems [89]. Research carried out by Imai et al. [90] in the temperate urban
forests near Tokyo indicated that prediction accuracy of LIDAR-based tree height data varies
across different tree species. All of these factors contribute to the error between field-measured
and LiDAR-extracted tree height data.

Furthermore, these factors are significantly magnified in a tropical ecosystem. Tree height
measurements with LIDAR in the tropics can have significant sources of uncertainty [81], and
this uncertainty and errors in our LIDAR-derived height values are within the range of what
has been observed in other tropical forest studies. The RMSE value of 1.28 m and strength of
association between field- and LiDAR-derived values in this study is consistent with RMSE val-
ues between field-measured and LiDAR tree height data from other tropical ecosystems
[86,91], and the LIDAR-derived tree height values are within the range of ground tree height
values observed in similar ecosystems [51]. Thus, we can conclude that multiresolution seg-
mentation is a suitable algorithm for taking tree height measurements on a landscape scale.
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Research by Jakubowski et al. [71] indicated that multiresolution segmentation-derived forest
mensuration variables are comparable to those produced by the 3D segmentation of point
clouds in terms of measurement accuracy. In the absence of 3D segmentation approaches for
tropical forests, it may be argued that OBIA-based methods such as multiresolution segmenta-
tion are useful for examining tree structures on a landscape scale.

Tree species classification using spectral and texture bands

This study is the first of its kind to use VHR aerial imagery in conjunction with field-collected
geolocation data on tree species to generate a classification map of tree species of a tropical for-
est ecosystem in Southeast Asia. Here, we utilized both spectral data and a combination of
spectral and textural information when carrying out tree species classification of the five tree
species. Combining spectral and textural data helped to improve the separability and classifica-
tion of all tree species under consideration, albeit marginally, in case of tree species that could
not be identified on the basis of spectral information alone. This is a potentially important find-
ing. As mentioned previously [38], tropical tree species can have low spectral separability, and
this is the case for some of the tree species assessed in the present study (see S5 Fig). One of the
species that could not be identified by spectral data alone is D. alatus. This is an endangered
species, whose numbers have declined significantly in the study area. Hence, the spectral re-
sponse of this species is arguably dominated by that of the surrounding trees. Hyperspectral
bands yield higher separability of tree species, but these data are not available for the study
area. Thus, we resolved to determine whether texture features could improve species separabili-
ty. Texture features have not been previously used for identification of individual tree species
and for classification in a tropical ecosystem, although their utility for classification of temper-
ate tree species is well documented. Entropy texture information was previously and success-
fully implemented for tree species classification in Canada by Coburn and Roberts [92].

The ability of texture measures, in particular red band-based ones, to distinguish between
different tropical forest types has been discussed by various authors, including Singh et al. [43],
Zhou et al. [42], and Eckert [93]. This research builds on the existing findings by demonstrat-
ing the utility of texture measures from the landscape level down to individual tree species and
by facilitating classification of tree species in tropical ecosystems. Indeed, the separability of the
two species that could not be identified by spectral data alone improves marginally with the in-
clusion of texture data. Given that many species such as D. alatus are endangered and isolated,
the collection of extensive field-based records on these species is not feasible. Thus, increasing
the number of spectral bands or using hyperspectral data may yield better results. In the ab-
sence of hyperspectral data, incorporating texture measures may improve tree species mapping
in other similar tropical ecosystems in the region. Furthermore, this research involves evalua-
tion and comparison of two classification techniques, i.e., ML and SAM, and established the
utility of the former in producing an accurate tree species classification map of the study area.
Comparison of classification techniques conducted by Cho et al. [94,95] also showed that ML
produces the highest classification accuracy in mapping tropical savanna tree species using
high-resolution multi-spectral data.

Many previous studies on tropical tree species mapping, notably those by Jansen et al. [96],
Garzon-Lopez et al. [9], and Gonzalez-Orozco et al. [10] involved mapping of tropical tree spe-
cies in the Neotropics using manual delineation techniques (which require extensive field data
collection). Extensive field data collection is not possible in Cambodia owing to the presence of
land mines. Thus, the use of supervised classification in conjunction with field tree location
data collected from accessible areas can facilitate tree species mapping on a landscape scale, as
demonstrated in this study (56 Fig describes why supervised classification maybe used over
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manual delineation techniques for tree species mapping). In addition, supervised classification
was applied to high-resolution aerial imagery and World View-2 imagery, and high classifica-
tion accuracy levels for individual species were obtained. To the best of our knowledge, only
one other research group has attempted to use supervised classification for tree species identifi-
cation and classification on aerial imagery in a tropical mangrove forest ecosystem [97]. On the
basis of this research and that of Heenkenda et al. [98], it can be argued that aerial imagery in
conjunction with appropriate techniques may facilitate landscape scale monitoring of tree spe-
cies for a few select tree species.

It must be noted that aerial imagery cannot replace hyperspectral imagery for large-scale clas-
sification of tropical tree species. VHR aerial imagery has a limited number of spectral bands,
whereas hyperspectral data have hundreds of spectral bands and thus, the latter are more suit-
able for large-scale classification of tree species in tropical forests, as described in several studies.
For example, Cho and colleagues successfully identified and mapped eight savannah tree species
in the Kruger national park using aerial hyperspectral data [95]. Clarks and Roberts [97] also
used hyperspectral data for successful classification of seven tree species to a high level of accura-
cy in the tropical forests of Costa Rica. Other studies have utilized a combination of hyperspec-
tral data, LIDAR, and conventional aerial imagery for mapping of tree species in temperate
forests [99,100]. Given a choice between hyperspectral and aerial imagery, the former is clearly
preferable for tree species mapping on a landscape scale in a tropical forest ecosystem. However,
hyperspectral data cannot resolve the confusion between tree species in all cases [101]. Further-
more, owing to initiatives such as conservation drones [7], high-resolution aerial imagery is
cheaper to acquire compared to LIDAR and hyperspectral data. As demonstrated in this work
and in that carried out by Heenkenda et al. [98] and Garzon-Lopez et al. [9], aerial imagery does
offer the potential of classifying 3-4 tree species with high accuracy, even though it cannot help
with detailed large-scale classification of tree species as hyperspectral data can.

Conclusion

This research deals with the mapping of tree species and characterization of their forest mensu-
ration variables around the temples of Angkor Thom, Cambodia, within the Angkor Archaeo-
logical Park. Using field-measured data in conjunction with VHR aerial imagery and LIDAR
data, this study shows that aerial data can readily predict variation in field-measured forest
mensuration parameters such as tree height and tree crown width. Additionally, comparison of
two segmentation approaches in OBIA—multiresolution segmentation and watershed segmen-
tation—reveals that the former is more effective than the latter at approximating ground tree
parameters. Two classification approaches were also examined—ML and SAM—and ML was
found to be more accurate at classifying the features. Moreover, an additional band was found
to increase the classification accuracy of the two approaches.

This study is the first to successfully apply OBIA to the mapping of tree species within a pro-
tected area in Cambodia and to characterization of the forest mensuration variables of those
trees. This development has important ramifications for practical biodiversity conservation
and monitoring on the ground. The use of such tree species maps provides researchers with
crucial information on tree species dynamics in difficult-to-access areas and helps to identify
patterns of tree/forest loss at an early stage.

The research described above has not only obvious practical applications in terms of un-
derstanding and preserving natural landscapes but also important implications for conserva-
tion and management of cultural heritage. In many areas of the world, such as Southeast Asia
and Mesoamerica, forests are recognized as fundamental components of the cultural land-
scape that are otherwise primarily defined by spectacular temple complexes [4,5,102-105].
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Archaeological evidence indicates that unsustainable land use contributed to the downfall of
“tropical forest civilizations” of antiquity [57,106-109]. Although their monuments were
largely reclaimed by the forests over the last millennium, the landscapes of the Maya and the
Khmer are once again hot spots of deforestation [5,110]. The sheer size of these cultural land-
scapes can place a tremendous burden on the resources of the developing nations in which
these landscapes are typically located. That burden, however, can be partially alleviated by
means of effective application of geospatial technologies [80]. Here, we demonstrated one
such application, where aerial data can be used to effectively create an inventory of tree stock
within a protected area, which can serve as a foundation for management and conservation of
temple forests within protected sites.
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