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Abstract

While the inquiry approach to science teaching has been widely recommended as an episte-

mic mechanism to promote deep content understanding, there is also increased expectation

that process and other transferable skills should be integral part of science pedagogy. To

test the hypothesis that coupling process skills to content teaching impacts academic suc-

cess measures, we meta-analyzed twenty-one studies (n = 21) involving 7876 students that

compared Process Oriented Guided Inquiry Learning (POGIL), a pedagogy that provides

opportunities for improving process skills during content learning through guided-inquiry

activities, to standard lecture conditions. Based on conventional measures of class perfor-

mance, POGIL had a small effect on achievement outcomes (effect size = 0.29, [95% CI =

0.15–0.43]) but substantially improved the odds of passing a class (odds ratio = 2.02, [95%

CI: 1.45–2.83]). That is, participants in the POGIL pedagogy had higher odds of passing a

course and roughly performed 0.3 standard deviations higher on achievement measures

than participants in standard lectures. In relative risk terms, POGIL reduced the risk of failing

a course by 38%. These findings suggest providing opportunities to improve process skills

during class instruction does not inhibit content learning but enhances conventional success

measures. We compare these findings with those of recent large meta-analysis that exam-

ined the effects of global active learning methods on achievement outcomes and course fail-

ure rates in science, technology, engineering, and mathematics (STEM) fields.

Introduction

There is increased expectation that science education should encompass practices that embody

the ways of doing science and the epistemic practices of the scientific enterprise [1–5]. By sci-

ence practices, we mean the acts of posing questions, generating and testing hypothesis, ana-

lyzing and interpreting data, engaging in arguments from evidence, as well as transferrable

process skills of collaboration, team leadership, and participating communal activities [5,6].
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To this end, there have been various research-based instructional practices that have been

widely adopted since the mid-1980s to improve science process skills [3,5]. Process Oriented

Guided Inquiry Learning (POGIL), with roots in chemistry but now widely used across range

of disciplines, is one such pedagogy that provides opportunities for students to develop and

improve specific process skills during science content learning [7–10].

In the work reported here, we focus on POGIL to answer the question, “how does coupling

teaching scientific practices to content learning impact student success measures?” POGIL

provides an appropriate venue to address this question as POGIL materials use a learning

cycle based on three phases of inquiry: exploration of a model, concept invention, and applica-

tion [7]. This provides opportunities for students to engage in process skills that go above and

beyond content and emphasize the process of integrating knowledge [11]. Moog [7] specifi-

cally describes seven process skills that can be developed in a POGIL learning environment

when using a well-designed POGIL activity: communication, teamwork, management, infor-

mation processing, critical thinking, problem solving, and assessment (specifically self-assess-

ment). That is, POGIL materials are designed to develop transferable skills in the context of

content learning, with one or two process skill targets in well-designed POGIL activities [7,12].

To realize these, students in a POGIL classroom take up individual roles within their small

group learning communities (i.e., manager, reporter, skeptic) to establish positive interdepen-

dence [7,8]. We therefore contend that POGIL provides an environment in which students

encounter scientific practices and processes as normal part of their classroom activities. Thus,

synthesis of empirical studies that examine the effectiveness of POGIL can indirectly shed light

on how coupling process skills to content learning impacts student performance measures.

We had a second motive for conducting this study. In their recent large meta-analysis, Free-

man and colleagues [13] examined the global effect of active learning variants on student per-

formance measures. As such, the authors intentionally used an “all-inclusive” definition of

what counts as active learning, from the occasional use of worksheets during lecture to activi-

ties in reformed classrooms with higher student engagement, a point criticized by some as too

broad to be meaningful [14,15]. By focusing on a well-defined active learning method, POGIL,

we were interested to understand whether a birds’ eye view of a clear active-learning pedagogy

will confirm or refute the findings of the Freeman meta-analysis. We thus asked three specific

questions in this study:

1. What is the impact of POGIL pedagogy on student achievement outcomes compared to

standard lecture?

2. What are the odds of passing a course using POGIL instruction as opposed to standard

lectures?

3. Do the findings of this study with respect to achievement and course pass/failure rates fal-

sify or verify earlier meta-analysis that examined the global effects of active learning on

these variables?

Our working null hypothesis were that 1) H01: POGIL pedagogy is no more effective than

standard lectures in improving student achievement outcomes, and 2) H02: the odds of passing

a POGIL classroom are no better than passing in a standard lecture classroom. Here, we focus

on pass rates as measure of student success and retention as opposed to the commonly

reported failure rates in the literature [8,12]. Course failure rates measure the percentage of

students who receive grades of D, F or withdraw from a course for any reason. Pass rates, on

the other hand, measure the percentage of students who successfully complete a course with at

least a grade of C or better and therefore persist to further course work. As many STEM

courses require a grade of C or better in pre-requisite courses, pass rates may be better

POGIL meta-analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0186203 October 12, 2017 2 / 17

https://doi.org/10.1371/journal.pone.0186203


indicators of student success and persistence than simply measuring failure rates [16] and thus

are the variable of interest in this study.

To test our proposed hypotheses, we conducted an exhaustive search of empirical studies

on POGIL pedagogy, a search that yielded an initial list of over 800 relevant studies which,

through successive phases of screening and exclusion [Fig 1, see Methods section for full

details], led to a finale sample of 21 primary studies [9, 10, 17–35]. We meta-analyzed these

studies to address our research questions, generating 35 effect sizes that contrasted POGIL

pedagogy with lecture as a standard control group.

Methods

Following the recommendations of the PRISMA Statement [36] for systematic review and

meta-analysis reporting, S1 Text provides a checklist of all items included in our meta-analysis.

The PRISMA Statement consists of 27-item checklist [36] most of which we report. The follow-

ing subsections provides full details of all the procedures we followed and our analyses methods.

Literature search

Using previously established protocols [13, 37], we broadly searched literature on POGIL in

four online databases (Web of Science, Scopus, ERIC and Google scholar), mined reviews and

bibliographies and used snowballing strategy of admitted studies [13] to further locate poten-

tial publications. For each search, we used the following query terms: POGIL or Process-Ori-

ented Guided-Inquiry Learning (with or without the dash). Since initial query on Google

scholar returned over 270,000 hits, we refined it by adding “control group” or “treatment

group” as specific filters of this search engine. Using previously described procedure [37], we

randomly analyzed a sample of the Google scholar hits to ensure the additional filters did not

result in loss of relevant work. This initial search yielded over 800 POGIL-related publications

for possible consideration [Fig 1].

Selection and inclusion

In successive phases of selection [Fig 1], we screened publications for potential inclusion,

based on the following inclusion criteria: (i) study reported POGIL intervention in the context

of naturalistic setting; (ii) participants were identified as high school or college/university

students; (iii) study reported quantitative measures of student achievement with sufficient sta-

tistical information to enable analysis (e.g., mean, standard deviation, F output, etc.) and/or

course pass/failure numbers for all participants; and (iv) the study design was experimental or

quasi-experimental (control group and pre-posttest design).

De-duplication of the initial hits resulted 408 studies for further consideration [Fig 1]. This

was followed by surface level screening, based on article titles and abstract or consultation of

full articles when study characteristics were not evident, that further winnowed down potential

materials to 34 studies. Using previously established protocols [13,37], both authors subse-

quently reviewed and coded all 34 articles independently and reached consensus on whether a

study met the admission criteria and contained the data we needed to compute effect sizes

[13]. This final step of selection and inclusion resulted 21 studies [Fig 1] that we subsequently

meta-analyzed (all the analyzed articles are found in S1 Table and indicated with asterisks in

the reference list). We note that we could not tell from the analyzed articles whether all the

studies in the experimental group strictly composed of POGIL activities or the frequency with

which they enacted POGIL activities. The criteria we used relied on author-reported identifica-

tion of their study as a POGIL intervention (criterion i) and the presence of empirical data that

compared the POGIL intervention with standard lectures (criterion iii). The final set of the

POGIL meta-analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0186203 October 12, 2017 3 / 17

https://doi.org/10.1371/journal.pone.0186203


selected articles included studies conducted both at college (n = 19) and high school (n = 2)

settings. Most of the studies reported content coverage as being similar between the POGIL

classrooms and the comparison standard lectures (i.e., content coverage and study settings

remained identical apart from the introduction of POGIL as intervention). Inter-rater agree-

ment between the authors on study selection and inclusion, as measured by Cohen’s kappa,

was strong [κ = 0.817, z = 4.85, p< 0.001].

Moderator variables

To facilitate data selection and analysis, we organized the data into a spreadsheet on Excel (S2

Text). We noted in the spreadsheet if the study took place in a high school or college setting, in

Fig 1. PRISMA flow diagram showing publication selection process. Publication selection involved success phases of de-duplication, surface

level screening, study design check, and study admission/inclusion analyses.

https://doi.org/10.1371/journal.pone.0186203.g001
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a chemistry or non-chemistry discipline, class size, and teacher training on POGIL use (S2

Text). By teacher training, we mean if the study reported whether an instructor participated

introductory POGIL workshops or another training on how to use POGIL materials and facili-

tate POGIL classrooms. The POGIL project offers frequent one and three-day trainings avail-

able to those who show interest in this pedagogy. Disciplinary subfields, class size, and

instructor training were the only moderators on effect size that we could extract from the

selected studies.

We used a previously established protocol [37] to designate a class as small if the number of

treatment subjects was 50 or less, medium if the number was between 51 and 100, or large if

there were more than hundred participants. Because POGIL pedagogy was initially used in

chemistry departments [7–9], most studies (n = 15) were from chemistry and there was a scat-

tering of POGIL use in other STEM disciplines in the articles identified for inclusion. We thus

used “chemistry” and “other” as possible “discipline” moderator variables on effect sizes. We

did not use study setting (high school or college) as a variable because of the limited number of

studies done at the high school level (n = 2) making it unsuitable for meta-analysis purposes.

In addition to meta-analyses by the individual variables, we similarly used meta-regression to

assess their effects on summary outcome measures.

Data analysis

We did all statistical computing and analyses in the R package metafor [38, 39]. We used previ-

ously established protocol [37] to compute achievement effect sizes and course pass/failure

odds ratio as described by Freeman et al. [13]. Because individual studies might have used con-

cept inventories, standardized exams, or instructor-constructed exams [13], the conversion of

these divergent success measures to a common metric (i.e., an effect size) made plausible quan-

titative comparison of these studies [37]. That is, we used information present in each study to

express relevant outcomes to a common scale as we and others previously described [13, 37,

40]. Briefly, we used Hedge’s [41] weighted standardized mean difference (g) to compute indi-

vidual effect sizes of the respective studies and their variances for the achievement outcomes

and the log-odds ratio for course pass/failure rates [13]. Since sample characteristics, student

populations and POGIL use is likely to vary across studies, we used random-effects model [37,

38] to compute effect sizes. For ease of interpretation, the log-odds ratio for pass/failure data

were converted to odds ratio and relative risks [13, 38].

When a study reported multiple outcomes for both achievement outcomes and pass/failure

rate data, we aggregated the individual effect sizes into a single summary g-value if the reported

outcomes were statistically equivalent [37]. For example, if a study reported multiple outcomes

for the same subjects, such as midterm and final exams, our approach was to aggregate those

multiple outcomes into a summary effect size for such study. On the other hand, if a study

reported multiple outcomes but used different subsamples, then we considered such outcomes

to be statistically independent and retained the individual effect sizes. For example, Straumanis

and Simons [10] reported multi-institutional assessment of the use of POGIL in organic chem-

istry. While their data came from four different institutions (A–D), the authors sometimes

reported multiple outcomes for individual institutions. We considered data involving the dif-

ferent institutions as independent and therefore computed separate effect sizes for each institu-

tion. However, when Straumanis and Simons reported multiple outcomes for individual

institutions, we considered those to be statistically equivalent and computed summary effect

size for the individual institutions. As described previously [37], this procedure allowed us to

resolve statistical dependencies of the analyzed studies and to avoid inflating the computed

summary effect sizes.

POGIL meta-analysis
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We used Q-statistical analyses (QE and QM) to detect variability in effect size outcomes

[42]. The statistic QE measures the amount of heterogeneity in an estimated effect size and,

when significant, suggests moderator influence [37, 42]. QM measures the amount of heteroge-

neity accounted for by moderator variables. A statistically significant QM suggests the modera-

tor of interest has significant effect on the measured outcome [37, 38, 42]. We thus computed

both QE and QM to measure variability in the estimated effect size outcomes.

As described by Borenstein et al. [43], we evaluated publication bias visually at outcome-

level by examining funnel plot symmetry (S2 Fig) and statistically by using Egger’s regression

test and rank correlation test in the metafor package [39]. We augmented the publication bias

analyses by calculating fail-safe N values using the Rosenthal approach [44] and the more con-

servative Orwin approach [45].

Results

Achievement measures

Based on weighted standardized mean difference of independent studies (n = 20) that con-

trasted POGIL pedagogy with traditional lecturing (Npogil = 2599, Ncontrol = 5277, Ntotal =

7876), POGIL had a small but statistically significant effect on student achievement measures

with an overall positive effect size [g+ = 0.29, 95% CI = 0.15 to 0.43, Fig 2]. The summary effect

size of 0.29 suggests the average achievement outcome in the POGIL cohort is roughly 0.3

standard deviations higher than that of the control group. In practical terms, this suggests a

median student performance in summative assessment measures (i.e., exams or concept

inventories) in a POGIL group would be at the 62nd percentile compared to that of a student

in a standard lecture group performing at the 50th percentile. The null hypothesis of POGIL

having no effect on achievement outcomes can therefore be rejected [z = 4.12, p< 0.0001].

Rather, POGIL appears to improve student achievement outcomes.

Heterogeneity test of the estimated achievement effect indicated considerable heterogeneity

among the true effects [Q = 143.17, df = 25, p< 0.0001], suggesting significant variations in

the analyzed studies. This finding is not surprising since differences in methods and study

characteristics likely introduce variability among the true effects. For example, the effectiveness

of POGIL may depend on class size, with participants in smaller classes benefitting from

greater student-teacher interactions [13, 37]. It is also possible that instructor training may

impact implementation practices [22] or how POGIL is used across the academic disciplines

may vary.

To test these hypotheses, we meta-regressed the achievement omnibus effect by class size

and disciplinary domains [Table 1], the only variables reported in the meta-analyzed studies

with sufficient information to make the analysis meaningful. For purposes of domain analysis

(see Method’s section), we combined all disciplines other than chemistry as “other” since there

were few studies in the other sub-disciplines we analyzed. Thus, we had two domains with suf-

ficient information for meta-analysis purposes: chemistry (n = 15) and other disciplines

(n = 11). Both variables, class size and disciplinary domain, were not significant moderators

[QM = 2.22, df = 3, p = 0.527]. However, the test for residual heterogeneity was significant [QE

= 142.90, df = 22, p< 0.0001], possibly indicating other moderators not considered in our

model are influencing the summary effect size. For example, it is possible that variations in

how the different disciplines assess student learning influence observed effect sizes. It is also

likely student perceptions of content difficulty and whether innovations in instructional strate-

gies help them is a factor. Methodologically, most of these studies lack fidelity of implementa-

tion measures, which could explain most of the heterogeneity in the data. These hypotheses

POGIL meta-analysis
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are speculations on our part–all we can say is that there are unaccounted moderators in our

models that may explain the observed variations.

To further assess the influences of class size and disciplinary domains on achievement mea-

sures, we meta-analyzed the studies by these factors. Classes with 50 students or less (small)

and those with 51–100 students (medium) showed significant positive small effects favoring

POGIL over standard lectures [gsmall = 0.25, 95% CI = 0.069–0.430, p = 0.007, n = 11; gmedium =

0.29, 95% CI = 0.006–0.574, p = 0.045, n = 9; Fig 3A]. We didn’t meta-analyze large classes as

only six experiments met this criterion in our study (n> 100 students) and thus not enough

experiments for meta-analysis purposes. Heterogeneity was nonsignificant in the small class-

room data [Q = 11.23, df = 10, p = 0.339] but significant in the medium classroom data

[Q = 73.88, df = 8, p = 0.045], suggesting underlying variations in study structures in medium

classes contributed to substantial heterogeneity in this dataset. Synthesis across these studies

Fig 2. Effect sizes for achievement. The forest plot shows the results of twenty-six experiments from 20 studies that contrasted POGIL pedagogy with

control groups. The summary effect size of 0.29 [95% CI = 0.15–0.43] suggests student performance in the POGIL treatment is 0.3 standard deviations

higher than that of the control group.

https://doi.org/10.1371/journal.pone.0186203.g002
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therefore suggests a “general” small positive POGIL effect on achievement outcomes in small

and medium classroom settings compared to standard lectures.

The summary effect size for achievement from chemistry studies [n = 15 studies, g = 0.22,

95% CI = - 0.024–0.414, Fig 3A] was significant (z = 2.20, p = 0.028) and roughly 2 times lower

than that of other disciplines (n = 11) who reported significant medium effect size favoring

POGIL over standard lectures [g = 0.40, 95% CI = 0.229–0.574, p< 0.0001, Fig 3A]. This find-

ing is consistent with previous studies that report effect sizes in chemistry tend to be lower

than those of other STEM subdisciplines. For example, Ruiz-Primo and colleagues [46] exam-

ined the effects of course innovations in STEM courses and reported an effect size of 0.27 for

Table 1. Meta-regression of achievement outcome by moderating variables.

Variable B SEa 95% Confidence Intervals Heterogeneity

Lower Level Upper Level QM (df) QE (df)

Achievement Variables (n)

Intercept 0.299*b 0.137 0.031 0.567 2.22 (3) 142.90 (22)***

Small Classes (� 50) -0.160 0.193 -0.538 0.217

Medium Classes (51–100) -0.104 0.181 -0.458 0.251

Non-Chemistry Disciplines 0.220 0.155 -0.084 0.523

aAbbreviations: SE = standard error, df = degrees of freedom; n = class sizes. Effect sizes for achievement were computed based on weighted standardized

mean differences (Hedge’s g).
bStars represent conventional significance levels as follows

***p < 0.001.

**p < 0.01.

*p < 0.05.

+p < 0.1.

https://doi.org/10.1371/journal.pone.0186203.t001

Fig 3. Meta-analysis by class size, disciplinary domains and instructor training. Panels A and B show random-effects meta-analytic

summaries [g or odds ratio plus 95% confidence intervals (CI)] for achievement outcomes (panel A) and course pass rates (panel B). Along with

conventional significance levels (***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1), the numbers above the error bars show effect estimates divided by

their standard errors (effect/SE) and the numbers below the error bars show the amount of heterogeneity in each dataset (Q). N refers to the

number of studies meta-analyzed under each condition. See main text for degrees of freedom and further details of each factor.

https://doi.org/10.1371/journal.pone.0186203.g003
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chemistry versus 0.54 for biology and 0.59 for physics. Bowen [40] similarly examined the

effects of cooperative learning on chemistry and reported an effect size of 0.37. The lower effect

sizes in chemistry observed in this and the previous studies, and across diverse active learning

variants, may be due to the nature and culture of assessment in this subfield. We note that

there was significant heterogeneity in both chemistry and non-chemistry datasets [Qchemistry =

118.40 df = 14, p< 0.0001; Qother = 24.77, df = 10, p = 0.006]. This analysis indicates that

POGIL pedagogy was more effective than the control group to varying degrees in both chemis-

try and the other domains analyzed.

Course pass rates

To test the null hypothesis that the odds of passing a classroom using POGIL instruction are no

better than those of a class using standard lectures, we computed the odds ratio for passing a

POGIL course versus control (n = 9). Our analysis found an overall estimated odds ratio of 2.02

[95% CI: 1.45–2.83, Fig 4]. This suggests that the odds of passing were two times higher in a

POGIL classroom versus a standard lecture classroom. In terms of relative risks, we found POGIL

pedagogy reduces the risk of failing by almost 38% [relative risk of failure = 0.62, 95% CI: 0.47–

0.80, S1 Fig]. The null hypothesis of the odds of passing a POGIL classroom being no better than

those in a standard lecture classroom can therefore be rejected (z = 4.113, p< 0.0001). However,

the test for heterogeneity [Q = 17.22, df = 8, p = 0.0279] suggested considerable heterogeneity

among the true effects that warranted further analysis.

To examine the influence of moderators on the odds ratio, we meta-regressed course pass

rates by class size and instructor training, the only variables with sufficient information

reported in the meta-analyzed studies [Table 2]. While the results of these variables did not

influence the odds ratio for passing (QM = 1.01, df = 3, p = 0.799), the test for residual heteroge-

neity was significant (QE = 13.044, df = 5, p = 0.023), possibly indicating that other moderators

not considered in the model are influencing the pass rates.

We further meta-analyzed pass rate patterns by class size and instructor training. Classes

with 51–100 students (medium) showed significant odds ratio favoring POGIL over standard

lectures [odds ratiomedium = 1.86, 95% CI = 1.23–2.80, p = 0.003, n = 6; Fig 3B]. Classes with 50

students or less (small) similarly showed statistically small odds ratio favoring POGIL over tra-

ditional lectures [odds ratiosmall 3.26 = 95% CI = 0.82–13.07, p = 0.095] but this interpretation

is suspect due to small number of studies in this category [n = 2]. Heterogeneity was statisti-

cally significant in the medium classroom data [Q = 13.92, df = 5, p = 0.016], suggesting under-

lying variations in study structures in medium classes contributed to substantial heterogeneity

in this dataset. Synthesis across these studies suggests “general” odds ratio pattern favoring

POGIL over standard lectures.

The odds for passing a course were roughly two times higher in a POGIL classroom versus

standard lectures regardless of whether the studies reported instructor training [n = 6 studies,

odds ratio = 1.92, 95% CI = 1.27–2.91, p = 0.0021, Fig 3B] or no such training [n = 3, odds

ratio = 2.49, 95% CI = 1.43–4.31, p = 0.0012, Fig 3B]. There was significant heterogeneity in

the studies reporting instructor training [Qtraininy = 16.32, df = 15, p = 0.006] versus those that

did not report such training [Qno training = 0.25, df = 2, p = 0.884]. The general trend of these

studies therefore suggests the odds of passing a class favor POGIL pedagogy over standard

lectures.

Confirmatory findings

The recent Freeman meta-analysis (13) examined the global effect of active learning strategies

on STEM disciplines. One criticism leveled against this meta-analysis was the authors’ use of

POGIL meta-analysis
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an all-encompassing definition of active learning. Given that our study focused on specific,

well-defined active learning strategy, we sought to refute or confirm the findings of the Free-

man meta-analysis. Table 3 provides side-by-side comparison of key findings from the present

study and the Freeman meta-analysis. Except for the mean achievement effect size (g of 0.47 in

the Freeman meta-analysis vs. 0.29 in the present study), all other findings were almost identi-

cal. The average failure rates under active learning in the Freeman meta-analysis was 21.8% vs.

22.3% under the POGIL conditions in this study. The percent failure rates in traditional class-

rooms under the Freeman meta-analysis was 33.8% vs. 35.65% in this study. That is, standard

lectures increased failure rates by 55% in the Freeman meta-analysis vs. 59.8% under the pres-

ent study. The odds ratio favoring active learning over standard lectures in the Freeman meta-

analysis (odds ratio = 1.95) is practically indistinguishable from the odds ratio obtained in the

present study (odds ratio = 2.02). Similarly, the relative risk terms for failing were practically

indistinguishable in both studies (relative risk of 0.64 vs. 0.62). Therefore, our results confirm

the major findings of the Freeman meta-analysis even though ours was more narrower and

Fig 4. Forest plot of nine studies examining the impact of POGIL on course pass rates. The number of students receiving grades of D, F, or W (Fail)

versus C or better (Pass) in each study is shown. The summary odds ratio of 2.02 [95% CI = 1.45–2.83] suggests the odds of passing were approximately

two times higher in a POGIL classroom as opposed to odds of passing when taught by standard lecture.

https://doi.org/10.1371/journal.pone.0186203.g004
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focused on specific active learning strategy. We suspect similar outcomes are likely if individ-

ual active learning methods are analyzed in isolation in similar manner.

Sensitivity and diagnostic analyses

We used funnel plot and regression analyses [43] to examine whether distribution outcomes

in our sample suggested publication bias (i.e., whether studies with a statistically significant

effect, which are more likely to be published than those with null results, skewed the summary

effect). The funnel plot, generated by plotting study outcomes (effect sizes) as a function of

study precision (standard errors in the effect sizes), is a useful visualization of publication bias.

Based on funnel plot inspection (S2 Fig), we found no evidence of publication bias. Further-

more, all regression tests were statistically nonsignificant [Egger’s regression test, z = – 0.323,

p = 0.745; rank correlation test, Kendall’s tau = 0.118, p = 0.402], suggesting lack of asymmetry

in the funnel plot for achievement outcomes. The results were similar for course pass/failure

rate analysis [Egger’s regression test, z = 0.695, p = 0.487; rank correlation test, Kendall’s

tau = 0.056, p = 0.920].

In addition to the funnel plot analyses, we computed fail-safe N analyses [43] to determine

how many studies with effect size of zero should be added to the data in order estimated effect

sizes to become trivial [37]. Using the Rosenthal approach [43, 44], the fail-safe numbers were

quite high: 991 for achievement outcomes and 132 for course pass rates. Using the more con-

servative Orwin approach [43, 45], the number of studies analyzed would need to double (fail-

Table 2. Meta-regression of course pass rates by moderating variables.

Variable B SEa 95% Confidence Intervals Heterogeneity

Lower Level Upper Level QM (df) QE (df)

Pass Rate Variables (n)

Intercept 3.511 2.183 0.761 16.226 1.01 (3) 13.04 (5)**b

Small Classes (50) 0.921 3.019 0.106 8.030

Medium Classes (51–100) 0.672 1.742 0.227 1.994

Training 0.753 1.824 0.232 2.445

aAbbreviations: SE = standard error, df = degrees of freedom; n = class sizes. Pass rate effect sizes are from odds ratio analysis. There were not enough

studies to meta-analyze class sizes with more than 100 student enrollees.
bStars represent conventional significance levels as follows

***p < 0.001.

**p < 0.01.

*p < 0.05.

+p < 0.1.

https://doi.org/10.1371/journal.pone.0186203.t002

Table 3. Comparison of major findings from present study versus Freeman meta-analysis.

Variable Freeman meta-analysis

(Ref. 13)

Present study

Achievement outcome effect size 0.47 0.29

Percent of students who failed active learning class 21.8% 22.31%

Percent of students who failed traditional lecture class 33.8% 35.65%

Percent increase in failure rates under traditional

lecturing

55% 59.8%

The odds ratio favoring active learning vs. traditional 1.95 2.02

Average relative risk for failing 0.64 0.62

https://doi.org/10.1371/journal.pone.0186203.t003
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safe N of 26 for achievement outcomes and N of 9 for course pass rates) for the outcomes to

become nonsignificant.

Discussion

There is a renewed interest in how science is taught, with national calls that science pedagogy

should encompass the development of content knowledge as well as process and transferable

skills [12]. Part of this drive stems from a widely reported gap between science graduate’s tech-

nical content knowledge and employer-desired transferable skill sets [12, 47–49]. However,

despite the reported gap, teaching process skills often takes a back seat to developing content

knowledge–in part because of the fear that developing process skills will come at the cost of

content coverage [50]. In this report, we used process oriented guided inquiry learning

(POGIL) to demonstrate how opportunities to develop process skills in the context of content

learning impacts conventional measures of student performance and success. Our results sug-

gest providing opportunities to develop process skills during class instruction does not inhibit

content learning and leads to measurable student success rates in course achievement out-

comes and pass/failure rates.

When we meta-analyzed independent studies that contrasted the use of POGIL instruction

with standard lectures using equivalent exams and concept inventories, we found POGIL

improved student achievement outcomes by 0.3 standard deviations. In practical terms, this

suggests 62% of the POGIL cohort were above the mean of the control group and that there is

58% chance a student picked at random from the POGIL group will have a higher score than a

student picked at random from the cohort taught by standard lectures. This result is compara-

ble to the findings of earlier meta-analyses that showed various active learning strategies

improved student achievement outcomes in STEM disciplines by 0.3–0.51 standard deviations

[37, 40, 46, 51]. While the previous meta-analyses mainly looked at the effect of active-learning

on achievement outcomes, our focus on POGIL provides indirect empirical evidence on the

value of developing process skills during content instruction.

An important finding in our study relates to course pass/failure rates as measure of student

retention, a phenomenon that remains problematic in STEM disciplines where substantial

number of students who initially indicate interest in these fields switch out [13, 52]. One way

to turn the tide around and retain more students in the sciences appears to be increasing

course pass rates and the level of student engagement [53]. Here, we found that the odds of

passing a POGIL class were approximately two times that of the odds of passing a class using

standard lectures [odds ratio = 2.02]. In terms of relative risk, POGIL reduced the risk of fail-

ing a course by 38% while standard lectures increased the risk of failure by 59% (failure rates of

22.31% under POGIL vs. 35.65% under standard lectures). These findings are consistent with

the results of a recent meta-analysis [13] that reported active learning strategies in STEM

reduce failure rates by 36% (relative risk of 0.64) while traditional lectures increase failure rates

by 55%. The reproducibility and the robustness of this finding has clear implications for sci-

ence pedagogy in the STEM disciplines.

While the studies we examined did not directly compare proficiency gains in process skills

in the courses using POGIL versus standard lecture, the design of POGIL materials emphasize

developing process skills along with content learning, making POGIL a good tool to assess the

common refrain that developing soft skills comes at the cost of content coverage [9, 11, 12].

While some agonize about engaging students in activities that take away time from covering

content, there is a greater value in helping students learn how to use scientific practices to

solve societal problems. Wright [50] specifically argues that content mastery “naturally

emerges as students seek out, evaluate, and organize the information they need to develop an
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informed understanding about an issue.” Our analysis of the POGIL instruction certainly sug-

gests engaging students in activities that focus on process skills does not inhibit content mas-

tery as illustrated by the higher achievement effect sizes obtained by the students in the POGIL

cohort versus those who received standard lectures.

Providing opportunities to develop and improve process skills along with content may also

explain why students in the POGIL cohort had two times higher odds to pass a course than

those who received standard lectures. By engaging in process skills that leverage scientific prac-

tices, it is possible the POGIL students leveraged those skill sets to solve content-specific prob-

lems. This conclusion is consistent with those of an earlier study that found lack of certain

science process skills (e.g., the ability to interpret graphs or analyze data) was an important

determinant of student success or failure in introductory biology course [54].

Study limitations

The evidence we reported here suggests that POGIL, and thus the development of process

skills during class instruction, has positive effect on both student achievement outcomes and

course pass failure rates. However, there was, as one would expect in meta-analysis synthesis,

considerable heterogeneity and variation across the studies we analyzed. While this is an

inherit limitation of most meta-analyses, our use of random effects models (see Methods sec-

tion) takes into consideration natural variations expected when studies are fundamentally dif-

ferent. That is, if the meta-analyzed studies were all identical and there was no measurable

variation in them, we would have used the more appropriate fixed-effects model in that case

[37, 55]. Thus, for the purposes of our synthesis, understanding how developing process skills

effects content learning and course success rates, variation across the analyzed studies was nec-

essary outcome as many of these studies involved different student samples.

A more problematic limitation of our study arises from what is reported in the primary

studies we meta-analyzed. To understand what accounts for observed variations in meta-anal-

ysis results, it is often essential to investigate possible moderator effects–for example, in the

context of POGIL, teacher training. Unfortunately, most studies did not report variables that

would have enabled us to examine their effect on the omnibus effect sizes. The only variables

reported in the studies were class size, teacher training, and discipline. When these variables

were not sufficient to explain observed heterogeneity, this left us to conclude that “other mod-

erators” not considered in our models were accounting for the observed variations across the

studies.

The greatest threat to the present findings arise from the limited number of meta-analyzed

studies (n = 21). While there was large number of studies that reported POGIL use, we

excluded most from consideration because they did not report summary statistics that would

have allowed us to calculate effect sizes or percentages or raw numbers to tabulate course pass/

failure rates. Ruiz-Primo and colleagues [46] have previously noted the inadequate reporting

of descriptive statistics in studies reporting impact of undergraduate science course innova-

tions on student learning. This still appears to be a problem in most of the published studies.

Like Ruiz-Primo and colleagues, we similarly excluded many studies because of poor quality

design that did not meet our inclusion criteria (i.e., studies must use experimental or quasi-

experimental design).

Publication bias could be an issue in most meta-analytic studies, especially those analyzing

small number of publications. However, in this study, fail-safe N analyses and funnel plot diag-

nostics did not suggest publication bias. Given that we could only locate 21 studies that met

our stringent criteria for inclusion, it is unlikely we missed the over 100 theoretical studies that

would be required to make the effect sizes we computed statistically nonsignificant. Based on
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this body of evidence, practitioners can have overall confidence in the findings of the present

study.

Another apparent limitation of the analyzed studies involves the lack of information about

the nature and the frequency of training instructors received before using POGIL materials in

their classrooms. Unfortunately, despite the importance of fidelity of implementation mea-

sures on the effectiveness of evidence-based instructional pedagogies, most studies do not

measure or report critical elements that may influence their impact [22]. For example, for the

POGIL studies we analyzed here, there was not sufficient information about how frequent the

POGIL practitioners were trained to use POGIL or their level of experience with the POGIL

materials (novices or long-time users?). These are all modulators that would have an effect yet

were not reported.

Finally, one important variable that was not included in our analysis is if the POGIL class-

rooms were using learning materials that have been endorsed by The POGIL Project as true

“POGIL activities.” The Project currently has an endorsement process [56] to evaluate activi-

ties for their “POGILness” although we suspect this was not the case in early stages of the Proj-

ect when most of the articles we analyzed were published. Thus, it is likely some of the studies

we analyzed used activities that were not endorsed by the POGIL project. While this is a limita-

tion worth noting, we do not believe it diminishes the overall finding of the study as most of

these studies have been peer-reviewed and published as POGIL studies.
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