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Background. Next-generation sequencing technologies are nowproducingmultiple times the genome size in total reads froma single
experiment. This is enough information to reconstruct at least some of the differences between the individual genome studied in
the experiment and the reference genome of the species. However, in most typical protocols, this information is disregarded and
the reference genome is used. Results. We provide a new approach that allows researchers to reconstruct genomes very closely
related to the reference genome (e.g., mutants of the same species) directly from the reads used in the experiment. Our approach
applies de novo assembly software to experimental reads and so-called pseudoreads and uses the resulting contigs to generate a
modified reference sequence. In this way, it can very quickly, and at no additional sequencing cost, generate new,modified reference
sequence that is closer to the actual sequenced genome and has a full coverage. In this paper, we describe our approach and test its
implementation called RECORD.We evaluate RECORD on both simulated and real data. We made our software publicly available
on sourceforge.Conclusion. Our tests show that on closely related sequences RECORDoutperformsmore general assisted-assembly
software.

1. Background

The emergence of population genomic projects leads to an
ever growing need for software and methods that facili-
tate studying closely related organism with next-generation
sequencing technologies. This includes determination of the
genomic sequences of individuals in the presence of themore
generic reference genome of the species. This task is known
as reference-assisted genome assembly and many ongoing
research projects depend on the accurate solution for this
problem.

In recent years, next-generation sequencing technologies
have brought us the possibility to simultanously sequence
millions of short DNA fragments in a DNA library prepared
from almost any biochemical experiment [1]. Great improve-
ment in the quality and amount of short reads obtained
from a single experiment allowed for development of many
more biochemical assays [2] such as MNase-seq [3], DNAse-
seq [4], or Chia-Pet [5] in addition to the more standard
ChIP-Seq [6] or RNA-seq [7]. Similarly, the next-generation

sequencing techniques may be applied to metagenomic sam-
ples returning short reads originating frommultiple genomes
including some potentially unknown species.

Importantly, many of these techniques require the prior
knowledge of the reference genome of the species for which
the experiment was performed. This genome sequence is
used to map the reads and obtain the final readout of the
experiment as the read counts per base pair. Such procedures
are guaranteed to work very well only under the assumption
that we know the exact sequence of the genome under study.
There are, however, many biologically relevant cases when
this assumption cannot be satisfied. For example, in quickly
growing cell populations such as cancer cell-lines or micro-
bial colonies, even rare mutations can get fixed in the pop-
ulation very quickly. This leads to situations where sampled
sequences can significantly differ from the original reference
genome. Similarly, many lab experiments involve genetically
modified cells or organisms. While these modifications are
usually controlled as much as possible, the researchers fre-
quently do not know the exact landing site of the introduced
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sequence or the number of copies in which it was integrated
into the host genome.This has naturally serious implications
for the accuracy of the results because any difference between
the reference genome and the sampled one will lead to
differences in the expected number of reads mappable to the
reference genome at the differing position. This in turn can
interfere with the measurement of the real abundance of this
DNA region in the sample.

This problem can be, at least theoretically, alleviated by
introducing an additional step into the process: instead of
directly mapping the reads to the reference genome, we can
create a “modified” assembly of the genome based on the
reads from the sample and the reference genome. Then, we
can use this assembly to map the reads and measure their
abundance. This approach can be broken down into two
major steps:

(I) Assembling a genome of the sampled population
based on the obtained reads and the reference
genome.

(II) Assessing the abundance of reads in genomic regions
using such an improved reference sequence.

In the early years of next-generation sequencing, the first
step of such an approach was impractical, as the number of
reads used for an experiment like ChIP-seq was far too low
and their quality was not high enough to attempt assembly
of a better reference genome than the one deposited in
the databases by the relevant genome consortium. However,
now it is commonplace that the total of sequencing reads
generated for a single experiment such as ChIA-PETmight be
covering the genomemultiple times and, at least in case of the
model organisms such as D. melanogaster or C. elegans, the
read lengths might be large enough to attempt an assembly.

This approach also has another limitation. If the reference
sequence is very different from the one used in the experi-
ment, it contributesmore to a problem than to a solution. Any
attempt to use a completely unrelated sequence as a reference
in such an approach is bound to introduce errors. Therefore,
in order to ensure that the output of the assembly is useful,
when we provide a method of generating reference-assisted
assemblies, it is crucial to validate that the reference is actually
close enough to the target genome.

In this paper, we focus on developing an approach for
reference-assisted genome assembly. We assume that the
actual genome of the organism and the reference genome
are close to each other; for example, the reference genome of
the species under consideration is given, but not the genome
of the particular mutant. We point out that currently used
straightforward solutions produce suboptimal or, in some
cases, even misleading results. For example, when simply
assembling the genome from the given reads, due to the low
coverage of those reads, wemay obtain too short contigs lead-
ing to an assembly useless in practical applications. Conse-
quently, we need an assembly technique which fulfills the fol-
lowing criteria. First of all, it should output sequences that are
long enough even in cases when the coverage of the genome
sequence by the experimental reads is relatively low. Second,
not only should the output sequences be large enough

individually, but, together, they should cover as much as pos-
sible of the genome in order to allow detection of the abun-
dance of reads in any region of the genome. Third, the result
of the assembly should be accurate; that is, the assembled
genome should be as close as possible to the actual genome of
the studied organism. Last, but not least, we aim to provide a
simple assembly approach. With simplicity, we mean compu-
tational time (in order to keep the entire process computa-
tionally tractable) and the method clarity needed for ease of
reproducibility and reuse of presented ideas in the context of
different specific protocols. We believe the adaptation of the
ideas presented in this paper may be straightforward in some
applications, including RNA-Seq and ChIP-Seq. In other
cases, it would be possible after substantial effort. For exam-
ple, metagenomic sequencing might potentially benefit from
some ideas presented in this paper. However, the currently
presented approach would need to accommodate multiple
genomes and reads originating from different, related species
that may be present in the sample at the same time.

The growing interest in genome assembly is also reflected
by recent publications. For example, Peng and Smith [8]
studied genome assembly from the theoretical point of view
and showed that various combinatorial problems related to
genome assembly are NP-hard. On the other hand, various
methods have been proposed for reference-assisted genome
assembly, such as Amos [9], RACA [10], ARACHNE [11, 12],
IMR/DENOM [13], RAGOUT [14], AlignGraph [15], and the
pipeline developed by Gnerre et al. [16] which was developed
inside the framework provided by ARACHNE. Similarly to
our approach, Gnerre et al. used a de novo assembler as a
component.Theymapped reads to several reference genomes
and used the resulting mapping information to improve the
output of the de novo assembly in subsequent steps. In
contrast to Gnerre et al., we only use one reference genome,
and, more importantly, we use the reference genome to
provide enriched input for the de novo assembler. Further-
more, we assume that the reference is closely related to the
target genome, and therefore the reference is directly used to
determine order and orientation of the assembly contigs. In
contrast, RACA focused on reliable order and orientation of
the contigs. Amos, one of the most popular assisted assembly
softwares, aligns reads to the reference genome and uses
alignment and layout information to generate a new con-
sensus sequence [9]. We note that the techniques presented
in this paper are orthogonal to the ones used in the afore-
mentioned works; that is, as future work, RECORD may be
combinedwith other assisted assembly tools. In this paper, we
focus on experimentally evaluating the power of the relatively
simple techniques of our pipeline. We will show that, despite
their simplicity, they may achieve surprisingly good results.

In the next sectionwe describe our approach, a simple but
surprisingly effective reference-assisted assembly technique,
and the software that implements it. By design, this approach
ismost useful in cases when the reference and target genomes
are closely related, and the coverage of the target genome by
the experimental reads is relatively low such as multiplexing
scenarios where multiple experimental DNA libraries are
barcoded and pooled in a single sequencing lane. Subse-
quently we present the results of the experimental evaluation
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CGCGTACGATCTTACGTAGGCACG

AATTAAATTCGGAGAACGTAATAAC

Edited reference (step 3)

Figure 1: RECORD: Reference-Assisted Genome Assembly for Closely Related Genomes.The inputs of the pipeline, that is, the experimental
reads and the reference genome, are illustrated in the top left and top right of the figure, respectively. Intermediate results produced in various
steps of the analysis process are depicted. The dependency between these intermediate results is shown by arrows. In the illustration of the
3rd step, we underlined those segments of the edited reference which were replaced by one of the assembly contigs.

of RECORD and compare it to Amos [9], one of the most
popular assisted assembly tools.We show that, under realistic
conditions of approximately 1 percent divergence between
reference genome and the studied sequence, our approach
outperforms naive approaches and Amos (which excels in
situations where the divergence is much higher). To ensure
reproducibility and extensibility of our work, we evaluate our
approach on several collections of publicly available next-
generation sequencing data sets originating from various
model organisms such as yeast (S. pombe), fruit fly (D.
melanogaster), and plant (A. thaliana).

2. Implementation

We propose RECORD, Reference-Assisted Genome Assem-
bly for Closely Related Genomes. Our approach consists of
the following steps (see Figure 1):

(1) We generate pseudoreads from the reference genome.
We generate pseudoreads in order to ensure that the
coverage of the genome is large enough.

(2) We obtain the contigs of the actual genome of the
organism using a genome assembler, such as Velvet
[17]. As input of the assembler, we propose to use the
pseudoreads generated in the previous step together
with the experimental reads.

(3) We create an edited reference genome. The contigs
obtained in the previous stepmay not cover the actual
genome of the organism entirely, and, more impor-
tantly, the genome obtained in the previous steps
may be fragmented into a relatively large amount
of contigs. Therefore, the contigs obtained in the
previous step will be mapped to the reference genome
with MUMmer [18]. Using the reference genome and
themapped contigs, we produce a new genome, called

Chr1: ACTCACGCGATACGAGCTACTACGGAGGATC... Reference
genome
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Figure 2: Generation of pseudoreads from the reference genome.

edited reference, the segments of which are replaced
according to the mapping. This step ensures that the
edited reference is close to the true genome of the
organism, while it covers as much regions of the
genome as possible.

Below we give a detailed description of the above steps.

2.1. Generation of Pseudoreads from the Reference. While
generating pseudoreads from the reference,wemake sure that
these pseudoreads have uniform coverage and large enough
overlaps so that they can “assist” the genome assembler, while
it joins reads to contigs. In particular, we generate reads
of length 𝑚 from each chromosome beginning at positions
0, 𝑛, 2⋅𝑛, . . . , 𝑘⋅𝑛, . . ., where𝑚 and 𝑛 are parameters that can be
set by the user.We generate paired-end reads; the first mate of
the paired-end reads is generated directly from the reference,
while the second mate is generated from its reverse comple-
ment, so that the resulting data has similar character as the
paired-end reads in NGS experiments. The distance between
the ends of the mates of the paired-end reads is 𝑑. This is
illustrated in Figure 2.
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Additionally, we associate each position of these pseu-
doreads with a relatively low quality score 𝑞 in order to
ensure that real reads have higher priority during the genome
assembly process.

By default, whenever the opposite is not stated explicitly,
we set 𝑚 = 100, 𝑛 = 30, 𝑑 = 1000, and 𝑞 = 10. The quality
score is on the Phred scale from 0 to 93. We store the pseu-
doreads together with the quality scores as FastQ files [19] so
that they can be used as input for the genome assembler
Velvet.

2.2. Assisted Assembly. The second step of our approach
leads to generation of assisted assembly contigs. To this
aim, we combine pseudoreads generated in the previous step
and experimental reads in one data set. Next, this data set
is used as an input for a genome assembler. In principle,
any assembler can be applied, but we use Velvet with its
default parameters. However, the user may set values of the
parameters according to his or her needs.

2.3. Editing the Reference. While editing the reference based
on the alignment of the contigs produced by MUMmer,
we have to take into account that contigs may be mapped
ambiguously to the reference; that is, the same contig may
be mapped to several segments of the reference. Moreover,
the regions covered by different contigs may overlap and
therefore some segments of the genome may be covered by
several contigs. We resolve this ambiguity in two steps.

First, for each contig, we search for its best mapping to
the reference. Conceptually, we can measure the quality of
a mapping by the number of identical bases between the
contig and the corresponding segment of the reference. This
is estimated as

𝑄map = 𝐿× idy
(ref)
, (1)

where 𝐿 denotes the length of the mapped segment of the
contig and idy(ref) is the percentile identity between the contig
and the corresponding reference segment as outputted by
MUMmer. For each contig, out of its several mappings, we
select the one that has the highest 𝑄map score.

Even though there is no theoretical guarantee that a
particular contig corresponds to that segment of the genome
to which it was mapped with highest 𝑄map score, we argue
that, on one hand, the higher the identity is, the higher the
likelihood that the mapping is correct is (i.e., the contig really
originates from that segment of the genome to which it is
mapped); on the other hand, the longer the mapped subse-
quence of the contig is, the higher the likelihood that themap-
ping is correct is.Therefore, the higher the above quality score
is, the higher the likelihood of correct mapping is. Thus, we
select for each contig the segment of the genome that has the
highest 𝑄map score.

As one can see in Figures 5 and 7, the ratio of ambiguously
mapped contigs varies between 5% and 12% in most of our
experiments. An exception is the case of A. thaliana, for
which the proportion of ambiguously mapped contigs is
between 30% and 40%. After selecting the best mapping for
each contig, the remaining ambiguity may only arise from

ACTCACGCGATACGAGCTACTACGGAGGATC... Reference
CATGCGCTACGAGC

GAGCTACCAAGGA

ACTCACGCGATACGAGCTACTACGGAGGATC... Edited reference

Contigs mapped to the reference

Figure 3: Resolution of ambiguity. First, for each contig, its best
mapping is determined, and then the remaining ambiguity is
resolved in greedy fashion by giving priority to the beginning of the
contigs as shown in the figure.

overlapping contigs as illustrated in Figure 3. According to
our observations, selecting the best mapping for each contig
greatly reduces the number of those genomic positions that
are covered bymultiple contigs. In particular, in both cases of
A. thaliana andD.melanogaster, the selection of the bestmap-
ping of each contig reduced the number of multiply covered
genomic positions by ≈90%. Furthermore, the overlapping
segments of two contigs typically contain exactly the same
or very similar genomic sequences. Therefore, the selection
of the best mapping for each contig is able to eliminate vast
majority of the ambiguity. In the light of these observations,
Figure 3 shows an exceptional situation, in which two contigs
overlap and the overlapping segments correspond to notably
different genomic sequences. Despite the fact that such situ-
ations are exceptionally rare, in order to produce the edited
reference, such ambiguity must be resolved. One possibility
to resolve such ambiguity is to use the aforementioned quality
scores and to prioritize the contig with higher 𝑄map score. In
our prototypical implementation of the pipeline, we used an
even simpler method: we resolved the ambiguity remaining
after the selection of the best mapping in a greedy fashion
by preferring the beginning of the contigs to the ends of the
contigs as illustrated in Figure 3.

After resolving the ambiguity, the edited reference is
produced by replacing the segments of the reference by the
mapped contigs (or their segments).

2.4. Software. We implementedRECORDusing Perl and Java
programming languages. The main program is implemented
in Perl programming language. The main program calls Vel-
vet and the modules, for generation of pseudoreads and ref-
erence editing.

3. Results and Discussion

Our approach does not aim to reproduce the reference
genome (which is used as input anyway), but we aim to
recover the true genome of the organism which is unknown
in case of real experiments. Consequently, the evaluation of
any assembly software is inherently difficult.Therefore, in the
following sections, we present evaluation on both simulated
and real data. In case of simulated data, a gold standard is
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available, while the experiments on real data will show that
our approach may be useful in real applications.

Next, we present the results of the experimental evalua-
tion of our approach.

3.1. Baselines. In the experiments presented in the subse-
quent sections, we used two genome assemblers, Velvet [17]
and Amos [9], as baselines. Velvet is a de novo genome
assembler; that is, it assembles the genome directly from the
experimental reads, whereas Amos is one of themost popular
assisted genome assembly software tools; that is, Amos uses
both the experimental reads and the reference genome of
a genetically related organism in order to reconstruct the
genome of the studied organism.Throughout the description
of the experiments, with Velvet we refer to the case of
using Velvet as standalone application, even though our
approach, referred to as RECORD, uses by default Velvet as
a component of the proposed pipeline.

We also tried to use further assisted genome assemblers,
such as ARACHNE [11, 12] and IMR/DENOM [13]. While
these softwares may excel in various general settings (such
as using the reference genome of a species to reconstruct the
genome of an other species), as far as we can judge, they
do not seem to fit to our special setting of relatively low
coverage (i.e., few experimental reads) and very closely related
genomes. For example, in some cases, the outputted genome
was the reference genome, which, on one hand, may be con-
sidered as reasonable if the actual genome and the reference
genome are highly similar (i.e., they are almost the same); on
the other hand, this is a trivial solution for the assisted
assembly problem as the reference is one of the inputs of ref-
erence-assisted assembly methods.

3.2. Evaluation on Simulated Data. We simulate the scenario
that the reference genome is given and we aim to reconstruct
the actual genome of the studied organism, which we call
target genome. In particular, we used the Evolver software
tool [20] to generate the target genome. We used the genome
from the example that comes with Evolver. This is an
artificial mammalian genome of size of 30 megabases (Mb).
The genome has three chromosomes. In order to allow for
an unbiased evaluation, we produced the evolved genome
following the example attached with Evolver. We used the
original genome, that is, ancestral genome, as the reference
genome, and we considered the evolved genome as the target
genome. We generated one million paired-end short reads of
length of 70 with wgsim [21] from the target genome. Subse-
quently, we tried to reconstruct the target genome from the
generated paired-end reads and the reference genome both
with our approach and two other state-of-the-art genome
assemblers. Throughout the experiments on simulated data,
we used Velvet with 𝑘-Mer size of 𝑘 = 21. Finally, we
compared the outputs of the assemblers with the target
genome and quantitativelymeasured the quality of each of the
assemblers according to the following criteria:

(1) TL, the total length of the assembly in Mb.
(2) N50; that is, we consider the set of largest contigs that

together cover at least 50% of the assembly, and out of

Table 1: Evaluation on simulated data.

Assembly TL
(Mb) N50 Error

(in %)
Id. Bases
(Mb)

Contigs
Velvet 18.20 213 b 0.85 18.05
Amos 28.82 1834 b 2.09 28.22
RECORD 25.81 2055 b 0.41 25.70

Edited reference
Velvet 30.00 10Mb 1.39 29.58
Amos 30.00 10Mb 1.03 29.69
RECORD 30.00 10Mb 0.59 29.82

these contigs the length of the shortest one is denoted
as N50.

(3) Error = 100% − IDY, where IDY is the percentile
identity between the target genome and the genome
reconstructed by the assembler. (Please note that IDY
is different from idy(ref). While idy(ref) denotes the
identity between an assembly contig and the corre-
sponding segment of the reference genome, we use
IDY to denote the identity between the output of the
assembly and the target genome.) In order to calculate
IDY, wemap the genome reconstructed by the assem-
bler to the target genome using the MUMmer soft-
ware tool [18], andwe calculated the weighted average
of the percentile identities between the mapped seg-
ments and the target genome as outputted by MUM-
mer. In theweighted average, we used the length of the
mapped segments as weights.

(4) Number of identical bases, which we calculated as
IDY × TL.

Both in case of our approach and in case of the baselines,
we evaluated both the contigs and the edited reference
resulting from using the contigs. In case of evaluating edited
reference for the baselines, we simply used the contigs out-
putted by the baselines in the third step of our approach and
produced the edited reference.

Table 1 summarizes our results. The columns of the table
show the total length (TL) of the assembly, N50, error, and
the number of identical bases. As one can see, our approach,
RECORD, is competitive with the other assemblers: consid-
ering the contigs produced by our pipeline, they have the
highest N50 and the lowest error rates, while the edited
reference produced by RECORD has the overall highest
number of identical bases with the target genome.

In a subsequent experiment, we varied the number of
reads used for the assembly and evaluated the resulting
contigs. These results are shown in Figure 4. The diagram
(a) shows the number of bases in the target genome that are
covered by the assembly contigs as function of the number of
reads that were used. It is important to note that while Amos
can provide overall better coverage of the sequence, it requires
more reads (>500 k) for that. In the lower range of the number
of reads available, it is outperformed by RECORD. It may be
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Figure 4: Comparison of the proposed approach (RECORD) with two state-of-the-art genome assemblers on data simulated with wgsim. In
this experiment, we consider the evolved genome produced by Evolver as the target genome; the reference genome is the ancestral genome.
The diagrams show the performance of the examined approaches according to various criteria as the function of the number of simulated
reads that were used for the assembly. The diagram (a) shows the number of covered bases of the target genome; the diagram (b) shows the
accuracy, that is, overall percentile identity between the assembly contigs and the corresponding segments of the target genome, while the
diagram (c) shows the number of those largest contigs that together cover at least 50% of the target genome.
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Figure 5: Proportion of ambiguously mapped contigs (before the
selection of the best mapping for each contig) in case of various
numbers of simulated reads.

relevant for practical applications as the cost of the exper-
iment usually depends on the number of reads produced.
While in this simulated case the number of reads is relatively
low for today NGS technology standards, it might be still rel-
evant in multiplexing scenarios where multiple experimental
DNA libraries are barcoded and pooled in a single sequencing
lane.

The second diagram (b) shows the overall percentile
identity between the target genome and the contigs of the
assembly. The third diagram (c) shows the number of those
largest contigs that together cover at least 50% of the target
genome. As one can see, if only relatively few reads are avail-
able, our approach, RECORD, systematically outperforms the
baselines by producing larger contigs, the most accurate and
most complete assembly.

In order to analyze our approach in more detail, we show
in Figure 5 the proportion of ambiguously mapped contigs
(before the selection of the best mapping for each contig). As
one can see, the proportion of ambiguously mapped contigs
varies between 7% and 8.5%.

We note that, from the point of view of applications, there
is a substantial difference between the execution times of
RECORD and Amos. For example, when using 300 thousand
reads, producing the edited reference took approximately 1
hour for our approach, whereas it took 16 hours for Amos.
We emphasize that this observation refers to the practical
application of the software but not to the overall (theoretical)
computational costs: much of the observed difference may be
attributed to the fact that Velvet, which is used by default as
assembler in the proposed pipeline, is able to run in parallel
onmultiple cores, whereas Amos can be used on one core at a
time. Due to the fact that RECORD uses a de novo assembler
as a component of the proposed pipeline, our approach is
limited to middle-sized genomes that are closely related to
the reference genome; therefore it is currently not applicable
to the human and comparable genomes.

3.3. Evaluation on Real Data. Theprimary goal of the evalua-
tion on real datawas to show that our approach can be applied
in real experiments.

3.3.1. Assessment of the Accuracy in Comparison to the Base-
line. Asmentioned previously, in real-world settings, there is
usually no gold standard available. Therefore, the assessment
of the accuracy of the genome produced by any assembler is
inherently difficult. For this reason, in the subsequent exper-
iment, we evaluate the accuracy of the proposed method on
real data indirectly. In particular, we assess the quality of the
contigs and, more importantly, we compare our approach to
the baselines in the following setting: we examine how well
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Figure 6: Comparison of the proposed approach (RECORD) with two state-of-the-art genome assemblers on real data. In this experiment,
we compared assemblies resulting from various number of experimental reads to the assembly which is produced by Amos using all the
experimental reads; that is, the target genome is the assembly produced by Amos using all the reads. In this case, the reference genome
exhibits 99.7 percent identity with the result of Amos which is used as the gold standard. The diagrams follow the same structure as the one
in Figure 4.

we can reconstruct the genome using relatively small subsets
of all the available reads. These subsets are uniform random
samples taken from the set of all the reads: each read has
the same probability of being included in the sample. Paired-
end reads are sampled together with their mates; that is,
either both sequences corresponding to a particular paired-
end read are selected or none of the sequences of that paired-
end is selected.

In the aforementioned context, as gold standard, that is,
target genome, we consider the genome produced by Amos
when using all the reads for the assembly. We note that
this leads to an evaluation in which Amos has an inherent
advantage against our approach, as unfortunately we cannot
have an unbiased reference.

We used real-world experimental reads graciously pro-
vided by dr Andrzej Dziembowski’s group, coming from an
unpublishedChIP-seq experiment in a yeast species.The data
contained approximately 4.5 million paired-end short reads
of length of 100.

Figure 6 shows the results. The diagrams follow the same
structures as the ones presented at the end of Section 3.2; that
is, the diagram (a) shows the number of bases in the target
genome that are covered by the assembly contigs as function
of the number of reads that were used. The second diagram
(b) shows the accuracy, that is, the overall percentile identity
between the target genome and the contigs of the assembly.
The third diagram (c) shows the number of those largest con-
tigs that together cover at least 50% of the target genome. In
all the three diagrams, the horizontal axis shows the size of the
sample (i.e., the number of paired-end reads) used to assem-
ble the genome. As one can see, our approach, RECORD,
systematically outperforms the baselines in terms of accuracy
and coverage of the genome. Note that, in case of using very
few reads, Velvet achieves as good accuracy as our approach;
however, the contigs it produces have very low coverage.
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Figure 7: Proportion of ambiguously mapped contigs (before the
selection of the best mapping for each contig) in case of experiments
on publicly available data sets.

3.3.2. Characteristics of theAssembly of PubliclyAvailableData
Sets. In order to assist reproducibility of our results, we used
publicly available real short read data from the NCBI Short
Read Archive. We used data originating from three different
species: plant (A. thaliana), fly (D. melanogaster), and yeast
(S. pombe). The identifiers of the short read collections are
shown in the third column of Tables 2 and 3.

We set the 𝑘-mer size for the assembly, that is, the second
step of our approach, in accordance with length of the short
reads in the archive and the (approximate) size of the target
genome. In particular, similarly to the previous experiments,
we set 𝑘 = 21 for yeast (short read length = 44), while we used
slightly larger settings for the other two species: we set 𝑘 = 45
in case of flower (short read length = 80) and 𝑘 = 25 for fly
(short read length = 36).

Tables 2 and 3 show the most important characteristics
of the resulting assembly contigs and the edited reference.
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Table 2: Assembly of real experimental reads (contigs).

Species Number Experimental reads Length (Mb) # ctgs N50 Cov

A. thaliana
A.1 [SRR402840, SRR402839] 113.2 250148 19464 39.6x
A.2 [SRR402842, SRR402841] 112.4 296438 18916 24.4x
A.3 [SRR402844, SRR402843] 113.1 243375 20494 30.5x

D. melanogaster
D.1 [SRR066834, SRR066831] 122.6 460842 58648 2.6x
D.2 [SRR066835, SRR066832] 122.6 461044 58535 2.1x
D.3 [SRR066836, SRR066833] 122.6 460200 58415 2.4x

S. pombe

P.1 [SRR948260, SRR948250] 15.2 10384 8934 32.3x
P.2 [SRR948261, SRR948251] 12.2 8129 11132 18.3x
P.3 [SRR948262, SRR948252] 12.1 8571 6696 26.5x
P.4 [SRR948266, SRR948272] 12.1 7589 10144 21.5x
P.5 [SRR948267, SRR948273] 12.0 9214 4927 31.6x
P.6 [SRR948268, SRR948274] 12.0 8964 5696 28.1x
P.7 [SRR948269, SRR948275] 12.1 8269 8918 27.4x

Table 3: Assembly of real experimental reads (edited reference).

Species Number ed.len.
(Mb) % ref % asm # ctgs % IDY

A. thaliana
A.1 109.9 91.8 97.3 51769 99.967
A.2 106.4 89.0 95.5 58052 99.918
A.3 109.8 91.8 97.3 54185 99.972

D. melanogaster
D.1 117.4 82.1 95.8 50598 99.985
D.2 117.0 81.8 95.4 50606 99.986
D.3 117.2 82.0 95.6 50630 99.986

S. pombe

P.1 12.0 95.1 78.9 3548 99.995
P.2 12.0 95.2 98.4 2931 99.994
P.3 12.0 95.0 99.2 4249 99.996
P.4 12.0 95.3 99.2 3054 99.994
P.5 11.9 94.6 99.2 5287 99.996
P.6 12.0 94.9 100.0 4762 99.996
P.7 12.0 95.3 99.2 3465 99.994

In particular, the fourth column of Table 2 shows the total
length of the assembly contigs; the fifth column shows the
number of all the contigs, while in the sixth column the N50
of the contigs is shown. The last column shows the coverage
of experimental reads calculated as follows:

Cov =
read length × number of reads

genome size
. (2)

The third column of Table 3 shows the total length of the
replaced segments, while the fourth and fifth columns show
in percent the ratio of the length of the replaced segments rel-
ative to the length of the reference and the total length of the
assembly contigs, denoted as % ref and % asm, respectively.
The sixth column of Table 3 shows the number of contigs
that were used while editing the reference. The last column
of Table 3 shows the overall percentile identity between the
edited reference and the original reference.

Figure 7 shows the proportion of ambiguously mapped
contigs (before the selection of the best mapping for each

contig) for each experiment shown in this section. As one
can see, the proportion of ambiguouslymapped contigs varies
between 4% and 8% in case of S. pombe; it is around 10% in
case of D. melanogaster; and it is remarkably higher, around
35%, for A. thaliana.

The results in Table 3 show that the total length of the
assembly is close to the genome size, indicating the complete-
ness of the assembly. However, the relatively large number of
contigs in the raw assembly output can be seen as an indica-
tion that the assembler had difficulties with particular regions
of the genome, and therefore a large number of short frag-
ments may have been produced. This is especially visible in
the case ofD.melanogaster, where two factors influencing the
quality of assembly are combined: low read coverage and low
read length.

According to the proposed procedure of editing the
reference, a contig may be left out if it can not be mapped to
the reference or ifMUMmer considers it too short to produce
a useful alignment. As we can see, the number of contigs
contributing to the edited reference is substantially less than
the total number of contigs. However, in terms of length,
almost the entire assembly is used; for example, in each of the
D. melanogaster data sets the edited assembly utilizes ∼11% of
all contigs, covering over 95% of the assisted assembly. This
shows that reference editing relies on a moderate amount of
long contigs rather than on a bulk of short ones.

The edited part of the genome in A. thaliana is slightly
smaller than in D. melanogaster, but the number of con-
tributing contigs is slightly larger.Therefore, contigs obtained
for the former organism are generally shorter than those
obtained for the latter (this is also in accordance with the
observation that N50 of A. thaliana is ∼3× lower than N50
of D. melanogaster). Shorter contigs are more likely to be
nonuniquely mapped, as we can observe on Figure 7; the
proportion of ambiguously mapped contigs is similar to the
proportion obtained in simulated data for S. pombe and
D. melanogaster, while it is remarkably higher forA. thaliana.

Percentages of replaced segments in genome editing (%
ref and% asm) are also similar to those observed in simulated
data for two of our species (A. thaliana and S. pombe), while
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they are slightly lower for D. melanogaster. This behavior
is explained by the difference in the coverage, which is in
D. melanogaster an order of magnitude lower than in the two
other species.The results indicate that the outputted genomes
are closely related to the reference. This is expected, since the
genomes of individuals are close to a reference genome of the
respective species.

Overall, the results on real-world data are similar to those
on simulated data (in some respects, e.g., N50, even better).
Visibly more variability is observed between results on real
data sets with different characteristics: read length, coverage,
and so forth.

4. Conclusions

In this paper, we proposed a new approach for reference-
assisted assembly of closely related genomes. Our approach
takes into account that the actual genome of the studied
organismmay be slightly different from the reference genome
of that species leading to potentially fewer errors in down-
stream analyses of the sequenced read abundances.

We have assessed the performance of our method on an
artificially simulated mutated eukaryotic genome, showing
that RECORD produces contigs with very low error rate (less
than 0.5 percent) and after merging them with the original
assembly leading to error rates smaller than in simpler de
novo assembly technique (Velvet) as well as more general
assisted assembly approach (Amos).

Further examination of the results in comparison to
Amos and simple Velvet indicated that our approach is most
useful in the case where we have relatively few reads at our
disposal; both of the competing tools struggled with the data
sets where the number of reads was low.

The same seems to be true in case of a real data set that we
analyzed in Section 3.3.1. Even though the numbers of reads
are much higher, we can still see the difference between our
method and the more traditional approaches. Even though
the genome size is small, we can see that RECORD shows
clearly superior accuracy with up to 3 million reads and all
measures are clearly better at approximately 1 million reads.

Finally, we apply RECORD to more than 10 publicly
available data sets from Short NCBI Read Archive to show
its applicability in practical situations. We can see in all cases
that not only is RECORD able to produce results for much
larger genomes (up to 140Mb) but the estimated divergence
between the examined genome and the reference is close to
one percent where we can expect RECORD to perform better
than its examined alternatives.

We provide a prototype implementation of this approach
as a set of scripts. It is available for download at our sup-
plementary website together with most of the data published
in the study allowing the readers to replicate our results and
adapt the method for specific applications.

Availability and Requirements

Project name: RECORD Genome Assembler
Project home page: http://sourceforge.net/projects/
record-genome-assembler/

Operating system(s): Linux

Programming language: Perl, Java

Other requirements: Velvet, MUMmer

License: Open Source

Any restrictions to use by nonacademics: no.
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