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Polskiego St., 60-637 Poznań, Poland; jan.bocianowski@up.poznan.pl
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Abstract: Today, agricultural productivity is essential to meet the needs of a growing population,
and is also a key tool in coping with climate change. Innovative plant breeding technologies such
as molecular markers, phenotyping, genotyping, the CRISPR/Cas method and next-generation
sequencing can help agriculture meet the challenges of the 21st century more effectively. Therefore,
the aim of the research was to identify single-nucleotide polymorphisms (SNPs) and SilicoDArT
markers related to select morphological features determining the yield in maize. The plant material
consisted of ninety-four inbred lines of maize of various origins. These lines were phenotyped under
field conditions. A total of 14 morphological features was analyzed. The DArTseq method was
chosen for genotyping because this technique reduces the complexity of the genome by restriction
enzyme digestion. Subsequently, short fragment sequencing was used. The choice of a combination
of restrictases allowed the isolation of highly informative low copy fragments of the genome. Thanks
to this method, 90% of the obtained DArTseq markers are complementary to the unique sequences of
the genome. All the observed features were normally distributed. Analysis of variance indicated that
the main effect of lines was statistically significant (p < 0.001) for all 14 traits of study. Thanks to the
DArTseq analysis with the use of next-generation sequencing (NGS) in the studied plant material,
it was possible to identify 49,911 polymorphisms, of which 33,452 are SilicoDArT markers and the
remaining 16,459 are SNP markers. Among those mentioned, two markers associated with four
analyzed traits deserved special attention: SNP (4578734) and SilicoDArT (4778900). SNP marker
4578734 was associated with the following features: anthocyanin coloration of cob glumes, number
of days from sowing to anthesis, number of days from sowing to silk emergence and anthocyanin
coloration of internodes. SilicoDArT marker 4778900 was associated with the following features:
number of days from sowing to anthesis, number of days from sowing to silk emergence, tassel: angle
between the axis and lateral branches and plant height. Sequences with a length of 71 bp were used
for physical mapping. The BLAST and EnsemblPlants databases were searched against the maize
genome to identify the positions of both markers. Marker 4578734 was localized on chromosome
7, the closest gene was Zm00001d022467, approximately 55 Kb apart, encoding anthocyanidin
3-O-glucosyltransferase. Marker 4778900 was located on chromosome 7, at a distance of 45 Kb from
the gene Zm00001d045261 encoding starch synthase I. The latter observation indicated that these
flanking SilicoDArT and SNP markers were not in a state of linkage disequilibrium.

Keywords: DArTSeq; SNP; candidate gene association mapping; genome-wide association mapping;
morphological features; Zea mays L.
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1. Introduction

A stronger emphasis on increased and more balanced nutritional production has been
noticeable for a long time. Therefore, newer tools are continuously being developed to
guarantee a better accuracy of selection, including maize [1]. The currently used selec-
tion methods have been complemented with molecular biology findings and statistical
models enabling both the identification of markers of individual traits, resulting from the
action of individual genes, and those conditioned by many QTLs that explain the pheno-
typic variability of a trait to a varying degree [2,3]. The relationship between phenotypic
and genetic variability can be analyzed using association mapping, also called linkage
disequilibrium [4–6].

We can distinguish two approaches in association mapping. The first one is candidate
gene association and the second is genome-wide association study (GWAS). As regards
candidate gene association, the following hypothesis is tested: “Is there a correlation
between a DNA polymorphism in a specific gene and a trait?” GWAS approach is justified
in the absence of detailed biochemical knowledge related to the sought trait. GWAS
searches for a genome-wide trait-marker association and assumes that there are markers
exhibiting linkage disequilibrium in the genome conditioning trait expression [7]. The
association mapping was first performed in maize in 1995 [8]. Next-generation sequencing
(NGS) is applied to identify SNP and SilicoDArT markers.

Currently, the DArT platform offers analyses based on the NGS-DArTseq technol-
ogy [9]. The DArTseq method reduces the complexity of the genome by digestion with
restriction enzymes followed by sequencing of short reads. The choice of a combination of
restriction enzymes allows for the isolation of highly informative low copy fragments of
the genome. Even 90% of the obtained DArTseq markers are complementary to the unique
sequences of the genome [10,11]. DArTseq analysis generates two datasets. The first one
contains dominant markers; the second one includes codominant markers with marked
single nucleotide polymorphisms. At least three times as many dominant markers are
obtained in comparison to the conventional DArT method [12]. Maize, similar to barley
and rice, is one of the best-known cereal species in terms of genetics. High polymorphism
is a characteristic feature of the maize genome. Several active alleles are present at many
loci, and the frequency of duplicate DNA sequences, whose significant fraction are retro-
transposons and transposons, is about 58%. The genic regions account for only 7.5% of the
entire maize genome [13]. From the breeding perspective, genes determining the important
morphological features that influence the yield are very important.

In maize breeding, great attention is paid to the selection of traits that can help achieve
maximum yield. The recent increase in the level of maize yield is largely the result of the
introduction of new, more fertile cultivars into practice. The potential grain yield of a given
cultivar depends on various features that form the plant habit. The following morphological
features are of particular importance: plant height, height of the first cob, number of days
from sowing to anthesis, number of days from sowing to silk emergence, angle between
the axis and lateral branches (tassel), curvature of lateral branches (tassel), length of the
main axis above the highest lateral branch (tassel), number of primary lateral branches
(tassel) and anthocyanin discoloration. Certain morphological features may significantly
affect quantitative traits [14,15]. Intercultivar diversification of maize morphological traits
may generate an unequal response of cultivars to the main agriculture practice factors
(fertilization, sowing date and density) [16–19].

The results of the research prove that the height of maize plants and the height of the
first cob are highly heritable features (usually > 0.70). They are conditioned by additive
genes and/or genes showing overdominance or partial dominance [20]. These genes are
most frequently located in the regions of chromosomes 1, 3, 7L, 8L, 9S and 10L. The authors
reported that the location of some QTL regions determining maize height overlapped with
the location of certain quantitative genes [21].

The study of Bódi et al. [14] demonstrated that the morphological structure of the tassel
was related to the quantity of pollen produced, thus affecting the yield. Mickelson et al. [22]
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found that the length and weight of the tassel was negatively correlated with cob length.
Growers should select cultivars with shorter and lighter tassels because this structure of
male generative organs increases the yield [23]. Hallauer et al. [24] argued that a large and
highly branched tassel negatively affected grain production because it competed with the
cob for nutrients.

Anthocyanin discoloration is another morphological feature reflected in maize yield.
The biosynthesis of flavonoid pigments is a very complex process. For example, plants
discolored with anthocyanin heat up more at lower ambient temperatures and grow faster
than plants without discoloration. Research has shown that the regulation of anthocyanin
biosynthesis requires genes from two groups of factors that control the transcription of
structural genes. These factors (their protein products) possess characteristic domains—
fragments that bind to DNA at specific sites [25,26].

Therefore, the aim of the study was to identify single-nucleotide polymorphisms
(SNPs) and SilicoDArT markers related to selected morphological features determining
the yield in maize. These markers will be used to select parent components for heterotic
crosses. The linkage disequilibrium (LD) decay was assessed to estimate the required
marker number and potential resolution in GWAS.

2. Results
2.1. Phenotyping

All the observed features had normal distribution. Analysis of variance indicated that
the main effect of lines was statistically significant (p < 0.001) for all 14 traits. The values for
the first two principal components were also significant and accounted jointly for 90.63%
of the whole variation (Figure 1). The tested lines did not cluster according to the type of
the grain. The generated groups included both flint and dent grain lines (Figure 1).Int. J. Mol. Sci. 2021, 22, 5840 4 of 17 

 

 

 
Figure 1. Population structure of inbred lines of maize (Zea mays L.) estimated by eigenanalysis. Dent ID: 
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1,3,4,10,13,14,17,19,45,46,54,57,63,66,67,75,77,78,81,84,86,91,92; Dent Lancaster: 55; Dent ID/Lancaster: 50; Flint F2: 74; Flint 
F2/EP1: 2,6,15,18,21,24,35,39,41,51,53; Flint F2/CM7: 73; Flint/BSSS: 38; Flint/ID: 40; Flint/Lancaster: 16,60,68; German 
Flint/F2: 11,69,82,93; Flint—Origin unknown: 12,42,52,36; Semident BSSS: 30,31,32,71; Semident—Origin unknown: 
25,26,27,28,29,37,34,48. 

Figure 2 shows correlation coefficients between the observed traits. A positive corre-
lation was observed between the following trait pairs: NDSA-DNSSE (r = 0.864), NDSA-
PH (0.440), NDSA-HFC (0.494), NDSSE-PH (0.384),NDSSE-HFC (0.425), ACSi-ACA 
(0.451), ACSi-ACA (0.287), TACG-ACSh (0.247), TACG-ACI (0.461), TAMALB-TCLB 
(0.305), TAMALB-ACI (0.234), TCLB-TLMAHLB (0.227), TNPLB-ACSh (0.223), TNPLB-
ACI (0.277), ACSh-ACI (0.489), and PH-HFC (0.722) (Figure 2). The negative correlation 
was observed between the following trait pairs: ACGC-ACSh (−0.237), NDSA-TACG 
(−0.264), NDSA-TAMALB (−0.242), NDSA-ACSh (−0.530), NDSA-ACI (−0.591), NDSSE-
TACG (−0.325), NDSSE-TAMALB (−0.225), NDSSE-ACSh (−0.548), NDSSE-ACI (−0.617), 
ACSi-TLMAHLB (−0.269), ACA-TLMAHLB (−0.315), TLMAHLB-TNPLB (−0.252), 
TLMAHLB-ACI (−0.254), TNPLB-PH (−0.254), ACSh-PH (−0.330), ACSh-HFC (−0.341), 
ACI-PH (−0.399), and ACI-HFC (−0.307) (Figure 2). 

Figure 1. Population structure of inbred lines of maize (Zea mays L.) estimated by eigenanalysis. Dent
ID: 5,7,8,9,20,22,23,33,43,44,56,58,59,61,62,64,65,72,76,79,80,83,85,88,89,90,94; Dent BSSS: 47,49,50,87; Dent ID/BSSS:
1,3,4,10,13,14,17,19,45,46,54,57,63,66,67,75,77,78,81,84,86,91,92; Dent Lancaster: 55; Dent ID/Lancaster: 50; Flint F2: 74;
Flint F2/EP1: 2,6,15,18,21,24,35,39,41,51,53; Flint F2/CM7: 73; Flint/BSSS: 38; Flint/ID: 40; Flint/Lancaster: 16,60,68;
German Flint/F2: 11,69,82,93; Flint—Origin unknown: 12,42,52,36; Semident BSSS: 30,31,32,71; Semident—Origin unknown:
25,26,27,28,29,37,34,48.
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Figure 2 shows correlation coefficients between the observed traits. A positive
correlation was observed between the following trait pairs: NDSA-DNSSE (r = 0.864),
NDSA-PH (0.440), NDSA-HFC (0.494), NDSSE-PH (0.384),NDSSE-HFC (0.425), ACSi-
ACA (0.451), ACSi-ACA (0.287), TACG-ACSh (0.247), TACG-ACI (0.461), TAMALB-TCLB
(0.305), TAMALB-ACI (0.234), TCLB-TLMAHLB (0.227), TNPLB-ACSh (0.223), TNPLB-ACI
(0.277), ACSh-ACI (0.489), and PH-HFC (0.722) (Figure 2). The negative correlation was
observed between the following trait pairs: ACGC-ACSh (−0.237), NDSA-TACG (−0.264),
NDSA-TAMALB (−0.242), NDSA-ACSh (−0.530), NDSA-ACI (−0.591), NDSSE-TACG
(−0.325), NDSSE-TAMALB (−0.225), NDSSE-ACSh (−0.548), NDSSE-ACI (−0.617), ACSi-
TLMAHLB (−0.269), ACA-TLMAHLB (−0.315), TLMAHLB-TNPLB (−0.252), TLMAHLB-
ACI (−0.254), TNPLB-PH (−0.254), ACSh-PH (−0.330), ACSh-HFC (−0.341), ACI-PH
(−0.399), and ACI-HFC (−0.307) (Figure 2).
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Figure 2. Heatmaps for linear Pearson’s correlation coefficients between the observed traits on the
basis of mean values for inbred lines. ACGC-anthocyanin coloration of cob glumes, NDSA—number
of days from sowing to anthesis, NDSSE—number of days from sowing to silk emergence, ACSi-
anthocyanin coloration of silks, ACA-anthocyanin coloration of anthers, TACG-tassel: anthocyanin
coloration at glume base, TAMALB—tassel: angle between the axis and lateral branches, TCLB—
tassel: curvature of lateral branches, TLMAHLB—tassell: length of the main axis above the highest
lateral branch, TNPLB—tassel: number of primary lateral branches, ACSh—anthocyanin coloration
of the sheath, ACI—anthocyanin coloration of internodes, PH—plant height, HFC—height of the
first cob.
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2.2. Genotyping Data (SilicoDArT and SNP)

Thanks to the DArTseq analysis using next-generation sequencing (NGS) in the stud-
ied plant material, it was possible to identify 49,911 polymorphisms, of which 33,452
were SilicoDArT markers and the remaining 16,459 were SNP markers. Out of these,
6862 markers (including 5472 SilicoDArTs and 1390 SNPs) were selected for GWAM using
the following criteria: one SilicoDArT and SNP within a given sequence (69 bp), minor
allele frequency (MAF) >0.25 and the missing observation fractions <10%. This set of
33,452 SNP and SilicoDArT markers was utilized for the analyses of genetic variation,
LD, and GWAS. Pairwise r2 values between markers were calculated to assess the overall
extent of LD. The linkage disequilibrium (measured as r2) was not larger than 0.2. The
unweighted pair group method with arithmetic average (UPGMA) was used for clustering.
A dendrogram was plotted based on the identified SilicoDArT and SNP markers, showing
the genetic similarity between the 94 inbred lines (Figure 3, Table S1).
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Figure 3. Dendrogram of genetic similarity of the studied inbred lines of maize (Zea mays L.) on the
basis of single-nucleotide polymorphism (SNP) and SilicoDArT marker observations.

The identified SNP and SilicoDArT markers were used to group the studied lines
according to their origin. Five main similarity groups were distinguished (Table S2). The
first group consisted of 33 lines. Flint lines (19 lines) were dominant in this group: there
were five lines with a dent kernel type, and the remaining nine were semident lines. The
highest similarity was found between the following flint lines: line 40 (Flint/ID) and line
51 (F2/EP1) were 97 percent similar, while lines 16 (Flint/Lancaster) and 53 (F2/EP1) were
95 percent similar. An equally high coefficient of similarity was recorded between lines 32
(semident BSSS) and 41 (F2/EP1)—93% (Figure 3). The second group included only one
line 80 (LD), which differed from all the others by 60 percent. The third group consisted of
19 lines. It was dominated by dent grain lines (15 lines). This group also included three flint
grain lines and one semident line. The highest similarity was found between the dent lines:
line 54 (Flint/BSSS) and line 67 (ID/BSSS) were 81 percent similar, while lines 54 (ID/BSSS)
and 67 (ID/BSSS) were 73 percent similar. Overall, Group 1, which contained the majority
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of flint lines, differed from Group 3, which included 62 percent of dent lines. Thus, it could
be seen that SNP and SilicoDArT markers clearly differentiated the analyzed lines in terms
of their origin (Figure 3). The fourth, largest group consisted of 39 inbred lines, of which
the most numerous were dent grain lines (34 lines), followed by flint (three lines) and
semident lines (two lines). The greatest similarity was recorded between dent grain type
lines. Line No. 4 (ID/BSSS) and No. 83 (ID/BSSS) were 98 percent similar and line 85 (ID)
and 92 (ID/BSSS) were 93 percent similar. The fifth and final group included two inbred
lines72 (ID) and 73 (F2/CM7) (Table S2). These lines differed from each other by 84 percent
and from all other lines by 62 percent. Both lines could be used for heterotic crosses.

The number of markers significantly associated with the investigated traits at the
false discovery rate (FDR) <0.05 was 481 in GWAM: 377 of SilicoDArTs and 104 of SNPs
(Table 1). The fewest markers (10) were associated with anthocyanin coloration of silks
(ACSi), and the most (77) with the number of days from sowing to time of silk emergence
(NDSSE) (Table S1, Figure 4). Table 2 shows markers associated with the analyzed features.
Overall, 297 SilicoDArT markers were associated with a single trait, 33 SilicoDArT markers
were associated with three traits and one SilicoDArT marker was associated with four
traits were identified. In the case of SNP markers, 75 of them were associated with
one trait, 11 SNPs were associated with two traits, one SNP was associated with three
traits, and one SNP was associated with four traits (Figure 4). Markers associated with
more than one trait are characterized by pleiotropy, a trait desirable in plant breeding.
Among those mentioned, two markers associated with four analyzed traits deserved
special attention: SNP (4578734) and SilicoDArT (4778900) (Figure 4). SNP marker 4578734
was associated with the following features: ACGC, NDSA, NDSSE and ACI. SilicoDArT
marker 4778900 was associated with the following features: NDSA, NDSSE, TAMALB
and PH (Table S1). Sequences with a length of 71 bp were used for physical mapping.
The BLAST and EnsemblPlants databases were searched against the maize genome to
identify the positions of both markers. Marker 4578734 was localized on chromosome 7; the
closest gene was Zm00001d022467, approximately 55 Kb apart, encoding anthocyanidin
3-O-glucosyltransferase. Marker 4778900 was localized on chromosome 9 in the vicinity
(approx. 45 Kb) of the Zm00001d045261 gene, encoding starch synthase I. The latter
observation indicated that these flanking SilicoDArT and SNP markers were not in a state
of linkage disequilibrium.
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Table 1. Associations between markers (Silico and SNP) and studied traits found in the genome-wide association mapping with allelic substitution effects (significant associations selected
at p < 0.05 with correction for multiple testing by the Benjamini–Hochberg method).

Trait
No of Significant

Mmarkers LOD Min LOD Max Effect Min Effect Max Effect Mean Total Effect

Silico SNP Total Silico SNP Total Silico SNP Total Silico SNP Total Silico SNP Total Silico SNP Total Silico SNP Total

ACGC 27 4 31 2.52 2.58 2.52 4.12 3.63 4.12 −0.98 −0.91 −0.98 0.94 0.67 0.94 0.02 −0.12 0.00 0.64 −0.49 0.15
NDSA 52 14 66 2.50 2.55 2.50 3.80 3.74 3.80 −2.85 −2.75 −2.85 3.01 2.54 3.01 1.26 0.01 0.99 65.31 0.12 65.43
NDSSE 62 15 77 2.50 2.56 2.50 5.05 4.24 5.05 −3.04 −2.67 −3.04 3.49 3.03 3.49 0.19 −0.27 0.10 11.85 −4.07 7.77
ACSi 9 1 10 2.58 2.68 2.58 4.11 2.68 4.11 −0.91 −0.57 −0.91 0.67 −0.57 0.67 −0.11 −0.57 −0.16 −1.01 −0.57 −1.58
ACA 14 3 17 2.54 2.54 2.54 3.66 3.27 3.66 −1.02 0.76 −1.02 0.77 0.80 0.80 −0.24 0.78 −0.06 −3.43 2.33 −1.09

TACG 13 9 22 2.53 2.52 2.52 3.25 3.32 3.32 −0.80 −0.86 −0.86 1.06 0.82 1.06 0.35 0.25 0.31 4.56 2.23 6.78
TAMALB 22 5 27 2.54 2.55 2.54 5.28 4.09 5.28 −0.84 0.58 −0.84 0.85 0.87 0.87 −0.38 0.66 −0.19 −8.32 3.29 −5.03

TCLB 28 8 36 2.50 2.51 2.50 3.92 4.10 4.10 −0.62 −0.62 −0.62 0.67 0.46 0.67 0.12 −0.43 0.00 3.29 −3.42 −0.13
TLMAHLB 43 8 51 2.50 2.51 2.50 4.41 3.61 4.41 −0.77 −0.62 −0.77 0.71 0.68 0.71 0.10 −0.12 0.07 4.45 −0.96 3.48

TNPLB 26 3 29 2.51 2.77 2.51 3.55 3.82 3.82 −0.52 0.45 −0.52 0.46 0.46 0.46 −0.04 0.46 0.01 −0.98 1.37 0.39
ACSh 23 8 31 2.52 2.55 2.52 4.00 3.89 4.00 −0.62 −0.62 −0.62 0.67 0.53 0.67 0.26 −0.13 0.16 6.01 −1.07 4.94
ACI 37 17 54 2.52 2.51 2.51 4.51 3.65 4.51 −1.14 −0.71 −1.14 0.94 0.81 0.94 −0.07 0.23 0.02 −2.70 3.91 1.21
PH 7 4 11 2.52 2.52 2.52 3.17 3.61 3.61 −10.92 −11.32 −11.32 15.78 11.35 15.78 5.72 5.22 5.54 40.04 20.90 60.94

HFC 14 5 19 2.51 2.56 2.51 3.63 5.56 5.56 −5.21 −4.73 −5.21 6.59 7.84 7.84 3.46 3.37 3.44 48.49 16.86 65.36

Total 377 104 481
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tion of silks, ACA-anthocyanin coloration of anthers, TACG-tassel: anthocyanin coloration at glume base, TAMALB—
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Figure 4. Manhattan plots for all 14 observed traits of maize: ACGC-anthocyanin coloration of cob
glumes, NDSA—number of days from sowing to anthesis, NDSSE—number of days from sowing
to silk emergence, ACSi-anthocyanin coloration of silks, ACA-anthocyanin coloration of anthers,
TACG-tassel: anthocyanin coloration at glume base, TAMALB—tassel: angle between the axis and
lateral branches, TCLB—tassel: curvature of lateral branches, TLMAHLB—tassell: length of the
main axis above the highest lateral branch, TNPLB—tassel: number of primary lateral branches,
ACSh—anthocyanin coloration of the sheath, ACI—anthocyanin coloration of internodes, PH—plant
height, HFC—height of the first cob.
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Table 2. Division of plant material into groups of origin (line numbers from 1 to 94).

Origin Groups of the Lines

Dent Flint Semident

ID BSSS ID/BSSS Lancaster ID/
Lancaster F2 F2/EP1 F2/CM7 Flint/

BSSS Flint/ID Flint/
Lancaster

German
Flint/F2

Origin
Unknown BSS Origin

Unknown

5,7,8,9,
20,22,23,
33,43,44,
56,58,59,
61,62,64,
65,72,76,
79,80,83,
85,88,89,

90,94.

47,
49,
70,
87.

1,3,4,10,
13,14,17,
19,45,46,
54,57,63,
66,67,75,
77,78,81,
84,86,91,

92.

55 50 74

2,6,15,
18,21,
24,35,
39,41,
51,53.

73 38 40
16,
60,
68.

11,
69,
82,
93.

12,
36,
42,
52.

30,
31,
32,
71.

25,
26,
27,
28,
29,
37,
34,
48.

3. Discussion

Technologies are increasingly used in plant breeding that allow for faster genotyping
using next-generation sequencing (NGS) [27]. Modern NGS techniques are characterized
by higher throughput and efficiency compared to the previously used Sanger sequencing
technique [28]. Solex (Ilumina) is one of the most widely used NGS techniques. Whole-
genome sequence reads, thanks to the use of NGS techniques, allow for the identification
of markers associated with phenotypic changes and their further use in genomic selection
(GS) or association mapping (AM) [29].

Modern genotyping methods based on next-generation sequencing (NGS) include,
among others, genotyping by sequencing (GBS) [30] and DArTseq technology [31–33]. The
DArT technology based on a hybridization technique were used to scan cereal genomes
prior to the introduction of NGS-based methods [12]. The DArTseq technology is a modifi-
cation of the DArT method. The hybridization step on microarrays in DArTseq technology
was replaced by next-generation sequencing in the Illuminy system. Several times, more
polymorphic markers—both dominant silicoDArT and codominant SNPs—are obtained as
a result of these analyses.

In the present study, 49,911 polymorphisms, among which 33,452 were SilicoDArT
markers and 16,459 were SNP markers, were identified as a result of next-generation
sequencing. Association with selected morphological features was tested using 5472 Silico-
DArT markers and 1390 SNP markers, of which 377 SilicoDArT and 104 SNP markers were
statistically significantly associated with at least one observed trait. Particularly noteworthy
were SNP marker 4578734 and SilicoDArT marker 4778900, which were associated with
four analyzed traits (Table S1). The identified markers allowed them to estimate the genetic
similarity between the studied inbred lines and to divide them according to their origin.
The greatest genetic distance (84%) was found between lines 72 (ID) and 73 (F2/CM7).
Both lines can be used for heterotic crosses.

DArT marker polymorphisms result from the changes identified in the regions recog-
nized by restriction enzymes. As regards DArTseq and GBS markers, sequential changes
play a more important role. The advantage of sequence markers is information about
a specific sequence in the genome. This facilitates their conversion to specific markers,
targeted directly at the polymorphic site [12,32,33].

In association mapping, genes that determine morphological traits can be identi-
fied through candidate gene association mapping and genome-wide association study
(GWAS) [34,35]. Genome-wide association study (GWAS) has been widely applied by many
authors [29,36,37]. Association mapping in maize was used to identify markers associated
with important agronomic traits, such as grain yield and yield structure traits [38]. Markers
linked to features associated with plant morphology also play a very important role.

The current study found that 11 markers were significantly associated with plant
height (SilicoDArT and SNP jointly), and 19 markers were significantly associated with the
height of the first cob. The plant flowering period (earlier forms are usually lower) and
the number of internodes formed by plants during the entire growing season are essential
for genotypic variability in plant height [39]. The polygenic nature of the height of maize
plants and the height of the first cob was confirmed by the study of Flint-Garcia et al. [21].
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The authors argued that the QTL regions responsible for plant height were located on
chromosomes 1, 3, 7L, 8L, 9S and 10L, and that the QTLs conditioning height overlapped
with the position of “qualitative” genes with a simple mode of inheritance. The grain yield
is affected not only by plant height, but also by tassel structure. Dell’Acqua et al. [40]
generated, for the first time, a balanced multi-parental population in maize, which serves as
a tool for effortless QTL mapping in maize due to a large variety and dense recombination
events. Authors described three flowering time QTLs and three grain yield QTLs and
indicated potential candidate genes. MAGIC maize subsets have been demonstrated to
acquire high power and high-resolution QTL mapping in power simulations.

Morphological tassel traits are of importance in maize breeding programs, in which
inbred lines are developed with the aim of reducing the size and number of branches, while
maintaining satisfactory pollen production [41,42]. The present experiments identified a
total of 143 markers (SilicoDArTs and SNPs) associated with tassel morphological struc-
ture (angle between the main axis and lateral branches—27 markers, curvature of lateral
branch—51 markers, main axis length above the highest lateral branch—51 markers, num-
ber of primary lateral branches—29 markers). One of these markers, which was statistically
significantly associated with, inter alia, angle between the main axis and lateral branches
was physically mapped. This marker has been localized near the Zm00001d045261 gene
coding for starch synthase I, which is involved in starch synthesis. Starch synthesis is an
elaborate process employing several isoforms of starch synthases (SSs), starch branching
enzymes (SBEs) and debranching enzymes (DBEs). In cereals, some starch biosynthetic
enzymes can form heteromeric complexes, whose assembly is controlled by protein phos-
phorylation [43]. Other authors [44] have reported that BAD1 is a TCP class II gene that
functions to promote cell proliferation in a lateral organ, the pulvinus, and affects the
inflorescence architecture by influencing lateral branch emergence angle. According to
Qin et al. [45], tassel branch number (TBN) is an important agronomic trait that directly
contributes to grain yield in maize (Zea mays L.), and the identification of genes precisely
regulating TBN in the parental lines was important for maize hybrid breeding. The authors
concluded that the SCF (Skp1/Cul1/F-box protein/Roc1) complex and the ABA signaling
pathway might be involved in TBN modulation in maize. Anthocyanin discoloration is
another important morphological feature associated with grain yield.

Anthocyanin discoloration is stimulated, i.a., by stress factors such as low temper-
atures, nutrient deficiency or drought. Anthocyanin biosynthesis is also dependent on
light intensity; a large amount of light energy and light with blue and UV spectrum stim-
ulate the synthesis of anthocyanins. In such cases, they play a protective role in the PSII
photosynthetic system against photoinhibition [46]. Plants discolored with anthocyanin
heat up more at lower ambient temperatures and grow faster than plants without discol-
oration. The anthocyanin, flobafen and other flavonoid biosynthetic pathways in maize
tissues are controlled by more than 20 structural and regulatory genes [47]. Therefore, the
search for markers linked to these genes is necessary for their rapid identification using
molecular markers. The present study identified a total of 165 markers (SilicoDArTs and
SNPs) associated significantly with anthocyanin coloration of individual maize plant parts
(anthocyanin coloration of cob glumes—31 markers, anthocyanin coloration of silks—10
markers, anthocyanin coloration of anthers—17 markers, tassel: anthocyanin coloration at
glume base—22 markers, anthocyanin coloration of the sheath—31 markers, anthocyanin
coloration of internode—54 markers). One of these markers, SNP 4578734, apart from
ACI, was significantly associated with three other traits (ACGC, NDSA, NDSSE). Marker
4578734 was localized on chromosome 7, near the Zm00001d022467 gene. This gene en-
codes anthocyanidin 3-O-glucosyltransferase. According to Grotewold [25], the Bz1 gene is
located on chromosome 10L, which also encodes 3GT transferase (3-O-glucosyltransferase),
involved in the conversion of hydroxyanthocyanidine into cyanidin-3-glucoside. The
dominant Bz1 allele determines purple color of grain aleurone layer, while aleurone layers
are light brown or red-brown in the presence of the recessive bz1 allele [48].
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4. Materials and Methods
4.1. Plant Material

The plant material consisted of 94 inbred maize lines. Part of the analyzed lines
were characterized by dent-type kernels; they were derived from various groups of origin
from the United States: Iowa Stiff Stalk Synthetic (BSSS), Iowa Dent (ID) and Lancaster.
The second part of the plant material was flint grain lines of three different origins: F2
(a group related to the F2 line bred at INRA in France from the Lacaune population),
EP1 (a group related to the EP1 line, bred in Spain from the population derived from
the Pyrenees) and German Flint. The plant material was obtained from Polish breeding
companies: Hodowla Roślin Smolice Group IHAR (Smolice, Poland) and Małopolska
Hodowla Roślin (Kobierzyce, Poland). Inbred lines of complex origin bred from different
starting populations and lines of unknown origin were also used in the study (Table 2).

4.2. Phenotyping

A field experiment with 94 inbred lines was established in 2017 on plots belonging to
the Polish breeding company Hodowla Roślin Smolice Grupa IHAR sp. z o.o. (Smolice,
Poland) (51◦42′020.813” N, 17◦9′057.405” E). The experiment was set up in a randomized
block design, in three replicates on plots of 10 m2. The analysis of morphological features
was conducted from May to October 2017 and included the following features: plant height
(PH), height of the position of the first cob (HFC), number of days from sowing to anthesis
(NDSA), number of days from sowing to silk emergence (NDSSE), anthocyanin coloration
of cob glumes (ACGC), anthocyanin coloration of silks (ACSi), anthocyanin coloration
of anthers (ACA), anthocyanin coloration of the sheath (ACSh), anthocyanin coloration
of internodes (ACI), tassel: anthocyanin coloration at glume base (TACG), tassel: angle
between the axis and lateral branches (TAMALB), tassel: curvature of lateral branches
(TCLB), tassel: length of the main axis above the highest lateral branch (TLMAHLB), tassel:
number of primary lateral branches (TNPLB). A total of 14 features were analyzed.

4.3. Climatic Conditions

The total rainfall in 2017 in Smolice amounted to 36.55 mm and was lower than
the multi-annual average sum of precipitation by 12.32 mm. The highest rainfall was
recorded in May (54 mm), while the lowest was recorded in June (16 mm). The average air
temperature this year was 10.94 ◦C and was 0.9 ◦C higher than the multi-annual average
temperature. The warmest month in 2017 was August (20 ◦C), while the lowest temperature
was recorded in January (1.2 ◦C). In 2017, the amount of rainfall and temperature were
favorable during the initial development of maize plants. Rainfall was abundant in May,
which had a positive effect on maize development.

4.4. Genotyping and SilicoDArT and SNP Data Processing

Ninety-four lines were genotyped. Total genomic DNA was extracted from the young
leaves of the analyzed forms using the DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Ger-
many). DNA purity and concentration were determined spectrophotometrically (Thermo
Scientific, Waltham, MA, USA). The concentration of all DNA samples was adjusted to
100 ng µL−1. The DArTseq analysis was performed by Diversity Arrays Technology Pty
Ltd. (Bruce, Australia). The methodology presented below was also used in the research
presented by Tomkowiak et al. [38].

DNA samples digestion/ligation reactions were processed according to Kilian et al. [33],
but a single PstI-compatible adaptor was replaced with two adaptors, corresponding to PstI-
and NspI-compatible sequences, and the assay was performed on the sequencing platform,
as described by Sansaloni et al. [12]. The PstI-compatible adapter was designed to include
Illumina flowcell attachment sequence, sequencing primer sequence and a “staggered”,
varying length barcode region, similar to the sequence reported by Elshire et al. [30]. The
reverse adapter contained the flowcell attachment region and NspI-compatible overhang
sequence. Only “mixed fragments” (PstI-NspI) were amplified in PCR using the following
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reaction conditions: Denaturation—1 min at 94 ◦C, followed by 30 cycles of 94 ◦C for
20 s, 57 ◦C for 30 s and 72 ◦C for 45 s, and the final elongation—72 ◦C for 7 min. Sub-
sequently, PCR equimolar amounts of amplification products from each sample of the
96-well microtiter plate are bulked and applied to c-Bot (Illumina) bridge PCR, followed
by sequencing on Illumina Hiseq2500. Sequencing (single read) reaction included 78 cycles.
Sequences generated from each lane were processed using proprietary DArT analytical
pipelines. In the primary pipeline, fastq files were first processed to filter out poor-quality
sequences, applying more stringent selection criteria to the barcode region compared to the
rest of the sequence. In this manner, assigning sequences to specific samples performed in
the “barcode split” step was very reliable. Approximately 2,500,000 (+/−7%) sequences per
barcode/sample were used in marker calling. Finally, identical sequences were collapsed
into “fastqcall files”. These files were used in the secondary pipeline for DArT PL’s propri-
etary SNP and SilicoDArT (presence/absence of restriction fragments in representation)
calling algorithms (DArTsoft14). For association analysis, only DArT sequences meeting
the following criteria were selected: One SilicoDArT and SNP within a given sequence
(69 bp), minor allele frequency (MAF) >0.25 and missing observation fractions <10%.

4.5. Statistical Analysis and Association Mapping

The normality of the distribution of the observed traits was tested using Shapiro–
Wilk’s normality test to check whether the analysis of variance (ANOVA) met the assump-
tion that the ANOVA model residuals followed a normal distribution. The homogeneity
of variance was tested using Bartlett’s test. Multivariate normality and homogeneity of
variance–covariance matrices were tested by Box’s M test. A one-way analysis of variance
(ANOVA) was carried out to determine the main effect of lines on the variability of the
studied traits. The genetic similarity for each pair of the investigated lines was estimated
based on the coefficient proposed by Nei and Li [49]. The lines were grouped hierarchically
using the unweighted pair group method of arithmetic means (UPGMA) based on the
calculated coefficients. The relationships between the lines were presented in the form of a
dendrogram. The relationships between observed traits were assessed based on Pearson’s
correlation coefficients and tested with the t-test. The results were also analyzed using
multivariate methods. Association mapping was performed using a method based on the
mixed linear model with the population structure estimated by eigenanalysis (principal
component analysis applied to all markers) and modeled using random effects [50,51]. The
significance of associations between the traits and SilicoDArT and SNP markers was as-
sessed on the basis of p-values corrected for multiple testing using the Benjamini–Hochberg
method. Manhattan plots are standard tools used to visualize GWAS results and to identify
the genomic regions associated with a given phenotype were used for all 14 maize traits.
All analyses were conducted in Genstat 18.2 (VSN International Ltd., Hemel Hempstead,
England, UK).

5. Conclusions

Breeding companies around the world face many challenges due to the large number
of collections of accumulated materials and the need to characterize objects for a wide
range of users. Challenges include the necessity of correctly identifying plant materials,
analysis of seed material quality, accurate characterization of new plant materials in the
collection, distinguishing the core collection, ecotype determination, and genotype and
phenotype comparison of the studied plants. All these works aimed to isolate valuable
materials and use them for crossbreeding in order to create new cultivars. NGS techniques
are applied for innovative genetic identification in plant breeding and, therefore, they are
of great importance. The present work demonstrated that this technique has proven to
be successful in grouping inbred lines based on their origin. The similarity between the
analyzed inbred lines was also calculated, which allowed for the selection of the lines
intended for heterotic crosses (e.g., lines 72 and 73, differing in origin and characterized
by a high genetic distance at the level of 84%, are a good starting material for crosses).
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Two markers significantly associated with four analyzed traits were also identified (SNP-
4578734 and SilicoDArT-4778900). These markers were subjected to physical mapping,
which showed that marker 4578734 was located in the vicinity of the gene encoding
anthocyanidin 3-O-glucosyltransferase, while marker 4778900 was near the gene encoding
starch synthase I. The analyzed maize materials were also phenotyped in this work. The
scope of the application of NGS technologies is increasing, as they are constantly being
developed. Plant biology has much to gain from better knowledge of plant genomes.
Advances in sequencing technology and plant genomic sequencing projects provide a better
understanding of developmental and evolutionary processes that form the diversity of life
on Earth. As shown by the latest advances in molecular biology, innovative sequencing
techniques are the future of plant biology and all fields of life sciences.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22115840/s1, Table S1. Effects of markers (Silico and SNPs) associated with traits found in
GWAM with allelic substitution effects (significant associations selected at p < 0.05 with correction for
multiple testing by the Benjamini-Hochberg method), Table S2. The groups of lines from clustering
by unweighted pair group method with arithmetic average (UPGMA) showed in Figure 3.
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Abbreviations

ACA anthocyanin coloration of anthers,
ACGC anthocyanin coloration of cob glumes,
ACI anthocyanin coloration of internodes,
ACSh anthocyanin coloration of sheath,
ACSi anthocyanin coloration of silks,
HFC height of the first cob,
NDSA number of days from sowing to anthesis,
NDSSE number of days from sowing to silk emergence,
PH plant height,
TACG tassel: anthocyanin coloration at the base of the glume,
TAMALB tassel: angle between the axis and lateral branches,
TCLB tassel: curvature of lateral branches,
TLMAHLB tassel: length of the main axis above the highest lateral branch,
TNPLB tassel: number of primary lateral branches.
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