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ABSTRACT

Allele-specific copy number analysis (ASCN) from
next generation sequencing (NGS) data can greatly
extend the utility of NGS beyond the identification of
mutations to precisely annotate the genome for the
detection of homozygous/heterozygous deletions,
copy-neutral loss-of-heterozygosity (LOH), allele-
specific gains/amplifications. In addition, as tar-
geted gene panels are increasingly used in clini-
cal sequencing studies for the detection of ‘action-
able’ mutations and copy number alterations to guide
treatment decisions, accurate, tumor purity-, ploidy-
and clonal heterogeneity-adjusted integer copy num-
ber calls are greatly needed to more reliably inter-
pret NGS-based cancer gene copy number data in
the context of clinical sequencing. We developed
FACETS, an ASCN tool and open-source software
with a broad application to whole genome, whole-
exome, as well as targeted panel sequencing plat-
forms. It is a fully integrated stand-alone pipeline
that includes sequencing BAM file post-processing,
joint segmentation of total- and allele-specific read
counts, and integer copy number calls corrected for
tumor purity, ploidy and clonal heterogeneity, with
comprehensive output and integrated visualization.
We demonstrate the application of FACETS using
The Cancer Genome Atlas (TCGA) whole-exome se-
quencing of lung adenocarcinoma samples. We also
demonstrate its application to a clinical sequencing
platform based on a targeted gene panel.

INTRODUCTION

Large-scale sequencing studies including The Cancer
Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC) projects have generated tens
of thousands whole-genomes (WGS) and whole-exomes

(WES) of tumor-normal sample pairs. Allele-specific copy
number analysis can greatly extend the utility of sequenc-
ing data beyond the identification of mutations. We present
FACETS (Fraction and Allele-Specific Copy Number Es-
timates from Tumor Sequencing), an allele-specific copy
number analysis (ASCN) pipeline and open-source soft-
ware for next generation sequencing (NGS) data.

ASCN analysis has several major advantages over con-
ventional total copy number analysis. First, it provides a
much more comprehensive identification of copy number
aberrations including copy-neutral loss-of-heterozygosity
(LOH) events not detectable by analyzing total copy num-
ber alone. Thus genome-wide LOH pattern can be system-
atically evaluated. In addition, while conventional analysis
typically converts total copy number ratio into qualitative
copy number states (high versus low level gains, shallow
versus deep losses, normal), ASCN analysis can be used to
precisely annotate the genome for the detection of homozy-
gous deletions, heterozygous deletions, copy-neutral LOH,
allele-specific gains and amplifications with corresponding
integer copy number. Furthermore, ASCN analysis pro-
vides more accurate estimates of tumor purity and ploidy.
The output can be used for enhanced clonal heterogeneity
analyses of somatic point mutations.

Early ASCN methods were primarily developed for copy
number array platforms (1-4). More recently, a number of
ASCN methods have been developed for next generation
sequencing data, building on different analytical strategies.
Patchwork (5) segments the genome based on total read
count and then estimates the allele-specific copy number
within each segment. The limitation lies in that segment-
ing total read count alone does not provide the complete
picture and will inevitably miss certain events such as copy
neutral LOH (Figure 1). Falcon (6) provides a joint seg-
mentation procedure using a Binomial process for the al-
lelic read count from heterozygous SNP loci. Several other
methods including TITEN (7) further considered tumor pu-
rity and clonal heterogeneity to enhance the accuracy of
copy number analysis by using various probabilistic model-
ing approaches including Bayesian mixture model (8), Hid-
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Figure 1. Joint segmentation identifies copy number neutral loss-of-
heterozygosity (LOH) event. Top panel shows copy number log-ratio of
total sequence read count in the tumor to that in the normal along ge-
nomic positions on chromosome 6 from a whole-exome sequencing of a
lung cancer patient sample. Second panel shows the allelic log-odds-ratio
of the variant allele read counts in the tumor/normal pair revealing a copy-
neutral LOH event on 6p.

den Markov Model (7) or other maximum likelihood meth-
ods (9,10).

FACETS provides several unique contributions over ex-
isting methods. For one, we employ a non-parametric joint
segmentation approach based on a Hotelling 77 statistic by
directly combining the total and allele-specific read counts
which does not depend on any model assumption and pro-
vides a fast implementation to search for change points in
the genome.

ASCN analysis typically uses a SNP-based approach as
allelic imbalance can only be measured at heterozygous
sites. Nearly all ASCN methods for sequencing data uses
read count information from heterozygous sites only. How-
ever, heterozygous sites are subject specific and sparse which
leads to information loss on total copy number. Thus, a sys-
tematic enumeration of allele specific read counts from all
SNPs, be it heterozygous or homozygous, provides full in-
formation on both total and allele specific copy numbers.
Furthermore we also use read counts from a set of pseudo-
SNPs (non polymorphic loci) along the target intervals so
that regions with large gaps between consecutive SNPs are
represented in total copy number analysis. In total copy
number analysis, a moving window approach in which the
read depths are averaged over all the loci within the window
is used commonly. However, since the independent units of
measurement are DNA fragments this leads to serial corre-
lation as the same fragment contributes to read depth at sev-
eral loci. Our approach of using read counts at SNPs that
are sufficiently spaced from one another provide a way of
obtaining information that have negligible serial correlation
since each fragment is usually mapped to only one SNP lo-
cus. To address the imbalance in the number of loci used
for total and allele specific copy numbers we introduce a
weighting scheme that is inversely proportional to the over-
all heterozygous rate in the patient’s genome which further
enhances the detection of allele-specific alterations.
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Figure 2. Integrated visualization of FACETS analysis of whole-exome
sequencing data from a TCGA chromophobe renal cell carcinoma sam-
ple (TCGA-KL-8331). The top panel displays total copy number log-ratio
(logR), and the second panel displays allele-specific log-odds-ratio data (lo-
gOR) with chromosomes alternating in blue and gray. The third panel plots
the corresponding integer (total, minor) copy number calls. The overall tu-
mor ploidy is estimated to be 1.6, revealing a hypodiploid tumor genome
due to the whole-chromosomal losses of multiple chromosomes. The tu-
mor sample purity is estimated to be 0.89. The estimated cellular fraction
(cf) profile is plotted at the bottom, revealing both clonal and subclonal
copy number events.

In addition, the current sequencing analysis methods for
allelic imbalances based on B-allele frequency (BAF) has
some inherent biases due to differential mapping affinity be-
tween the reference and the variant allele. To address this is-
sue, we show that the allelic log-odds-ratio (logOR) metric
provides an unbiased estimate of the allelic ratio by leverag-
ing the paired tumor-normal sequencing design that cancels
out the mapping bias. To obtain allele-specific copy number
calls, we devised a Gaussian-non-central x > mixture model.
Tumor purity, ploidy and clonal heterogeneity are factored
in the model to obtain accurate ASCN output and facili-
tates the identification of subclonal events.

FACETS provides a complete analysis pipeline that in-
clude BAM file post-processing steps including library size
and GC-normalization, joint segmentation of total and
allele-specific signals, and integer copy number calls taking
into account of tumor purity, ploidy and clonal heterogene-
ity, all seamlessly integrated in a single workflow with com-
prehensive output, integrated visualization, with fast com-
putation to facilitate large-scale application. Figure 2 shows
FACETS analysis of a TCGA chromophobe renal cell carci-
noma (chRCC) sample (TCGA-K1-8331), revealing multi-
ple chromosomal losses including chromosomes 1, 2, 6, 10,
13, 17, 21 which are signatures of chRCC genome alteration
as characterized in the TCGA chRCC study (11). In addi-
tion, two major subclonal clusters of losses unique in this
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tumor sample were further identified that included chr 11,
18 and 22 representing events occurring later in time.

Most existing methods are designed for WGS or WES.
As targeted panel sequencing is increasingly used in clinical
settings to detect ‘actionable’ mutations and copy number
alterations toward precision medicine, robust copy number
and clonal heterogeneity analysis tools such as FACETS for
targeted panel sequencing are needed to further increase the
clinical utility of NGS. The software is available at https:
[Isites.google.com/site/mskfacets/.

In this paper, we benchmark our tumor purity and ploidy
estimates using the TCGA whole-exome sequencing data in
286 lung adenocarcinoma samples and compared with the
estimates from the ABSOLUTE algorithm (12). We show
that FACETS can enhance the sensitivity of identifying ane-
uploid tumors by joint modeling of total and allele-specific
pattern. In addition, as shown in Figure 2, FACETS fa-
cilitates systematic identification of clonal and subclonal
copy number events through a cellular fraction feature in
the model. Moreover, accurate, purity-, ploidy- and clonal
heterogeneity-adjusted, integer copy number calls will be es-
sential to reliably interpret NGS-based gene copy number
calls in clinical sequencing panels. We will demonstrate that
using a clinical sequencing sample profiled by the MSK-
IMPACT platform (13).

MATERIALS AND METHODS

In the next sections, we discuss our approach for sequencing
bias corrections, joint segmentation of total and allelic copy
ratio, and methods for integer copy number calls correcting
for tumor purity, ploidy and intratumor heterogeneity.

Total copy number log-ratio (logR)

Sequence read count information are first parsed form
paired tumor-normal BAM files (Figure 3A). A normaliz-
ing constant is calculated for each tumor/normal pair to
correct for total library size. Subsampling within 150-250
bp intervals is applied to reduce hypersegmentation in SNP-
dense regions of the genome (Figure 3B). logR is then com-
puted from the total read count in the tumor versus nor-
mal for all SNPs that have a minimum depth of coverage in
the normal. logR provides information on total copy num-
ber ratio. Specifically, the expected value of logR can be ex-
pressed as

EflogR] = log{(m* + p*)/2} + w(-) + A,

where m* = m® + (1 — ®) and p* = p® + (1 — ®) are
parental copy number in the tumor sample rising from a
mixed normal (1,1) and aberrant (m,p) copy number geno-
type with mixing proportion ®. We term @ as the cellu-
lar fraction associated with the aberrant genotype, which
is a function of tumor purity and clonal frequency (for sub-
clonal alterations). The term w(-) denotes systematic bias.
Here, we explicitly consider GC-content and use loess re-
gression of logR over GCin 1 kb windows along the genome
to estimate the GC-effect on read counts and subtract it
from logR. In addition, we note that logR quantifies relative
copy number, hence we introduce a constant \ for absolute
copy number conversion which will be described in detail
later.
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Figure 3. Pre-processing and joint segmentation. (A) Parsing reference and
variant allele count for SNP sites from tumor-nomal sequencing BAM files.
All SNP sites contribute to total copy log-ratio (logR), and heterozygous
sites contribute to allelic logOR. (B) Interval-sampling to reduce local se-
rial dependencies in SNP-dense regions. (C) Joint segmentation logR and
logOR and the detection of copy number aberrant regions of the genome.
(D) Segment clustering to form groups with the same latent copy number
states.

Allelic copy number logOR

Allelic imbalance analysis has been typically based on B-
allele (or variant allele) frequency (BAF) in the tumor which
informs m*/(m* + p*). In sequencing data, it has been ob-
served that there is a significant bias toward higher mapping
rates for the reference allele compared to those for the vari-
ant allele at heterozygous loci (14). Such bias can signifi-
cantly impact allele-specific copy number inference if not
corrected. To illustrate, let r denote the relative mapping
affinity of the variant allele to the reference allele, and typi-
cally r < 1 (mapping biased in favor of the reference allele).
As a result, the normal genotype becomes (1,r) instead of
(1,1) and the aberrant genotype becomes (m*, rp*) or (p*,
rm*) (Table 1). Therefore, it is easy to see that in sequencing
data, BAF in fact informs m* /(m* + rp*), which is a biased
estimate of B-allele frequency when r # 1. To address this is-
sue, we propose to use the logOR of the variant-allele count
in tumor versus normal, which is an unbiased estimate of
allelic copy ratio. In particular,

E[logOR] = log(m™/ p*) or log(p*/m™),

depending on which parental copy the variant allele resides
on. Since we do not have phased data, squared logOR is
used to infer log?(m* /p*).

Joint segmentation

Segmentation analysis identifies regions of the genome that
have constant copy number using change point detection
methods. Conventional methods (e.g. BIC-seq (15), Ex-
omeCNYV (16)) typically perform one-dimensional segmen-
tation using logR alone, or separate application of one-
dimensional segmentation to logR and BAF. Yet a truly
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Table 1. Illustration of how differential mapping bias affects copy number inference

Reference allele on maternal copy

Reference allele on paternal copy

Reference Variant Reference Variant
Normal 1 1 r
Tumor m* * p* rm*

joint segmentation can significantly improve the precision
for change point detection and downstream analysis for es-
timating tumor purity, ploidy and allele-specific calls.

To address this challenge, we extended the circular binary
segmentation (CBS) algorithm (17,18) to a joint segmenta-
tion of logR and logOR based on a bivariate Hotelling 77
statistic:

T = max T
I<i<j<n v

+ cT22ij

where 77;; is the Mann—Whitney statistic comparing the set
of observed logR denoted as {Xj;: i < k </} and its com-
plement {X1;: 1 <k <iorj < k <n}. and similarly T>; is the
Mann—-Whitney statistic comparing the set of observed lo-
gOR denoted as { Xp;: i < k <j} and its complement { Xy;:
1 < k <iorj < k <n}.In the above, ¢ is a scaling factor that
is inversely proportional to the heterozygous rate which will
be discussed shortly.

Here, if the maximal statistic is greater than a pre-
determined critical value, we declare that a change ex-
ists and estimate the change-points as 7, j that maximize
the statistic. The algorithm iteratively searches for change
points between any possible pair of breakpoints and its
complement to identify regions of the genome that have
constant allele-specific copy number. For each segment, the
logR data are summarized using the median of the logR
values X; and the logOR data are summarized by )~C§ which
takes the form Y {x3 — 5%)/s%}/ Y {1/s?} where s is the es-
timated variance of logOR.

We point out that while logR is defined for all SNPs (both
homozygous and heterozygous loci), logOR is only defined
for heterozygous loci (het-loci or het-SNPs). This creates
a large imbalance between the two in the combined statis-
tic. To address this issue, we introduce a weight that is in-
versely proportional to the heterozygous rate to increase the
het-SNP contributions in subsequent segmentation analy-
sis. Specifically, a scaling factor ¢ is introduced in the 72
statistic. This is empirically set at 1/ \/AW where vy is the pro-
portion of het-SNPs in the patient sample. Up-weighing the
contribution of logOR for het-SNPs increases the power of
detecting allelic imbalances for regions with low frequency
of het-SNPs. We denote this a ‘full model” approach.

Our ‘full model’” approach is distinct from the conven-
tional method in which both logR and BAF are computed
for het-loci only. For the whole-exome data we have ana-
lyzed, the genome-wide heterozygous rate typically ranges
from 10-15%. As such, the het-SNP approach can lead
to substantial information loss and reduced power for de-
tecting alterations across the genome. To illustrate, we
conducted a down-sampling experiment using two whole-
exome samples with high and low tumor purity to assess the
sensitivity of detecting genome alterations between the full
model and the typical het-SNP approach (Supplementary

Figure S1). For low purity tumor samples, the het-SNP ap-
proach shows reduced sensitivity at the outset. As genome
coverage decreases by down-sampling, the sensitivity of het-
SNP only approach for detecting all the altered copy num-
ber segments quickly deteriorates while the full model holds
up substantially better.

After segmentation, we cluster the segments into groups
of the same underlying genotype. Figure 3D shows an ex-
ample in which a total of 27 segments resulting from the
joint segmentation were clustered into four distinct geno-
type groups. Such clustering reduces the number of latent
copy number and cellular fraction states needed in subse-
quent modeling.

Determine the 2-copy state

As mentioned earlier, logR estimates are proportional to the
absolute total copy number up to a location constant \. For
diploid genome, logR = 0 (library size normalized logR)
is the location for the 2-copy state . However, aneuploidy
can lead to a location shift in the tumor. Therefore, we need
to first determine the 2-copy state in a tumor genome and
quantify the location shift . Without adjusting for the lo-
cation shift, absolute copy number calls are not possible.

Let us denote the copy number states using total and mi-
nor integer copy number (e.g. 1-0 denotes monosomy with
total copy number 1 and minor copy number 0). The esti-
mate of \ should correspond to the logR level at which the
segments are in 2-1 (normal diploid) or 2-0 (copy-neutral
LOH) state. In order to estimate A, we first note that normal
diploid segments should be allelically balanced. Thus, can-
didate value for A\ (referred to as A.) will be obtained from
X for segment clusters that have X, values close to zero.

However, note that homozygous deletions (0-0) and bal-
anced gains (4-2, 6-3 etc.) are also allelically balanced and
hence will have small X;. Since large scale homozygous dele-
tions of multiple genes will not be conducive to cell survival
we can eliminate non-focal segments with small X, as being
homozygous deletions. In addition, for the sake of simplic-
ity we do not consider higher order balanced gains states
(6-3, 8-4 etc.) spanning a large part of the genome. Finally,
samples in which segments with allelic balance are a small
fraction of targeted regions will be flagged and will require
a manual review for their \ estimates.

In samples that have large allelically balanced segments,
there can be several X; values from which \. can be chosen.
The samples in Figures 2 and 3C have several balanced seg-
ments with X; values with small variation around a single
level. The samples in Figures 4A and B have segments with
allelic balance at two distinct X; levels (chrllq and chrl8
in Figure 4A and parts of chrl and chr8 in Figure 4B). We
group the balanced segments into either one or two distinct
levels. For the single level scenario the choice of \. is obvious
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Figure 4. Joint analysis of total and allelic copy number pattern to more
accurately estimate tumor purity, ploidy and the precise genotypes of the
copy number alterations. Two examples (A and B) are presented here to
illustrate the use of allelically balanced segments (logR close to zero) to
determine the 2-copy state (purple line) and location shift \ in total copy
number log-ratio (logR) due to aneuploidy of the tumor. (C) The expected
value of logR and logOR as a function of total and minor copy number and
cellular fraction @ are plotted to show the degree of separability among
different copy number genotype and cellular fraction. Each line traces the
cellular fraction from low (0.1) at the original point close to (0.0) to high
(0.9) on the other end of the line. Triangles mark the cellular fraction of
0.5 on each line. The colors represent the minor copy number: 0 is black,
1 is red, 2 is green and 3 is blue. Line types change by total copy number.

whereas in the two distinct levels scenario the higher level
cannot be normal diploid (since it would imply the lower
level is large scale homozygous deletion) and thus A\ should
the lower one.

We proceed by evaluating whether \. represents normal
diploid state or balanced 4 copy state using all segments that
are relative losses, i.e. segments with X; smaller than the can-
didate level. If it represents the 2-1 state then the losses are at
1-0 state whereas if it represents the 4-2 state then the losses
can be any of 3-0, 3-1, 2-0 or 1-0. We find the best m, p,
® that fits A, — X1 =log(2+2x¢) — log{(m + p —2)¢p +
2} and ch = log{[(m — 1)¢ + 1]/[(p — 1)¢ + 1]}>. Segments
at 3-1 and 2-0 states in relation to 4-2 level with a clonal ®
is indistinguishabe from segments at 1-0 in relation to 2-1
level with different ¢. On the other hand single copy loss
from 2-1 cannot mimic the relationship between 4-2 and 3-
0 or 1-0 states. Thus, \. will be considered to represent 4-2
state if best fit copy numbers for some segments are at 3-0
or 1-0. If all the segments are assigned 3-1 or 2-0 then it will
be considered to represent 4-2 if a clonal fit with single ¢ fits
as well as subclonal 1 copy loss from diploid with a single
subclone fraction. If A, represents 2-1 state then we set A =

Nucleic Acids Research, 2016, Vol. 44, No. 16 el31

\c and if it represents 4-2 state then \ is estimated as the X
value corresponding to the 2-0 state.

In Figure 4A, the balanced segments at chrl11q and chr18
represent the 2-1 and 4-2 states and although there are sev-
eral losses and gains the average copy number of the sam-
ple is 2 and thus \ is estimated close to zero. In Figure 4B,
however, 2-1 state in parts of chromosome 1 is a small frac-
tion of the genome and chr8§ at 4-2 is the dominant location
of allelic balance. Even ignoring the 2-1 segments in chrl
the procedure can estimate A at the 2-0 state represented by
chr10q since chr9 is at 3-0 state compare to 4-2 level in chr8.
The 2-copy state for this sample is significantly shifted be-
low zero due high average copy number of the tumor.

Integer copy number call

In the next step, we obtain integer copy number (major
and minor) and the associated cellular fraction estimates
for each segment cluster by modeling the expected values
of logR and logOR given total (t), and each parental (m,p)
copy as a function of a cf parameter @, using a combina-
tion of parametric and non-parametric methods. This al-
lows us to model both clonal and subclonal events. Figure
4C demonstrates the expected value of logR and logOR as
a function of (m,p) and ®. Note that the curves for most
combinations of m and p are distinct and well separated in-
dicating that they can be estimated well provided the cellular
fraction is high.

The procedure starts by first obtaining a moment esti-
mate of 7;, the total copy number for segment cluster i, by
204597 where %; denote the median logR for segment
cluster i corrected for sequence bias and tumor ploidy (\-
normalized). Once the total number is obtained we calcu-
late the allele specific copy numbers 72 and p and the cellular
fraction ® using the fact that the logOR summary measure

%? is a moment estimate of w? which equals log>({m® + (1

— O}/ {p® + (1 — D))).

To further refine the initial estimates, we employed a
Gaussian-non-central x > model with error terms to account
for the noise with a clonal structure imposed on the cellu-
lar fraction ®. Specifically, let Xi;; denote the logR for SNP
loci j in segment cluster 7 (corrected for sequence bias and
location shift) and follow a normal distribution:

2
Xiij ~ N(vig, 7)),

where vj, is the expected value of logR given the underlying
copy number state g taking the form

vig = logy(2(1 — ¢x) + 150%)/2,

where t; = m, + p, denotes the total copy number (sum of
the two parental copy number) given the underlying copy
number state g, ®x denotes the cellular fraction for clonal
cluster k, and 77 is an independent variance parameter. In
practice, it is quite reasonable to assume homoscedasticity
and set 77 = 72 Vi.

Furthermore, let X»; denote the logOR for SNP loci j in
segment cluster i and (X;/03)* follow a non-central chi-
squared distribution:

(Xaii/03)* ~ x*(Sie),
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where %2 is the variance parameter for logOR and §;; =
17,/ is the non-centrality parameter in which

> Mgy + (1 —¢x)
PeP + (1 — 1) ’

Assuming Xi;; and Xo;; are independent random variables
given the underlying copy number state g, the joint data like-
lihood can then be written as

=" flxilvg. 77, ) f (2l 8iig £) P(2)
i j g

2 _

where P(g) is the prior probability of the latent copy number
state g.

We apply an expectation-maximization (EM) algorithm
to maximize the joint data likelihood. It can be viewed as
an estimation problem with the latent copy number states
as ‘missing’ data. In the E-step of the EM procedure, Bayes
theorem is used to compute the posterior probability of seg-
ment cluster i being assigned copy number state g given the
parameter estimates at the zth iteration:

o SGaldd 227, 9) f(xild) Pe)
Do = - = .
S SOt 277 g) S8 Plg)

In the M-step, we first update the normal and non-central
Chi-square distribution parameters

(1) A (1) A ()2

S _ Z 2.j Pijg - M 220 _ Z Pljg(xlu - )

ig T s i A(0) ’
2 Pijy 2 Pijg

A~ (1) 2y /2

'az(lﬂ) _ Zj pl}g (xgl_l =S )/S
ig NOPR:
Z] pljg/s

where s° is the sample variance estimate of logOR. After
obtaining the estimates of v and then update the cellular

fraction parameter ¢>( D given

mgx i + (1 — ¢x)

D _ g 2(1 — i) + tgr g A0 7
ng=x + (1 — ¢x)

igh T 2 ’ ig*

where g* is the most likely genotype (with highest posterior
probability) given the data and current parameter estimates
in the rth iteration. The E-step and M-step are iterated until
convergence.

A clonal structure is imposed on the cellular fraction
®y. This is done in a sequential approach where the algo-
rithm starts with a single clonal cluster (k = 1) with cellular
fraction parameter ®;. We then identify segment clusters
for which segment cluster-specific estimates is non-trivially
lower (at least by 0.05) from the clonally constrained es-
timates that result in a suboptimal fit under k = 1. These
segment clusters with discordant cellular fraction estimates
then form a candidate subclonal cluster of events at a lower
cellular fraction ®,, and a model is fitted with the joint
likelihood optimized under k& = 2. This procedure is iter-
ated until no additional discordance in cellular fraction es-
timates are found, or a specified maximum k is reached. In
the default parameter setting, a maximum k = 5 is allowed
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Figure 5. Kernel density plot of estimated cellular fraction reveals clonal
and subclonal events.

although user can change it to a higher number if greater in-
tratumor heterogeneity is expected. In the output, ¢; is the
cellular fraction estimate for the clonal events and also the
tumor purity by definition, and ¢y, k > 1 for any subclonal
clusters identified in the tumor sample.

Figure 5 plots the kernel density of the FACETS esti-
mates of cellular fraction for the copy number alterations
detected in the chRCC sample TCGA-KL-8831, reveal-
ing three major subclonal clusters. In this tumor sample,
é1 = 0.89 capturing the clonal alterations (losses of chro-
mosomes 1,2, 6,10, 13, 17 and 21). A subclonal cluster cap-
tured the subsequent loss of chromosomes 11 at & = 0.76,
followed by additional losses of 18 and 22 at ¢3 = 0.65.

RESULTS
Sequencing data source

We applied FACETS to 268 TCGA lung adenocarcinoma
whole-exomes. The sequencing bam files were downloaded
from the Cancer Genomics Hub (https://cghub.ucsc.edu/).
Each bam file is about 15 GB in size. A pre-processing
module that generates sequence count matrix from the se-
quencing bam file uses samtools/perl/c++ scripts to en-
sure scaleable and parallelizable implementation. Model
fitting, analysis and visualization is done in R statistical
programming language which provides a unified front end
for analysis and visualization. The ABSOLUTE calls from
SNP6.0 array profiling data for the same set of tumor sam-
ples published in Zack et al. (2013) (19) were obtained from
Synapse (https://www.synapse.org/#!Synapse:syn1703335).
The MSK-IMPACT targeted panel sequencing data are ob-
tained from Paik ef al. (2015) (20).

Data pre-processing

The input data for FACETS analysis pipeline are aligned
sequence bam file with standard base and mapping qual-
ity filter. Reference and variant allele read counts were ex-
tracted from the bam file for germline polymorphic sites
catalogued in the dbSNP and 1000 genome database (~1.9


https://cghub.ucsc.edu/
https://www.synapse.org/#!Synapse:syn1703335
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million polymorphic positions). For whole-exome seq, we
include SNPs in target intervals expanded 50-bases on each
side (target overhang). Positions with total read count be-
low a lower depth threshold (e.g. <25 in 50x coverage ex-
periment) or exceed an upper threshold (>1000) (excessive
coverage) in the matched normal were removed.

Analysis of the data from HapMap project has revealed
that SNPs are not distributed at random across the hu-
man genome, but are clustered. Regions with increased
local variability and SNP clustering has been associated
with recombination hotspots. In high-throughput genotyp-
ing arrays, such variation has been correlated with ele-
vated rates of genotype failure and allele dropout (21). In
high-throughput sequencing, we show that SNP-dense re-
gions in the genome can cause strong local dependencies in
read counts and lead to hyper-segmentation of the genome
(Figure 1). To address this issue, we scan all positions
by 150-250 bp interval to space out SNP-dense regions
and effectively avoid local patterns of strong dependen-
cies. This serial correlation in read counts can cause hyper-
segmentation in the downstream steps if not removed.

Read depth ratio between tumor and normal gives infor-
mation on total copy number. The variant (non-reference)
allele frequency at heterozygous loci (germline variant al-
lele frequency >0.25 or <0.75) contain information on al-
lelic imbalance. This pre-processing procedure on average
yields ~350 000 SNP loci that pass these quality filters,
and ~10—15% of them are heterozygous. Homozygous po-
sitions will be kept in our analysis to inform total copy num-
ber which increases the precision for genotype calls. The
MSK-IMPACT platform target all exons and selected in-
trons of 410 cancer genes (<1 million bases) with high uni-
formity of coverage across targets. The pre-processing pro-
cedure yields on average ~15 000 SNP loci with a similar
~10-15% heterozygous rate.

Application to TCGA whole-exome sequencing data

Previous TCGA projects have utilized the ABSOLUTE al-
gorithm (12) to determine tumor ploidy and purity. This
paradigm works by combining segmented copy number
output, together with pre-computed models of recurrent
cancer karyotypes, and allelic fraction values for somatic
point mutations. We compared FACETS output with the
ABSOLUTE output reported in the original TCGA stud-
ies (19).

We first looked at the concordance of the segmentation
analysis. Here, platform and method differences need to be
taken into consideration. First, SNP6.0 array has more even
coverage across the genome while whole-exome sequencing
may be more sensitive for detecting intragenic changes. The
coverage differences have the most effect on the detection
of focal changes. Therefore in this analysis we excluded seg-
ments less than 1 MB. Secondly, CBS segmentation which
segments total copy number was applied in the Zack et al.
study (19) for ABSOLUTE input, whereas FACETS imple-
ments a joint segmentation of total and allele-specific copy
ratios. Bivariate segmentation is more comprehensive and
can detect events such as partial chromosomal cn-neutral
LOH events that may be missed by a total copy number seg-
mentation approach.
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Figure 6. FACETS analysis of whole-exome sequencing of 286 TCGA
lung adenocarcinoma samples. (A) total number of segments per sample
from standard CBS segmentation of total copy number versus FACETS
joint segmentation of total and allele-specific copy ratios. (B) Proportion
of concordantly detected segments between two methods. (C) Compar-
ing FACETS and ABSOLUTE tumor purity estimates. (D) Comapring
FACETS and ABSOLUTE ploidy estimates. (E) Bubble plot of FACETS
and ABSOLUTE integer copy number calls. The number of concordant
(diagonal) and discordant (off diagonal) alterations called are indicated
inside each bubble.

Figure 6A shows the number of segments per tumor sam-
ple is relatively comparable between the two methods. Fig-
ure 6B further shows the segments are over 90% concordant
for segments over 10 MB in length and less so for smaller
segments due to platform and method differences as dis-
cussed earlier. In this analysis, we define a segment is con-
cordantly detected by both methods if there is more than
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Figure 7. FACETS analysis of a lung squamous cell carcinoma from
MSKCC profiled by MSK-IMPACT targeted cancer gene panel sequenc-
ing revealed several putative oncogenic drivers and druggable targets. Tu-
mor purity-, ploidy-corrected FACETS analysis provides more accurate
integer copy number calls for the driver genes. Integer copy number above
10 are plotted in log10 scale.

70% overlap between the stat and end positions of two seg-
ments.

Figure 6C and D show that purity and ploidy estimates
are highly concordant between the two methods. FACETS
identified additional cases of aneuploidy in about 6% of the
tumors (green) by incorporating LOH pattern in determin-
ing ploidy. Figure 4B is one of such cases where the total
and allelic copy ratio together provide evidence for an ane-
uploidy tumor that was not identified in the original study
based on total copy ratio alone. For a small fraction of tu-
mors that FACETS called lower ploidy than that called by
ABSOLUTE (orange), they tend to be lower purity samples.

To compare the integer copy number calls, we focused on
samples with concordant ploidy calls (difference in ploidy
estimates less than 0.5), tumor purity greater than 30%, and
segments length greater than 10 MB. Figure 6E shows a
high concordance of the integer copy number calls.

Application to targeted cancer gene panel sequencing

Figure 7 shows a FACETS application to the MSK-
IMPACT clinical sequencing platform, a hybridization
capture-based next-generation sequencing assay for tar-
geted deep sequencing of all exons and selected introns of
410 key cancer genes in FFPE tumor samples (13) . This is
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a stage IV lung squamous cell carcinoma (LUSC) patient
sample. This patient genome is highly altered. Some key
events include homozygous deletion of CDKN2A, copy-
neutral LOH of chromosomes 9, 11 and 17p. Notably from
the FACETS output, high level amplification of known
oncogenes including CCNDI and PPM1D, both are drug-
gable targets, are annotated with estimated integer copy
number. This tumor also showed aneuploidy with an aver-
age ploidy estimated at 3.0.

The FACETS estimate of integer copy number (purity-,
ploidy-corrected) for PPM1D is 10. By contrast, a conven-
tional PPM1D copy number call based on logR ratio (in
this case logR = 1.3) without adjusting for purity and ploidy
would be around 5. This difference is potentially clinically
significant as to unambiguously identify amplified cancer
genes to guide treatment decisions.

DISCUSSION

Comprehensive identification of allele-specific copy num-
ber alterations will be invaluable in the search for genomic
correlates of clinical outcome and therapeutic targets. In
this study, we present FACETS, a unified analysis pipeline
and software for joint segmentation and allele-specific copy
number analysis with broad applications to NGS platforms.
Our method has a number of unique features. We point
out that the conventional B-allele-frequency based on se-
quencing read counts has inherent bias due to mapping
affinity toward reference allele. We propose the logOR met-
ric which overcomes such reference bias to provide unbi-
ased estimates of the allelic ratio. The joint segmentation
of logR and logOR we developed allows more accurate
identification of change points in the genome by directly
combing the total and allele-specific read counts. Existing
methods use read counts information from heterozygous
SNP sites only. We included all SNPs sites. with a weight-
ing scheme that is inversely proportional to the overall het-
erozygous rate in the patient genome. The combined ap-
proach increases the sensitivity and precision for detecting
copy number aberrations in the genome especially in low
purity samples. Clonal heterogeneity is explicitly considered
in our method by introducing a cellular fraction feature as-
sociated with segment clusters to allow more accurate infer-
ence of ASCNs and facilitate the identification of subclonal
events. A normal-non-central x> mixture model is used to
jointly model the total and allelic copy ratio that iterates be-
tween imputing the underlying copy number genotype for
each segment clusters and updating the model parameters.

FACETS provides a complete ASCN analysis pipeline.
This is distinct from most existing methods which often
require separate software packages for GC-normalization,
sequencing bias adjustment and/or segmentation analysis.
An integrated analysis pipeline from start to finish will pro-
vide more consistent results.

Supplementary Table S1 provides a feature-by-feature
comparison between FACETS and other ASCN methods
for sequencing data including TITAN and FALCON. Here
we highlight several important differences. First, TITAN
and FALCON are both based on heterozygous SNP loci
which can lead to more rapid loss of sensitivity for detect-
ing copy number alterations when applied to low resolution
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data (e.g. targeted panel sequencing) and/or low purity tu-
mor samples as we demonstrated in Supplementary Figure
S2 using down-sampling approach of whole-exome sam-
ples. The output of TITAN and FALCON are presented
in Supplementary Figure S1, along with the FACETS out-
put for the chromophobe sample (TCGA-KL-8331) whole-
exome.

Average FACETS running time for a whole-exome sam-
ple takes ~20 min for parsing read counts from each pair
of tumor-normal BAM files, and 1-3 min for subsequent
steps including GC-normalzation, joint segmentation and
ASCN analysis on a single Intel Xeon E5-2640 core pro-
cessor. The fast computation facilitates large-scale applica-
tion. Finally, an application to targeted panel sequencing of
clinical samples is also demonstrated. Accurate, purity- and
ploidy-corrected, integer copy number calls provided by
FACETS will be essential to more reliably interpret NGS-
based cancer gene copy number data in the context of clin-
ical sequencing. This may pave the way for the incorpora-
tion of NGS-based copy number calls into future updates
of these clinical guidelines.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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