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Abstract

Quantifying signal transmission in biochemical systems is key to uncover the mechanisms that cells use to control their
responses to environmental stimuli. In this work we use the time-integral of chemical species as a measure of a network’s
ability to cumulatively transmit signals encoded in spatiotemporal concentrations. We identify a class of nonlinear reaction-
diffusion networks in which the time-integrals of some species can be computed analytically. The derived time-integrals do
not require knowledge of the solution of the reaction-diffusion equation, and we provide a simple graphical test to check if
a given network belongs to the proposed class. The formulae for the time-integrals reveal how the kinetic parameters shape
signal transmission in a network under spatiotemporal stimuli. We use these to show that a canonical complex-formation
mechanism behaves as a spatial low-pass filter, the bandwidth of which is inversely proportional to the diffusion length of
the ligand.
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Introduction

Cell survival hinges on the ability to respond to extracellular

stimuli and self-regulate in a changing environment. Intracellular

dynamics are controlled by intricate arrays of biochemical

networks, and in particular, the spatiotemporal dynamics of

species concentrations are key to a number of processes, including

cell signalling [1], pattern formation [2] and morphogenesis [3].

Quantifying the signal transmission properties of a network is key

to understand how its connectivity and parameters shape the

conversion of signalling cues into cellular responses, as well as the

detection of intervention points for engineering or therapeutic

applications.

Our goal in this paper is to provide tools for the mathematical

quantification of signal transmission in biochemical networks. We

use the time-integral of species concentrations as a proxy for the

ability of a network to transmit input cues. It represents the

cumulative effect of external stimuli on the chemical species and

has been used to discover an input amplification phenomenon in

the MAPK pathway [4], and to study the activation of cell

membrane receptor such as the epidermal growth factor and the

erythropoietin receptors [5,6].

We focus on networks of biochemical reactions subject to

molecular diffusion and spatiotemporal stimuli. We aim at

obtaining exact formulae for the time-integrals of species concentra-

tions. An analytic approach can reveal structural properties of the

model under consideration, as opposed to simulation-based studies

where it is unclear if predictions are rather a consequence of the

particular parameter values examined. In the case of diffusionless

systems, the work in [7] provided exact expressions for the L2

norm of a class of signalling cascades. However, similar results for

reaction-diffusion systems remain elusive, owing to the fact that

the vast majority of nonlinear reaction-diffusion systems are

analytically intractable.

A complete solution to this problem, for any reaction-diffusion

network, may require analytic solutions of the reaction-diffusion

partial differential equation (PDE). We have previously identified a

class of nonlinear networks in which the time-integrals of some

species can be computed as a series [8]. Here we build on these

results and show that in this class the time-integrals satisfy a linear

inhomogeneous differential equation. Solving the derived equation

leads to analytic expressions for the time-integrals without knowing

the solution of the nonlinear PDE. We further provide a graphical

characterization of the class of networks in terms of the Species-

Reaction graph [9]. This provides a simple test to determine if a

given network belongs to the derived class and to explore other

network topologies that are amenable to our analysis. Applying

our results to a complex-formation mechanism with sigmoidal

kinetics, we show that it behaves as a spatial low-pass filter and

that the temporal response can display a ‘‘waterbed effect’’

whereby concentrations ripple around their steady state and lead

to a nil time-integral.
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Results and Discussion

Exact Computation of the Time-integrals
We consider networks composed of n species interacting

through m reactions:

Xn

i~1

aijSi

vj Xn

i~1

bijSi, j~1,2, . . . ,m, ð1Þ

where Si is the ith reactant or product for the jth reaction. The

numbers aij and bij denote the stoichiometric coefficients of the

corresponding species. The reaction-diffusion model for the

network is

Lc

Lt
~D+2czNv(c)zBu, ð2Þ

where c(t,x) is the vector of n species concentrations, u(t,x) is a

vector of ‘ influx/efflux rates accounting for environmental

stimuli, and +2 is the Laplacian operator (t and x denote time

and space coordinates, respectively). The nonlinear vector

function v(c) contains the m reaction rates, whereas the matrices

N[Rn|m (with Nij~bij{aij ), D~diagfdig[Rn|n and B[Rn|‘

describe the stoichiometry, diffusion coefficients, and which

species are subject to external stimuli.

We focus on the response of the reaction-diffusion network to an

initial spatial perturbation c(0,x) and a transient spatiotemporal

stimulus u(t,x) such that limt?? u(t,x)~0 and
Ð?

0
u(t,x)dtv?.

For simplicity here we will focus on a 1D domain V(R with the

same boundary conditions for all species. Once the effect of the

stimulus u(t,x) has vanished, we assume that the network reaches a

unique homogeneous equilibrium �cc.

One way of quantifying the network response is by means of the

time-integral:

Ic(x)~

ð?
0

c(t,x){�ccð Þdt, ð3Þ

which is finite provided that the equilibrium is exponentially

stable. We relabel and partition the species and reaction rate

vectors as follows:

N vT~ vNL
T vL

T
� �

, where vNL contains r nonlinear rates and

vL contains the remaining (m{r) affine rates,

N and cT~ cNL
T cL

T
� �

, where cNL contains the k species that

react only in nonlinear reactions, cL includes the remaining

(n{k) species.

The affine reaction rates contain a combination of zeroth and

first order terms of the form vL~p{GcL, with p a vector of

constant production rates and G is a matrix of first order kinetic

constants. The nonlinear rates typically model saturable binding

kinetics such as Michaelis-Menten or Hill kinetics [10], together

with linear dissociation (note that in our notation reversible

reactions are taken as a single rate). If k§1 we can find a labelling

for the reaction rates so that the stoichiometric matrix has a block-

triangular form

N~
N1 0

N2 N4

� �
, ð4Þ

with N1[Rk|r, N2[R(n{k)|r and N4[R(n{k)|(m{r).

We found that under the following conditions (see Analysis

section for details):

C1 the species in cNL do not diffuse, and

C2 the number of species in cNL is equal to the number of

nonlinear reactions (i.e. r~k), the time-integral of cL satisfies the

differential equation

D4+2ICL
(x){N4GICL

(x)~F q(x)zBIu(x)ð Þ, ð5Þ

where D4[R(n{k)|(n{k) is the diffusion matrix of cL,

F~ N2N1
{1 {I

� �
, q(x)~c(0,x){�cc, and Iu(x)~

Ð?
0

u(t,x)dt.

The solution of (5) must satisfy boundary conditions consistent

with those of the reaction-diffusion PDE. Equation (5) is an

inhomogeneous linear differential equation with constant coeffi-

cients, and therefore depending on the spatial profile of the stimuli

u and initial condition c(0,x), it may be possible to obtain a closed-

form solution for the time-integral ICL
(x).

In the general case when a closed-form solution is not available,

equation (5) can be solved by projecting the solution on an

orthonormal basis for the spatial domain V. To this end, we write

q(x)~
P?

i~0 wq iwi(x) and Iu(x)~
P?

i~0 wuiwi(x), where

fwi(x)g?i~0 is a complete orthonormal basis of V. We choose the

basis as orthonormal eigenfunctions of the Laplacian, i.e.

+2wi~{liwi subject to the boundary conditions [11]. The

time-integrals are then ICL
(x)~

P?
i~0 wiwi(x) with coefficients

wi~Q(li) wqizBwui

� �
, ð6Þ

and Q(li)~{ liD4zN4Cð Þ{1F. The derived series is exact and

we can use it to compute the time-integrals of cL without knowing

the solution of the nonlinear PDE. Most importantly, the series

coefficients wi are explicitly given in terms of the geometry and

boundary conditions (comprised in the eigenvalues li), the initial

condition and the equilibrium (comprised in the function q(x)),
and the total concentration supplied to and consumed from the

network (comprised in the integral of u). Note that these

coefficients can also be obtained by linearizing the PDE in (2),

but such an approach provides no guarantee of the exactness of

the solution. Linearized solutions neglect the nonlinear terms in

the PDE, and therefore they are valid only for small perturbations

around the equilibrium. In our case, conditions C1 and C2
guarantee that the derived time-integral is exact, defining a class of

nonlinear networks for which the time-integral can be computed

analytically for small or large perturbations.

Graph Interpretation of the Network Conditions
Conditions C1 and C2 are structural (hence independent of the

functional form of the nonlinearities) and can be interpreted in

terms of a graph. We use the Species-Reaction graph (Fig. 1 A),

composed of two sets of nodes [9]: species nodes, denoted as S-

nodes, and reaction nodes, denoted as R-nodes. The graph is

bipartite–so that reaction nodes only link to species nodes, and vice

versa–and is defined as follows: an S-node ci is connected to an R-

node vj if vj depends on ci (i.e. Lvj=Lci=0). As shown in Fig. 1 A,

we color the S-nodes black (red) if they are diffusive (nondiffusive)

species, and the R-nodes black (red) if they correspond to linear

(nonlinear) reaction rates. With these definitions, conditions C1
and C2 amount to:

C* all S-nodes that are not connected to black R-nodes are red,

and their number equals the number of red R-nodes.

As illustrated by the examples in Fig. 1 A, under condition C�

the network graph contains a red subgraph that corresponds to the

Signal Transmission in Reaction-Diffusion Networks
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nonlinear and nondiffusive portion of the network that is not

directly connected to any linear reactions (see Fig. 1 B for

examples where the conditions are not met). Under these

conditions we can use our formula to compute the time-integrals

of all the species outside the subgraph.

Condition C1 is generally valid for species with large molecular

weight or that are spatially fixed, such as membrane-bound

receptors or molecules anchored to the cytoskeleton. Condition

C2 is more restrictive because it requires the nonlinear and

nondiffusive part of the network to have as many reactions as

species. A particularly relevant system that meets the conditions is

the generic complex-formation network in Fig. 1 C, where a

diffusible ligand forms a complex with an immobile molecule. This

mechanism can be found, for example, in ligand-receptor

interactions [5] and protein sequestration [12]. In the latter case,

if the sequestered protein is a transcription factor for a specific

gene (Fig. 1 D), cells can use sequestration to downregulate gene

expression in response to intracellular signals.

If we write the perturbation (both the initial spatial perturbation

e(0,x) and the spatiotemporal stimulus u) in the basis of V, the

coefficients wi in (6) can be seen as the product of those of the

perturbation and the coefficients comprised in the matrix Q(li).
For a number of spatial geometries, the eigenfunctions of the

Laplacian are typically sine and/or cosine functions [13], and thus

the resulting time-integral can be understood as a filtered version

of the perturbations. The form of the coefficients in (6) also

indicates that if a column of B is orthogonal to a row of Q(li) for

all i, then the corresponding input will generate a nil time-integral.

We can use this property to detect input channels that generate a

‘‘waterbed effect’’, where concentrations ripple around the

equilibrium and lead to a nil time-integral.

Complex-formation Network under Spatiotemporal
Stimuli

To illustrate the utility of our approach we use it in the complex-

formation network in Fig. 1 C. The reaction-diffusion PDE for this

network in the domain V~½0,L� is

Lc1

Lt
~{s(c2)c1zk1bc3, ð7Þ

Lc2

Lt
~d2+2c2{s(c2)c1zk1bc3{c2c2zk2zu, ð8Þ

Lc3

Lt
~s(c2)c1{k1bc3{c3c3zk3, ð9Þ

where s(c2)~k1f c
h
2(hhzch

2), hw0,hw0 is a sigmoidal nonlinearity

describing the binding between c1 and c2, k1b is their dissociation

rate constant, ki are the synthesis rates, and ci are the degradation

rate constants.

Figure 1. Conditions for the computation of the species’ time-integrals in terms of the Species-Reaction graph. The conditions amount
to the graph having a (possibly disjoint) subgraph containing every red R-node with all their adjacent red S-nodes not linked with any black R-nodes;
in this subgraph, the number of red R-nodes and red S-nodes must be the same. (A) Networks with two nonlinear reactions (r~k~2) satisfying the
conditions. The red subgraphs are marked with dashed boxes. (B) Networks that do not satisfy the conditions. (C) A generic complex-formation
mechanism satisfying the conditions. A spatially-fixed molecule c1 binds a diffusible ligand c2 to form a complex c3. Species c2 and c3 are synthesized
at a constant rate and linearly degraded. External stimuli of ligand can be modeled via a spatiotemporal influx u(t,x). The Species-Reaction graph is
shown in the inset. (D) Genetic regulation via protein sequestration [12] is an instance of the mechanism in C. A nondiffusive inhibitor I sequesters a
transcriptional activator T� to form an inactive complex T , causing the downregulation of gene expression.
doi:10.1371/journal.pone.0062834.g001
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We partition the rate vector into its nonlinear and linear com-

ponents, i.e. vNL~s(c2)c1{k1bc3 and vL~ k2{c2c2 k3{c3c3½ �T ,

and the species as cNL~c1 and cL~ c2 c3½ �T . For homoge-

neous Neumann boundary conditions (i.e. Lci=LxDx~0,L~0 for

i~1,2,3), it can be shown that the network has a unique

homogeneous equilibrium point at �cc1~k1bk3= c3s k2=c2ð Þð Þ,
�cc2~k2=c2 and �cc3~k3=c3. The blocks of the stoichiometric

matrix are N1~{1, N2~ {1 1½ �T and N4~I, whereas the

matrix of first order kinetic constants is C~diagfc2,c3g and

B~ 0 1 0½ �T . The eigenfunctions of the Laplacian in ½0,L�
are w~f

ffiffiffiffiffiffiffiffi
1=L

p
,q cos px=Lð Þ,q cos 2px=Lð Þ, . . .g, with li~(ip=L)2

and q~
ffiffiffiffiffiffiffiffi
2=L

p
. From (5) we can obtain an ordinary differential

equation for the integral of c2 and an explicit expression for the one

of c3 (note that c3 does not diffuse):

d2

L2IC2
(x)

Lx2
{c2IC2

(x)~c1(0,x){c2(0,x){(�cc1{�cc2){Iu(x), ð10Þ

IC3
~

1

c3

c1(0,x)zc3(0,x){�cc1{�cc3ð Þ, ð11Þ

with Iu(x)~
Ð?

0
u(t,x)dt and subject to boundary conditions

LIc2
=LxDx~0,L~0. We next consider the network response to two

types of perturbations: a purely spatial perturbation and a

spatiotemporal influx of ligand.

Spatial Perturbation
We first consider the case of an initial spatial perturbation in c1

of the form c1(0,x)~�cc1zf (x), where f (x) is the spatial profile of

the perturbation and there is no stimulus (u~0). The other species

are initially at equilibrium, i.e. ci(0,x)~�cci for i~2,3, so that

q(x)~ f (x) 0 0½ �T in (5). We can write the perturbation in the

basis as

f (x)~
~ff 0

ffiffiffiffi
L
p

2
w0z

ffiffiffiffi
L

2

r X?
i~1

~ffiwi(x),x[½0,L�, ð12Þ

with ~ffi~(1=L):
Ð L

{L
~ff (x) cos (ipx=L)dx and ~ff (x) is the even 2L-

periodic extension of f (x). Note that the expansion in (12)

converges to f (x) only in the domain ½0,L�. Using (6) we get the

time-integrals

Ic2
(x)~{

~ff 0

2c2

{
X?
i~1

~ff i

(ip=L)2d2zc2

cos (ipx=L), ð13Þ

and Ic3
(x)~f (x)=c3. In Fig. 2 we show the response of the

network to a Gaussian spatial perturbation under zero flux

boundary conditions, together with the time-integrals Ic2
and Ic3

.

The coefficients ~ffi describe the frequency content of the

perturbation (plus spurious harmonics arising from the periodic

extension). The expressions for Ic2
and Ic3

therefore indicate that

the time-integral of the diffusible species is a filtered version of the

spatial perturbation, and this filtering effect disappears in the case

of the immobile species. Diffusion of c2 acts as a spatial filter with a

low-pass characteristic [14], and the magnitude of its frequency

response is K2(v)~1= v2d2zc2

� �
, representing the attenuation

factor for a spatial harmonic of frequency v~ip=L.

An important parameter of reaction-diffusion systems is the

diffusion length k2~
ffiffiffiffiffiffiffi
d2t
p

, where t is the species half-life. It

represents the distance a molecule typically diffuses over its

lifetime and determines the length scale of the diffusion process

[15]. The cutoff frequency of the spatial filter (the frequency above

which harmonics are attenuated by at least 50%) is vc~
ffiffiffiffiffiffiffiffiffiffiffi
c2=d2

p
,

thus inversely proportional to the diffusion length. This indicates

that in the mechanism of Fig. 1 C, ligands with a short diffusion

length behave as high-bandwidth filters that encode a rich

harmonic content in their time-integral.

Conversely, molecules with long diffusion lengths may suppress

all harmonics and lead to a spatially homogeneous time-integral.

This attenuation can be drastic, for example, in cytosolic proteins

of S. cerevisiae, whose mean diffusion coefficient and diffusion length

have been recently estimated at d*4mm2=s and k*160mm
(based on 1400 proteins [16]). Considering the typical diameter of

S. cerevisiae L~4mm, we conclude from K2(v) that the first

harmonic of the perturbation is subject to *90% attenuation, and

any higher harmonic will be attenuated by a larger factor. In these

cases, we suggest that information encoded in the perturbation

may be more faithfully transmitted through transient-dependent

features, such as the peak value or the response time of the species

concentrations. These quantities have been extensively used in

diffusionless models for biochemical networks [4,6], but remain

largely unexplored when molecular diffusion is not negligible.

Spatiotemporal Influx
We now consider that all species are initially in equilibrium, i.e.

ci(0,x)~�cci for i~1,2,3, and a spatiotemporal influx of ligand

u(t,x)~g(t)f (x). In this case we have q(x)~0 and from (6) we get

Ic2
(x)~

G~ff 0

2c2

zG
X?
i~1

~ff i

(ip=L)2d2zc2

cos (ipx=L), ð14Þ

and Ic3
~0 with G~

Ð?
0

g(t)dt. In Fig. 3 we show the network

response to a spatiotemporal Gaussian pulse of ligand influx under

zero flux boundary conditions, together with the time-integral Ic2
.

The nil time-integral of c3 indicates that the areas above and

below the equilibrium cancel out, leading to a waterbed effect. In

Fig. 3 A we effectively observe that c3 peaks and then undershoots

below its equilibrium, subsequently recovering back to its pre-

stimulus level. The time-integral of c3 is zero for all points in space

and reveals a fundamental tradeoff in the response: its peak can be

amplified only at the expense of a deeper valley under the

equilibrium. This type of tradeoff arises from the network structure

and is independent of the parameter values, emphasizing the role

of model analysis in applications that require a precise control of

biological responses, such as the delivery of growth factors in tissue

engineering [17] or the control of pattern formation [18].

Concluding Remarks
In this work we discussed the analytic computation of time-

integrals in nonlinear reaction-diffusion systems. We found

conditions under which the time-integrals of some species satisfy

a linear differential equation, the solution of which can be written

as a function of the kinetic parameters, the geometry and the

spatiotemporal stimuli. The derived conditions represent con-

straints on the interaction topology between the nonlinear rates

and nondiffusive species. They depend only on the network

topology and are independent of the functional form of the kinetic

nonlinearities.

Signal Transmission in Reaction-Diffusion Networks
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We recast the conditions in terms of a graph that provides a

simple test to check their validity in any given network and a

means to find other topologies where our analysis can be applied.

The graph interpretation suggests the conditions are well suited for

systems with a small number of nonlinear reactions and whose

diffusive reactants appear also in first order reactions. This

narrows down the class of networks amenable to our result, albeit

this is not surprising since analytic solutions for nonlinear PDEs

are rarely available. Moreover, typical reaction-diffusion models

have a small number of species and reactions, as their analysis can

become increasingly complex in high dimensions (even in low

dimensional cases they can display a wide range of complex

Figure 2. Response of the network in Fig. 1 C to a spatial perturbation in c1. (A) Species concentrations. (B) Gaussian perturbation

f (x)~e(x{L=2)2=0:02 and the time-integrals of species c2 and c3 . The parameters are L~1mm, k1f~4:10{4s{1, k1b~1:10{4s{1 , ki~f2,4g:10{4mM=s,
d2~10{5mm2=s, c2,3~2:10{4s{1 , h~1mM, and h~2.
doi:10.1371/journal.pone.0062834.g002

Figure 3. Response of the network in Fig. 1 C to a spatiotemporal influx of ligand c2. (A) Species concentrations; the white crosses mark
the peak and valley of c3. (B) Gaussian influx u~0:1e(t{ton)2=5:103

e(x{L=2)2=0:02 and time-integral of the ligand. Parameter values are the same as in Fig.
2.
doi:10.1371/journal.pone.0062834.g003
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dynamics [19]). In those models that do satisfy the required

conditions, the analytic relationship between the time-integrals

and the model parameters can reveal substantial insights into the

network dynamics.

We showed that a model for protein sequestration–a ubiquitous

mechanism in cell regulation–can be readily analyzed with our

theory. Other relevant mechanisms amenable to our approach

include membrane receptor systems [20] and calcium sequestra-

tion by immobile buffers [21]. We illustrated our results in a

canonical complex-formation mechanism with sigmoidal binding

kinetics. This is a non-trivial and biologically relevant system

where the reaction-diffusion PDE has no known analytic solution.

We showed that this mechanism behaves as a low-pass filter and

displays a waterbed effect [22] in the dynamic response of the

complex for all parameter values and a wide range of spatiotem-

poral stimuli. Analytic approaches such as the one presented here

can shed light on the mechanisms by which living cells modulate

their responses to environmental cues. This can ultimately lead to

the identification of key control parameters that can be targeted to

modify cellular responses, for example, with the use of therapeutic

drugs.

Analysis
Here we show how to obtain the differential equation for the

time-integrals in (5), and the series coefficients in (6). With the

chosen partitions for the reaction rates and species concentrations,

we can write

N~
N1 0

N2 N4

� �
,

Lv

LcD�cc~
J1 J2

0 J4

� �
, ð15Þ

with N1[Rk|r, N2[R(n{k)|r, N4[R(n{k)|(m{r), J1[Rr|k,

J2[Rr|(n{k), and J4[R(m{r)|(n{k). Exponential stability of the

equilibrium �cc implies that the matrix

A~
LNv

Lc D
�cc
~

N1J1 N1J2

N2J1 N2J2zN4J4,

� �
ð16Þ

is invertible [23], which means that N1 is full column rank (note

that otherwise, if there exists a vector w=0 such that wT N1~0,

then wT 0
� �

A~0, which implies that det A~0 and contradicts

the invertibility of A). In addition, by Condition C2 the matrix N1

is square and therefore N1
{1 is well defined. By Condition C1 the

reaction-diffusion PDE in (2) can be written as

LcNL

Lt
~N1vNLzB1u, ð17Þ

LcL

Lt
~D4+2cLzN2vNLzN4vLzB2u, ð18Þ

where D4 is the diffusion matrix of cL and BT~ B1
T B2

T
� �

.

Note that setting (17) and (18) to zero for u~0, we get that any

homogeneous equilibrium �cc satisfies vNL(�cc)~0 (because N1 is a

nonsingular matrix) and N4vL(�ccL)~0. Using the form of the affine

rates vL~p{CcL, we conclude that the homogeneous equilibri-

um for cL satisfies N4C�ccL~N4p. From (17) we can solve for vNL to

get vNL~N1
{1 LcNLLt{B1uð Þ, which after substituting in (18)

and rearranging terms yields

D4+2cL{N4CcLzN4p~{F
Lc

Lt
{Bu

	 

, ð19Þ

with F~ N2N1
{1 {I

� �
. Using the relation N4C�ccL~N4p, the

equation in (19) can be rewritten as

D4+2 cL{�ccLð Þ{N4C cL{�ccLð Þ~{F
Lc

Lt
{Bu

	 

: ð20Þ

The differential equation for IcL
(x) in (5) can be obtained by

integrating (20) from t~0 to t~?. To get the coefficients for the

series in (6), we substitute the series for IcL
(x), q(x) and Iu(x) in (5):

D4+2{N4C
� �X?

j~0

wjwj(x)~F
X?
j~0

wq jzBwuj

� �
wj(x): ð21Þ

Since the basis satisfies the eigenvalue problem +2wi~{liwi,

from (21) we get

X?
j~0

ljD4zN4C
� �

wjwj(x)~{F
X?
j~0

wqjzBwuj

� �
wj(x), ð22Þ

Postmultiplying (22) by wi(x) and integrating over the spatial

domain leads to one equation for each coefficient wi

liD4zN4Cð Þwi~{F wq i
zBwui

� �
, ð23Þ

for i~0,1, . . .. To obtain (23) we used the orthonormality of the

basis (i.e.
Ð
V wiwjdx~1 for i~j and zero otherwise). The final

expression for the coefficients in (6) can be obtained directly from

(23).
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