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Abstract

Attentional networks that integrate many cortical and subcortical elements dynamically control mental processes to focus
on specific events and make a decision. The resources of attentional processing are finite. Nevertheless, we often face
situations in which it is necessary to simultaneously process several modalities, for example, to switch attention between
players in a soccer field. Here we use a global brain mode description to build a model of attentional control dynamics. This
model is based on sequential information processing stability conditions that are realized through nonsymmetric inhibition
in cortical circuits. In particular, we analyze the dynamics of attentional switching and focus in the case of parallel processing
of three interacting mental modalities. Using an excitatory-inhibitory network, we investigate how the bifurcations between
different attentional control strategies depend on the stimuli and analyze the relationship between the time of attention
focus and the strength of the stimuli. We discuss the interplay between attention and decision-making: in this context, a
decision-making process is a controllable bifurcation of the attention strategy. We also suggest the dynamical evaluation of
attentional resources in neural sequence processing.
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Introduction

Attention, as many cognitive functions, arises from integrated

processes in distributed networks of interconnected brain areas [1].

From this perspective, attention can be viewed as a higher-order

process that emerges from the interactions of complex dynamical

modes (structures) that are functionally united by a common

cognitive task. This process - depending on the goal or the stimuli -

focuses limited resources on one or a few tasks. Attention is a core

property of all perceptual and cognitive operations. Given the

limited capacity to process competing options, attentional

processes select, modulate, and sustain the focus on the

information most relevant to perform a cognitive task or drive

behavior. External attention refers to the selection and modulation

of sensory information, e.g., selecting locations in space, instants in

time, or modality-specific inputs. Internal attention refers to the

selection, modulation, and maintenance of internally generated

information (e.g., task rules, responses, long-term memory, or

working memory). Working memory, in particular, lies closest to

the intersection between external and internal attention (see for

review [2]). Attention and working memory cannot operate

without each other. First, working memory has a limited capacity

[3,4], and thus attention determines what will be encoded and

processed. Second, memory from past experience guides what

should be attended. Brain areas that are important for memory,

such as the hippocampus and medial temporal lobe structures, are

recruited in attention tasks, and memory directly affects frontal-

parietal networks involved in attentional control (e.g. see [5]).

Working memory and attention are thus intimately related such

that working memory encoding and maintenance reflects actively

sustained attention to a limited number of mental modalities (see

also [2]).

Experimental neuro- and cognitive- science is often based on

the implicit premise that the brain mechanisms underlying

perception, emotion and cognition are well approximated by

steady-state measurements of neural activity. Recently a new

paradigm has been unfolded in the study of brain dynamics

departing from stable transient activity in neural networks [6–10].

Transients have two main features: (1) they are resistant to noise

and reliable even in the face of small variations in initial

conditions, (2) transients are input-specific, and thus convey

information about what caused them in the first place. This new

dynamical view manifests a rigorous explanation of how percep-

tion, cognition, emotion and other mental processes evolve as a

sequence of metastable states in the brain, suggesting new

approaches to the diagnostics of mental diseases and revealing

the origin of many phenomena observed experimentally. One of

such widely discussed phenomenon is the limitation of information

processing resources in the brain. Here we will focus on two well-

known of examples: limited attentional resources and low working

memory capacity [11].

Neuroanatomical, physiological and modeling efforts suggest

that attentional control is mediated by a variety of local-circuit

inhibitory neurons, distributed throughout all layers and areas of

the cortex (e.g. [12,13]). The model of attentional control that we

present in this paper relies on inhibition and focuses on sequential

cognitive or behavioral action. We make several assumptions that

simplify the complex attention control problem in order to

appreciate how inhibitory mechanisms of attention dynamics give

rise to temporary changes in cognitive multimodal information
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processing. In particular, we will focus on attentional control of

sequential cognitive tasks that integrate different modalities. In

fact, we provide here a mathematical formulation of the seminal

‘biased competition attention theory’ [14–16].

Because attention is a dynamical process, there is a need to build

models that take into account dynamical features and bifurcations

in order to make predictions based on the theoretical analysis of

experimental observations. In our view, this type of modeling must

rely on concepts such as the stability of sequential transient

dynamics. Within this perspective, we can address the origin and

critical role of the limitation of cognitive resources.

To understand the origin of the limited resources of information

processing in the brain, it is necessary to go from the subjects to the

processes, from kinematics to dynamics. For example, it is

important to see that the capacity of working memory is not just

a number, but a specific characteristic of a dynamical process – the

working memory recall. If this process is unstable, the processing

of mental information is ruined. To describe the stability of mental

information processing that is related to working memory, it is

necessary to use specific dynamical images and analyze their

characteristics. It is important to emphasize that multimodality

cognitive coordination or multisensory coordination – i.e. the

binding of sequences – is one of the most powerful strategies to

solve complex cognitive tasks or to build complex behavior. In a

general case, both bottom-up and top-down processes are

important for understanding the attention-sequence binding

interaction: (i) the modulation of the attentional pre-selection of

subsequent goals by a sequential performance of cognitive tasks

[17], and (ii) attentional control of the binding of different

modalities with a sequential temporal structure.

In what follows, we build a simple but general enough

dynamical model to describe attentional control of sequential

multimodal performance of overlapping and concurrent tasks.

With different parameters one can build specific models for the

description and analyses of the dynamics of diverse cognitive

processes. We concentrate here on the investigation of the

attentional control of sequential cognitive tasks that integrate

different modalities.

Materials and Methods

Attentional state space
Let us introduce the state space as a space formed by a finite

number of variables as functions of time. Such variables

characterize different cognitive modalities. Generally, the cogni-

tive information processing in these variables is represented by

trajectories and includes different kinds of dynamical objects such

as fixed points, limit cycles and stable manifolds in general (for

details see [18]). Usually information processes in the brain are

transient and can be considered as a temporal sequence of

intermediate states possibly with their own fast intrinsic dynamics.

In many cases such states represent individual informational items

with finite lifetime. Here we will use the mathematical image

shown in Fig. 1 to represent such transient information processes

involved in attentional tasks. This image is a chain of meta-stable

states represented by saddle fixed points or saddle limit cycles

connected to their neighbors by unstable trajectories called

separatrices. Such chain is stable if the contraction of the state

space volume around the chain is stronger than the stretching

along the unstable separatrices [18–22]. In this case, the

trajectories that once enter the vicinity of the chain become

prisoners and cannot leave this volume which is named as Stable

Heteroclinic Channel – SHC (see Fig. 1A, [7,20]).

Finite resources
Let us consider the case when attention is guided by working

memory (WM) [23]. Working memory capacity is finite. To

understand the origin of informational resource limitations in the

brain, it is necessary to analyze the conditions for the stability of

the informational chain – the sequence of the informational items

– and to estimate a realistic number of items that can be used for

the cognitive processing. Such kind of estimation was done by Bick

and Rabinovich for the analyses of working memory capacity [4].

In this study the authors considered a WM excitatory-inhibitory

network that is able to dynamically sustain a finite number of

information items. Their main result can be summarized as

follows: for a fixed excitation level, the stability condition means

that the level of inhibition increases exponentially with the number

of items that can be recalled from WM without order mistakes.

This value is not too high and is traditionally estimated in 762

items. This is the core of the information processing stability

concept that helps to reveal the origin of the limitation of

information processing resources in the networks responsible for

attention and WM processes that are strongly interconnected [24],

and even can provide an estimation of their capacity.

Attentional network and global modes
Focusing attention requires the dynamical activity of inhibitory

networks in the brain, which helps blocking incoming stimuli that

are unrelated to a specific cognitive task or behavior. Several parts

of the brain form together such networks - primarily those located

in the frontal lobe and the parietal lobe of the brain [25–27]. More

specifically, the mechanism of directed attention involves the

prefrontal cortex (PFC), the anterior cingulate cortex (ACC) and

the brain stem’s basal ganglia. The function of the PFC can be

understood in terms of representing and actively maintaining

abstract information such as goals, which produces two types of

inhibitory effects on other brain regions. Inhibition of some

subcortical regions has a directed global form, with prefrontal

regions providing contextual information relevant to when to

inhibit processing in a given region. Inhibition within neocortical

(and some subcortical) regions has an indirect competitive form,

with prefrontal regions providing excitation of goal-relevant

options [28]. Authors in [29] also suggest that the right inferior

frontal cortex (IFC) plays a specialized role in response inhibition.

It seems that this region plays a key part in the integration of

bottom-up response-related information and facilitates goal-

directed behavior [30].

We are going to model the dynamics of attentional inhibitory

networks together with sequential multimodal mental activities in

the framework of a global mode interaction approach [7,20–22].

The model described below, invariant to different temporal scales,

is based on accepted principles in attentional dynamics, mainly

‘‘the capacity of information processing is limited’’. To investigate

the dynamical mechanisms behind the cooperative activities of

different modalities under attentional control, our general model

of focused attention is implemented based on both bottom-up and

top-down information flows (see Fig. 2 and also [31]).

The Model
To build the model we will rely on three ideas that have been

suggested by brain imaging experiments, multi-electrode record-

ings and computer experiments. First, to separate the spatial

structures that correspond to cooperative ensembles of distributed

neuronal clusters or spatial modes with a time dependent

excitation level in each mode. Second, to focus on low-

dimensional dynamics – i.e., to analyze the dynamics of a

reasonable number of modes or first principal (independent)
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components of neural activity (see, for example, [32–37]). Finally,

we will build an effective model as simple as possible.

To implement these ideas, let us represent the spatio-temporal

dynamics of the resource field R(l,t), specifically attention, as the

superposition of several attentional modes Pm(l,t):

R(l,t)~
XM
m~1

Pm l,tð Þ ð1Þ

M is the number of interacting modes that compete for attentional

resources. Under mode we understand the metastable composition

of elements from different brain areas that are inter-correlated for

the performance of a specific cognitive task. One of the typical

mechanisms of such correlation is transient neural synchroniza-

tion. We wish to describe the competitive dynamics of attentional

modes using a canonical ecological model – Lotka-Volterra (LV)

type equations with minimal, e.g. square nonlinearities:

dPm

dt
~Pm l,tð Þ: ~ccm{

XM
k~1

~zzmkPk l,tð Þ
" #

, ð2Þ

Where ~ccm( . . . )§0 are step-like functions that represent the

switching-on/switching-off of the m-th mode by excitatory input

and ~zzmk( . . . )§0 characterizes the inhibitory connections between

attentional modes. They both depend on external and internal

parameters (see below).

The LV model is pretty universal for the description of the

dynamics of nonequilibrium dissipative systems and many other

models can be written in such LV form after some recasting (see,

for example [38]). Even equations with higher nonlinearities

(cubic, etc.) after introducing new variables can often be written in

the LV canonical form. The LV model demonstrates in a wide

area of the parameter space a stable transient behavior whose

mathematical image is a stable heteroclinic channel (SHC), and in

fact it is a normal form for the analyses of local bifurcations of

SHCs [39].

Now let us use the second idea: the separation of the space/time

coordinates:

Pm l,tð Þ~Rm tð Þ Qm lð Þ ð3Þ

Here Qm(l) is a discrete spatial structure where l represents the

set of discrete spatial elements from brain groups involved in these

modes which behave coherently in time. The characteristic time

scale of such coherentization or synchronization is 100-200 ms

(see, for example [40]). This means that the dynamics of the

metastable states –modes– has to be slower.

After the substitution of (3) in equation (2) and the summation

on the spatial coordinate l we can get a model for Rm(l)§0 that

describes the cross-modality attention dynamics:

hm

dRm

dt
~Rm: cm(X m,Sm){

XM
k~1

zmk(Rk,Sm)Rk

" #
, ð4Þ

Here hm~
X

l
Qm(l)§0, characterizes the time scale of the m-

th attentional mode, cm~~ccm:hm is the level of excitation of the m-

th attentional mode by sensory or internal stimuli and the

cognitive task, zmk~~zzmk
X

l
QmQk

§0. Because the modes

Pm l,tð Þ in a first approximation are independent, zmk have a

small value that corresponds to our approach - Rm(t) is a slow

function of time compared with the coherentization process

among the neuronal elements that form a mode.

Figure 1. Chain of metastable states representing cognitive informational items in the state space. A: sequence of static metastable
states –the mathematical image of these items is a saddle fixed point. One can see the trajectories in the neighborhood of the chain, which illustrates
its stability [22], Sk denotes the k-th informational item. B: sequences of dynamical metastable states – the mathematical image of these informational
items is a saddle limit cycle. The chain of items can be open as in Fig. 1A, or closed as in Fig. 1B.
doi:10.1371/journal.pone.0064406.g001

Figure 2. Architecture of the attention mode interaction in the
case of three modality processing (X1, X2, X3). R1, R2, R3 represent
attention resource modes corresponding to these modalities. Black
circles mean inhibitory connections.
doi:10.1371/journal.pone.0064406.g002
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The equations for the description of the dynamics of the

cognitive/sensory multimodality fields can be obtained in the same

way:

X m(q,t)~
XKm

i~1

xm
i wm

i (qm) ð5Þ

Here X m tð Þ represents the spatio-temporal dynamics of the m-th

cognitive modality field, where xm
i §0 is the i-th mode of this field.

The function wm
i (qm)characterizes the spatial structure of the i-th

mode associated with the m-th cognitive/perception modality, Km

is the number of interacting modes inside the m-th cognitive

modality, and qm is an index for the neuronal groups that form the

modes in the m-th modality.

Finally, the general dynamical model for xm
i can be written in

the form:

tm
i

dxm
i

dt
~xm

i
: sm

i (Rm,Sm,Cm){
XKm

j~1

rm
ij xm

j {
XM
k~1

XKm

j~1

jmk
ij xk

j

" #
ð6Þ

Here tm
i ~

X
qm

wm
i (qm), and

XM

m~1
Rm~const(t??),

X m~
XKm

i~1
xm

i , m,k~1,:::,M; i,j~1,:::,Km; S is the vector of

sensory inputs and C is the vector of cognitive inputs, sm
i ( . . . ) in

the general case are step-like functions that represent the

switching-on/switching-off of the m-th mode by excitatory input,

rm
ij and jm

ij are connection matrices between modes of the same

modality and between different modalities, respectively, sm
i ~t

m
i , and

rm
ij~
X

qm
wm

i (qm)wm
j (qm), s,r,j§0.

Functions Rm(t) and xm
i (t) are the variables that form the

informational state space of the dynamical model that we are

looking for. The activation of different attentional modes means

the activation of different sets of neuronal groups in the attentional

network. For example, authors in [41] have shown based on the

analyses of fMRI data that different attentional strategies

correspond to the activation of different parts of the human

parietal cortex.

This canonic excitatory-inhibitory model (4), (6) of an atten-

tional network (in the case of nonsymmetric inhibitory connec-

tions) satisfies the information processing stability principle. It is

possible to prove in the general case for m.2 that after a short

transient period all system’s activity happens in the vicinity of the

unstable separatrices of the metastable states (Afraimovich, 2012,

private communication). Below we will show it for the case m = 3.

This is a general enough case for a realistic number of modalities

that share attention.

Feldman and Friston recently suggested that attention dynamics

might be understood as inferring the level of uncertainty or

precision during hierarchical perception. They illustrated this idea

using neuronal simulations of directed spatial attention and biased

competition [42]. Such approach is also related to moving from a

multi-dimensional state space to low-dimensional manifolds.

Results

Stimulus dependent attentional control strategies: Low-
dimensional dynamics and model parameters

For the understanding of top-down regimes of attentional

control we have to answer the question: what kind of intrinsic

attention dynamics is structurally stable, i.e., does not change

qualitatively with a small variation of the control parameters of the

attentional network?

It is possible to see from the analyses of model (4) that important

attentional events occur just in a restricted area of the state space.

Figure 3 illustrates this for three interacting modalities. One can

see that when time increases all trajectories are attracted by a

quasi-two-dimensional volume. This volume is the vicinity of a two

dimensional surface that is named simplex. On the other hand, the

simplex itself has a finite size limited by boundary separatrices (see

Fig. 3).

Thus, all robust attention activity is described by the trajecto-

ries, which after a short transient are disposed in a low dimensional

finite volume. This finite volume in the informational state space is

the mathematical representation of the limitation of information

processing resources.

Let us now use the knowledge about intrinsic attention

dynamics to answer the following question: how does competitive

attention influence multitask/multimodality cognitive perfor-

mance? Current literature suggests that, both multimodality

interaction or integration and attentional control take place and

can act on many levels of the brain structural hierarchy (for

reviews see [44,45]). Because multimodal objects and events

activate many sensory cortical areas simultaneously, it is possible

that reciprocally modulated activities of different modalities take

place even at the level of primary cortical areas. Several

experiments indicate that such modulation occurs because of

mutual inhibition. In particular, Iurilli et al. showed that the

auditory cortex activation by salient stimuli degrades potentially

distracting sensory processing in the visual cortex by recruiting

local, translaminar, inhibitory circuits [46]. Although the precise

mechanisms of cognitive control of multimodal activities are not

completely known, it is possible to say that they operate in a top-

down manner through attention mechanisms [47,48]. Based on

the existing understanding of the interplay between attention and

multimodal interaction, we can use a general dynamical model (4),

(6) of these processes. We discussed above the logic of this model

(see Fig. 2).

To analyze the effects of top-down attentional control based on

the model (4), (6) we have to first specify the functions sm
i as

sm
i ~sm

i0
(Sm,Cm)Rm{q,qw0: ð7Þ

Figure 3. "Side" view of the simplex of a three-dimensional
competitive system (4) (for the mathematical definition see
[43]).
doi:10.1371/journal.pone.0064406.g003
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Here we will show results using network models composed of six

modes. The parameters rm
ij used to model the 6-mode networks

that represent each modality are rm
13~rm

35~rm
51~5;

rm
46~rm

24~rm
62~2; rm

16~rm
21~rm

32~rm
43~rm

54~rm
65~1:5;

rm
11~rm

22~rm
33~rm

44~rm
55~rm

66~1; allowing 62% variability in

these values for each of the networks. The values of sm
i0

were

chosen in these specific simulations as sm
10

~1:730, sm
20

~1:123,

sm
30

~1:301, sm
40

~1:203, sm
50

~1:458, sm
60

~1:903. In this example,

the binding connections between the three modalities were built

with jmk
ij ~0:1 only between odd-numbered corresponding modes.

Initial conditions for xi were randomly set for each modality (see

[49]). The parameters zmk used to model the attention dynamics

between modalities are z11~z12~z13~z21~z22~1, z23~2,

z31~13=5ze1, z32~8=5ze2 and z33~3; with c1~3, c2~4,

c3~21=5ze1ze2 (see also [50]).

Typical attention strategy
The possible attentional control strategies are formed during the

human development and learning stages. The selection of the

strategy depends on the environmental conditions and the

cognitive task. In our model (4) this is formally expressed by the

value of control parameters sm
i , and zmk. In particular, in the case

of strongly competitive and equivalently important tasks these

values are zmk~zkm and zmk
�

zmm
w1. Depending on the initial

conditions, whole attention can be focused on only one of the

modalities. This type of dynamics is named as multistability (see

Fig. 4A).

When competitive modalities are not equally competing with

each other (e.g. non-reciprocal competition) another kind of

multistability appears. The dynamics of R1, R2, R3 is much richer.

In particular, the stable fixed point (focus in Fig. 4B) becomes

unstable and, as a result of a Hopf bifurcation, a stable limit cycle

appears (Fig. 4C). It is also possible that the stable fixed point and

the stable limit cycle coexist (see Fig. 4D). In this case a short

external stimulus is able to change the strategy of the attentional

control – instead of a static distribution of attentional resources

(stable fixed point in Fig. 4D), the system performs a rhythmic

modulation of the cognitive activities (stable limit cycle in Fig. 4D).

Stimulus dependent timing and attention switching
The dynamical features of sequential attention switching

between different modalities depend on the external or internal

stimuli. If, for example, the environment changes so that modality

1 needs more attention, then the inhibitory suppression of

modalities 2 and 3 by the modality 1 becomes stronger - z21(S)

and z31(S) become larger and thus the attention strongly focuses

on modality 1, and correspondingly the duration of this attention

increases as shown in Fig. 5A. Let us emphasize that the time

during which the system is focused on a given modality (e.g.

modality 1) explosively increases with the strength of the stimuli

corresponding to this modality (see Fig. 5B).

This result is easy to interpret on the following example. It is

well known from daily life and supported by experimental and

clinical evidence that pain demands attention and thus influences

the performance of cognitive tasks including the attraction of

attention for longer and longer time. This happens because pain

changes the activity of many cortical areas that are involved in

cognitive activities [52,53]. Suppose we are driving a car and have

some pain in the back. If the pain is weak, we can control the road

and even listen to the radio. When pain increases, attention

focuses on the pain for longer and longer time intervals and, when

it is higher than some critical value, we are automatically

completely concentrated on our body and are forced to stop the

car. This is the well-known phenomenon of ‘‘interruptive function

of pain’’ [54].

The evolution of the limit cycle that represents the sequential

attention switching when increasing the parameter S’ can be seen

in Fig. 6. It is interesting that under rhythmically changing stimuli

the attention switching between different modalities can become

irregular (in mathematical language chaotic), see Fig. 7, which can

be related to irregular perceptual alternations [55].

Sequential switching of attention modifies binding
The simulations of our model show that attentional dynamics

are important for the performance of the binding process. In such

performance maximum attention is sequentially focused on

different modalities (see the time series in Fig. 8). Rabinovich et

al. have shown that multiple sensory modalities can form a new

dynamical object in the space of multimodality fields – this object

is called a network of heteroclinic channels [18,22,49]. The

emergence of this dynamical object depends upon a moderate

degree of inhibitory interaction between the fields – a process that

we will associate with inhibitory binding.

In our formulation, this inhibitory binding is represented by the

connection matrix jmk
ij in the equations above. In what follows, we

compare (i) the features of the interaction of three sensory

modalities with inhibitory binding but without attentional

modulation, (ii) interaction between these modalities without

inhibitory binding but under attentional modulation, and, finally,

(iii) with both inhibitory binding and attentional modulation. It is

important to emphasize that the dynamics of individual modalities

without inhibitory binding or attentional control are highly

irregular. Figure 9 represents the dynamical images without the

top-down attentional control in the case of non-interacting

modalities (panel A) and bound modalities (panel B). For

comparison we show in Fig. 10 the same cases with attentional

control. The power spectrum of individual modalities is repre-

sented in Fig. 11 (the parameters are indicated in the figure

captions).

One can see in these figures that attention orders the modality

interactions. This result seems to be very general. In particular,

authors in [56] have suggested that attention facilitates the

creation and maintenance of novel color-shape bindings in the

visual periphery; without attention, binding is less effective.

When the stable limit cycle is disposed in the vicinity of the

closed heteroclinic chain (as shown in Fig. 4E and 6), the

attentional modulation is very strong. The time that the system

spends in the vicinity of the metastable states is very sensitive to the

distance in the transverse direction to the heteroclinic chain and

even to a very low level of noise (see [20,57]). Because of this, the

time interval between attention switching from one modality to

another one in a wide area of the control parameters is a random

number that in average becomes longer if the distance in the

transverse direction to the heteroclinic chain becomes smaller.

Strategic decision making
Decision performance and attentional control are two funda-

mental processes through which we select, respectively, appropri-

ate actions or sources of information. These processes are strongly

interconnected. Suppose you are driving a car, half-listening to the

local news on the radio simultaneously and receiving a call on your

cell phone. Suddenly, you have understood the message on the

radio – a car accident just happened a mile ahead of you. A

newscaster is describing the situation to the drivers in the vicinity

of the accident to help them figure out a way to avoid the

Neural Dynamics of Attentional Control
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Figure 4. Examples of different attention crossmodality dynamics for Eq. (4) in the case of M = 3. Panel A corresponds to the
performance of cognitive tasks that need complete attention focused on one of the tasks – one can see the multistability on the simplex (three stable
fixed points whose basins of attraction are bounded by separatrices of the saddle fixed points). Panel B corresponds to the coexistence of cognitive
tasks that need just a little attention each – the image is a stable fixed point that is a global attractor on the two-dimensional stable manifold
(simplex, c.f. Fig. 3). Panel C shows that a stable limit cycle emerges on the simplex, this is the mathematical image of periodic changes of attention
levels focused on different modalities. Panel D represents dynamical attention bistability – the coexistence of two attractors, i.e. stable fixed points
and stable limit cycle. Finally, panel E shows a stable limit cycle in the vicinity of a closed heteroclinic contour which represents the sequential
switching of attention among three different modalities. For mathematical details of these bifurcations see [51].
doi:10.1371/journal.pone.0064406.g004

Figure 5. Competition between three attention modes. In panel A, we observe that the main focus of attention is in the first mode. The
parameters zmk used to model the attention dynamics between modalities are z11~z22~z33~1, z12~c1

�
c2z0:12, z32~c3

�
c2{0:12,

z13~c1
�

c3z0:10, z23~c2
�

c3{0:10, z21~c2
�

c1z0:01, z31~c3
�

c1{0:01; and c1~1:5, c2~1:426, c3~0:956. In panel B, we see that the time during
which the system is able to keep attention on a specific modality depends on the strength of the stimuli. The figure shows the time duration of the

regular switching between attention modes for the same system described in panel A, except for z21~c2
�

c1z0:01zS0 and z31~c3
�

c1{0:01zS0

with S0[½0:006,0:010�.
doi:10.1371/journal.pone.0064406.g005
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cordoned area. Evidently, you have to change the strategy for your

behavior: you have to turn off the cell phone, stop the car before

you plan a new route and concentrate on the newscaster advice

that is repeated from time to time. Here we show how one can

describe such strategy modification mathematically in the frame-

work of the dynamical model (4), (6). The multitasking behavior

before you got the message is the regime of the divided attention.

In the phase space of (4) such regime is represented by the stable

fixed point on the simplex (see Fig. 12A). When the newscaster

announcement starts, the parameter Cm (for simplicity suppose

m = 1) makes the inhibition of modes R2 and R3 by R1 stronger

(z21,z31 become larger). One can see the corresponding global

bifurcation in Fig. 12B – instead of a multimodal fixed point, the

system is represented by just one global attractor: a stable node on

the axis R1. Such kind of dynamics is usually known as ‘winner-

take all’ (WTA). It corresponds to the focusing of full attention on

the performance of just one task – deciding a new driving route

based on the newscaster advice and your previous knowledge and

experience. The two other modalities X2 and X3 are just

suppressed because they have no excitation: sm
i ~sm

i0
Rm{qiv0,

(m~2,3).

It is important to emphasize that here we are talking about

decision performance that corresponds to a change of strategy for

behavior, not just choosing the state like in the multistability case

(c.f. Fig. 4A). The later can be described as the jumping through

the boundary of the basin of one attractor to the basin of another

one. In fact, it is a simple change of the initial condition but the

dynamics of the system is still the same. In the case analyzed

above, the task and the corresponding performance are absolutely

different. The decision making means choosing a functional

structure of the interactive modes by changing the set of exciting

neuronal clusters and their inhibitory connections (the architecture

of the functional networks which depends on the stimulus). Then

the overlapping of the attention and decision making networks is

well established. For example, parietal neurons encoding saccade

motor decisions also carry signals of attention (perceptual

selection) that are independent of the metrics, modality and

reward of an action. Gottlieb and Balan have proposed that

attention implements a specialized form of decision based on the

utility of information [58]. Oculomotor control depends on two

interacting but distinct processes: attentional decisions that assign

value to sources of information and motor decisions that flexibly

link the selected information with action [58].

An important aspect of our model is that attention is mediated

by changing the dynamics (attractor manifold) of competing multi-

modal sensory representations. Effectively, this can be regarded as

changing the attractor manifold in a state dependent fashion – in

other words, in a way that depends upon the states of higher

Figure 6. Phase portraits of system (4) corresponding to the time series represented in Fig. 5A for the following parameters:

z21~c2
�

c1z0:01zS0 and z31~c3
�

c1{0:01zS0 with S0~0,0:004,0:008, for A, B and C, respectively.
doi:10.1371/journal.pone.0064406.g006

Figure 7. Irregular attention switching under the action of a
periodic stimulus with main focus on the first mode. The
parameters zmk used to model the attention dynamics between

modalities are z11~z22~z33~1, z23~c2
�

c3{0:10, z32~c3
�

c2{0:12,

z12~z12
0 zS0 sin (vtz3=29), z13~z13

0 zS0 sin (vtz21=5), z21~z21
0 z

S0 sin (vtz13=3), z31~z31
0 zS0 sin (vtz7=11), z12

0 ~c1
�

c2z0:12,

z13
0 ~c1

�
c3z0:10, z21

0 ~c2
�

c1z0:01, z31
0 ~c3

�
c1{0:01, c1~1:5,

c2~1:426, c3~0:956, S0~0:15 and v~4p=3.
doi:10.1371/journal.pone.0064406.g007

Figure 8. Time series of three modality attention dynamics.
Three modalities under attentional control (each of them contains six
modes). The dynamic of attention is represented by a limit cycle on the
simplex in Fig. 4 C–E with e1~e2~{0:0001 (the other parameters are
set as indicated in Fig. 7).
doi:10.1371/journal.pone.0064406.g008
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(attentional) parts of our distributed network. This necessarily

induces a separation of temporal scales, in the sense that the fast

dynamics at lower levels are governed by slower changes in

attentional dynamics – which themselves respond to switches in

cognitive sets (modeled by our cognitive variables). The theme of

state dependent changes in control parameters fits very comfort-

ably with recent proposals for how attention is mediated during

hierarchical Bayesian inference or predictive coding. In these

models, the attentional modes (top-down effects) change interac-

tions among neuronal states in the low levels through modulating

postsynaptic gain, which encodes the precision of sensory

information (see also [42]). The main results of the analysis of

the attention model discussed in this paper are summarized in

Table 1.

Discussion

Recent experimental results show that transient sequential

dynamics underlies many aspects of information processing in the

brain. Novel theoretical frameworks are thus needed to represent

and characterize phenomena arising within this type of activity in

the nervous system. In this paper we have built a nonlinear

dynamical theory of multitask attentional control of sequential

perception/cognition in multiple interacting brain networks. The

presented bifurcation analyses provide us explicit predictions and

bridge between neuronal mechanisms (network parameters) and

cognitive strategies that finally determine the sequential behavior.

In the last few years, the research on attentional control has

produced results using computational models of specific neuronal

and cognitive mechanisms. Such modeling has used elements of

dynamical theory (see for rev. [59,60]). Most of the interest has

been raised by: (i) analyses of the relationship between attention

and plasticity including sequential learning and memory; (ii)

attention and timing coordination; (iii) attentional control and

personality/aging; and (iv) interaction of attention and emotion,

including anxiety and psychiatric disorders. Important questions

remain: 1. What are the dynamical mechanisms responsible for

the robust perception of transient sequential multimodal informa-

tion and how sequential WM is related to switching attention?; 2.

How does learning functionally reorganize attentional brain

networks for temporal multimodality perception?; 3. Do emotion

and cognitive attention use common information resources?; 4.

What does a psychiatric attentional disorder mean from the

dynamical point of view? The dynamical model of attentional

control of several simultaneous modalities that we have formulated

above is directly applicable for addressing these questions and can

be generalized to address other problems in the context of

sequential transient cognitive dynamics. Let us discuss here two

subjects in more detail.

Figure 9. Phase portraits of three modalities dynamics in the X1, X2, X3 space when attention control is absent - sm
i does not depend

on .Rm. Panel A corresponds to independent modality dynamics (j~0); Panel B corresponds to the joint X1, X2, X3 dynamics with binding stress
j~0:1. One can see that the ‘bound pattern’ is characterized by a higher level of coherence (see the corresponding power spectrum in Figs. 11A and
11B).
doi:10.1371/journal.pone.0064406.g009

Figure 10. Phase portraits of the joint X1, X2, X3 steady state dynamics under the top-down attentional control (attentional control
dynamics corresponds to the modulation of behavior originated by choosing e1~e2~{0:0001). Panel A is an image of unbound
modalities (j~0), and panel B is an image of ‘‘j-bound modalities’’ (j~0:1). By comparing Figs. 9 and 10 we can say that the attentional control is
able to better integrate modalities than j-binding (both patterns A and B in this figure have higher coherence than the pattern in Fig. 9B).
doi:10.1371/journal.pone.0064406.g010
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Sequential perception-cognition binding, learning and
memory

The problem of cross-modal interactions under attentional

control has been first raised in the binding of sensory modalities -

visual, auditory, tactile, olfactory, gustatory [44,61]. In the last

years the interest of cross-modal cuing between perception and

cognition has increased. For example, how sequential information

across perception, memory and action planning under attentional

control is integrated is now a central question in cognitive

neuroscience and language perception [62–65].

Consider, as an example, the ‘cocktail-party problem’, i.e.,

speech recognition in the presence of many sequential sources of

useless information [66]. People with only one functional ear, seem

much more disturbed by interfering noise than people with two

healthy ears. But, even without binaural location information, we

can selectively attend to one particular speaker if the pitch of his/

her voice or the topic of the speech is sufficiently distinctive and

semantically understandable (see [67]). Mesdgarani and Chang

found that task performance is well predicted by a rapid increase

in attention-modulated neural selectivity across cortical responses

[68]. Their findings demonstrate that the cortical representation of

speech does not simply reflect the external acoustic environment,

but the perception is also based on relevant cognitive modalities

like the listener’s performed goal, attention and WM.

Both attention and WM are processes that can be trained. It is

known, for example, that musicians have a greater ability to hear

Figure 11. Power spectrum of the activity of x1
6 with t = 5000 corresponding to uncoupled modalities for A and C and bound with

j~0:1 for B and D. Attention dynamics are absent in A and B but they are present in C and D corresponding to the modulation behavior originated
by choosing e1~e2~{0:0001. The analyses of these spectra support the result that attention ordered multimodal perception (see Fig. 9 and Fig. 10).
doi:10.1371/journal.pone.0064406.g011

Figure 12. The attention dynamical system (4) in the case of M = 3. Panel A is topologically similar to Fig. 4 B – coexisting tasks each of them
requiring only a little attention. Panel B corresponds to the case when, independently of the initial condition, only one specific modality attracts all
attention resources – ‘winner take all’ attentional regime (for the details of the sequence of bifurcations from A to B, see [51]).
doi:10.1371/journal.pone.0064406.g012
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speech in noisy environments and to remember sounds [69].

These advantages and specifically the features of auditory WM are

a consequence of musical training that can be transferred from the

music to the language domain.

WM and attention are characterized by their own sequential

dynamics but the networks of the brain that support these two

processes are neuro-anatomically overlapping [70]. This overlap

can explain the extending of the WM capacity by correlated

attention dynamics that optimize common information resources.

It can also explain the similarity of inhibitory mechanisms of

sequential dynamics underlying the robustness of both attention

and memory processes and their plasticity. WM capacity is

determined as the number of information items that can be

recalled in sequential order without mistakes. This means that the

capacity coincides with the length of the item chain like a

trajectory in the state space of the WM excitatory/inhibitory

network when this chain loses its stability under the action of noise.

As it has been shown, this length depends on the topology and

strength of the inhibitory connections within the WM networks

[4]. The overlapping of the connections in WM and attentional

networks can make the effective inhibition stronger and thus the

length of the stable WM chain – the capacity – larger.

How does the topology of the inhibitory networks which

warranties the sequential switching dynamics appear? A modeling

experiment was performed to answer this question [35,71].

Starting with a model circuit consisting of 100 rate model neurons

randomly connected with weak inhibitory synapses, new synaptic

strengths were computed using Hebbian learning rules in the

presence of weak noise. The neuron activity rates satisfied an

equation similar to (4). The matrix of inhibitory connections

dynamically changed according to a set of plasticity rules. After the

self-organization phase, the network displayed stable sequentially

switching dynamics. Such sequential competitive dynamics can

also be the result of local self-organization in networks of spiking

model neurons that exhibit spike-timing dependent plasticity [72]

with inhibitory synaptic connections. These mechanisms of self-

organization can be appropriate for networks that generate not

only rhythmic sequential activity but also robust transient

sequences [73]. This can be important for modeling temporally

changing WM sequences [74]. Recent experiments provide

evidence that learning and plasticity may have common mecha-

nisms on all information processing levels from perception to

decision making (see [75]).

Interval timing control and sequential attention
switching

Because attention switching depends on the environmental

inputs and/or intrinsic signals related to cognitive task planning,

we can ask: who is first, WM or attention, to generate time

intervals between sequential switching events? There is no unique

answer to this question yet [76].

Let us discuss a specific cognitive task - music performance.

Based on many experimental results one can hypothesize that WM

is first used to send the signal to attentional networks and modulate

time intervals to produce correct rhythms. WM is a dynamical

multiscale process that is supported by networks in prefrontal,

parietal and subcortical brain regions including the striatum. It is

known that frontostriatal circuitry is involved in the ability to

process temporal intervals [77] and overlaps with the attentional

corticostriatal timing network [74,78,79]. In [80] the authors have

proposed that, along with the prefrontal cortex, the striatum plays

an important role in cognitive control of memory retrieval. In

particular: (1) the striatum modulates the re-encoding of retrieved

information items according with their expected utility (adaptive

encoding), (2) the striatum selectively admits information into WM

that is expected to increase the likelihood of successful retrieval

(adaptive gating), and (3) the striatum enacts adjustments in

cognitive control based on the outcome of retrieval (reinforcement

learning). Based on this knowledge we can focus on the interval

timing generation in striatum which participates in WM dynamics

and thus transform cognitive information about interval timing to

attentional control networks.

The striatum is composed of spiny neurons with inhibitory

collaterals forming a sparse random asymmetric network and

receiving excitation from the cortex [81]. Ponzi and Wickens

showed by simulating the striatal inhibitory network that cells form

assemblies firing in the form of sequential coherent episodes and

generate temporal patterns with characteristic timescales even if

the external excitatory forcing is constant [37]. These results

support a new view on sequential information processing in the

brain [18]. In this regard, the striatum neuronal inhibitory motif

can be analyzed as a modeling circuit to test the hypothesis about

the dynamical origin of timing control in such sequential

processing.

It is important to emphasize that the dynamical approach that

we suggested above (see Table 1) can also be useful for

understanding and predicting attentional control processes in the

context of mental disorders (for a discussion about the connection

of emotion and neurobiology trough dynamical system theory see

[82]). For example, it is well known that obsessive-compulsive

Table 1. Summary of the attention model analysis.

Result Comments

Dynamical origin of the information processing
resource limitation

In the state space, the number of metastable states (information items) in whose vicinity robust informational
trajectories are located is finite

Intrinsic instability of the cross-modality
attentional control

The inhibitory competition of different attentional modalities is responsible for oscillatory instabilities: the static
regime (a stable fixed point) becomes unstable and a limit cycle emerges

The time of attention focusing depends on the
strength of the sensory input or of the intrinsic
informational signal

The time during which the system is focused on a given modality explosively increases with the strength of the
stimuli corresponding to this modality

Attentional dynamics is able to bind
multimodality processing

Attentional control dynamics can be ordered in time, for example, different sensory modalities perceived
simultaneously maintain the order of the information items

Strategy changing of attentional control is related
to the bifurcation of the attentional dynamics

This is the dynamical origin of the decision-making process that, in fact, is a controllable bifurcation of the attention
strategy

doi:10.1371/journal.pone.0064406.t001
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disorder (OCD) appears to be associated with an attentional bias

favoring threatening information, as well as reduced levels of

attentional inhibition [83]. Keeping in mind that OCD is a process

with randomly switching attention between performing a cognitive

task and an emotional ritual [84], one can generalize model (4), (6)

for the description of attentional control dynamics in the presence

of OCD by taking into account one more modality related to the

ritual processing. Preliminary analyses show that OCD destroys

the process of transformation of attentional control from one type

of dynamics to another one – i.e. destroys the ‘healthy bifurcations

sequence’.
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