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Abstract Consequences of ionization were studied by
quantum-chemical methods (DFT and PCM) for 1-
methylcytosine (MC)—a model of the nucleobase cytosine
(C) connected with sugar in DNA. For calculations, three
prototropic tautomers (one amino and two imino forms) and
two imino zwitterions were considered, including conforma-
tional or configurational isomerism of exo heterogroups.
Ionization and interactions between neighboring groups affect
intramolecular proton-transfers, geometric and thermodynam-
ic parameters, and electron delocalization for individual iso-
mers. We discovered that an imino isomer is present in the
isomeric mixture in the highest amount for positively ionized
MC. Its contribution in neutral and negatively ionized MC is
considerably smaller. Acid-base parameters for selected radi-
cal ions were estimated in the gas phase and compared to those
of neutralMC. Gas-phase acidity of radical cations is close to
that of the conjugate acid of MC, and gas-phase basicity of
radical anions is close to that of the conjugate base of MC.
Various routes of amino-imino conversion between neutral
and ionized isomers were considered. Energetic-barrier for

intramolecular proton-transfer in MC is close to that in the
parent system—formamidine.

Keywords Acid-base parameters . Delocalization of n- and
π-electrons . Effects of ionization . 1-Methylcytosine .

Prototropic tautomers and zwitterions . Tautomeric
conversions

Introduction

Ionization reactions, in which a neutral molecule (M) changes
its oxidation state and transforms into charged radicals, radical
cation (M – e→M+•) or radical anion (M+e→M-•), are well
recognized in chemistry [1, 2]. A large number of documents
can be found in the literature for simple inorganic and organic
species, as well as for more complex biomolecules. Energetic
parameters, called the Bionization potential^ (IP) or
Bionization energy^ (IE) for positive ionization and the
Belectron affinity^ (EA) for negative ionization, have been
experimentally determined in the gas phase for about a thou-
sand compounds and compiled in the NIST Chemistry Web
Book, available online since 1996 [3].

Ionized forms, radical cations and radical anions, can
be generated in the presence of ionizing agents, e.g., elec-
trons, atoms, ions, etc. They can be identified in various
types of mass spectrometers during positive or negative
ionization [3–6]. They can also be detected by other spec-
troscopic techniques such as zero kinetic energy photo-
electron spectroscopy [7], infrared depletion spectroscopy
[8, 9], or time-resolved resonance Raman spectroscopy
combined with pulse radiolysis [10–14]. Ionization reac-
tions and mechanisms of one-electron loss or one-electron
gain can be analyzed by quantum-chemical methods, ap-
plied to isolated (in vacuo), as well as to solvated
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molecules [15–21]. For simple molecules, the IP (or IE)
and EA values are associated with an atom or group
which loses or gains one-electron [15]. For more complex
biomolecules, for which prototropic tautomerism coupled
with resonance very often takes place, isomers favored for
neutral forms not always predominate for charged radicals
[22–24], and it is difficult to indicate the ionization site
from simple experiments. To understand the ionization
processes and to explain the mechanisms of ionization
reactions for tautomeric systems, quantum-chemical cal-
culations should be performed for complete tautomeric
mixtures of neutral and ionized forms, and physicochem-
ical properties analyzed in detail.

For free nucleobases, uracil (U), thymine (T), cytosine (C),
adenine (A), guanine (G), and for their model compounds,
imidazole, purine, hydroxy- and amino-azines, the complete
tautomeric mixtures in the gas phase have already been inves-
tigated [23–28]. One-electron loss and one-electron gain
change acid-base properties of tautomeric groups, and conse-
quently, change compositions of tautomeric mixtures and
properties of nucleobases. These effects shed light on chemi-
cal changes in DNA, affecting aging processes, as well as
various diseases, tumors, and cancers.

The phenomenon of prototropic tautomerism in hetero-
cycles was already well known in the 1950s [29], when
the molecular structure of nucleic acids was proposed by
Watson and Crick [30]. The authors suggested that point
mutations can occur in nucleic acids when canonical tau-
tomeric forms of nucleobases change into their rare forms
[31]. In normal nucleic acids, nucleobases have their ca-
nonical forms: amide and amino forms. Nevertheless,
their rare tautomers, iminol, and imino forms are also
possible (Fig. 1). In normal DNA, cytosine (C) is paired
with guanine (G), and thymine (T) is paired with adenine
(A) [30]. However, the pairing can be impossible when
the tautomeric preferences change. For example, the rare
isomer of cytosine can be paired with adenine, and during
DNA replication it can be replaced by thymine leading to
the GC→AT transition [31]. Mispairs can also take place

when one of the bases is ionized [32]. This type of
mispair seems to occur most frequently than the mispairs
being a consequence of neutral rare forms.

DNA mutations were theoretically modeled by Löwdin
in the 1960s [33, 34]. Taking the Watson and Crick hy-
pothesis into account, the author proposed a model in
which a double intermolecular proton-transfer in base pair
GC or AT is possible. This proton-transfer can change the
canonical forms of nucleobases into their rare forms.
Consequently, after multiple DNA replications the GC
pair can be substituted by the AT pair and vice versa.
This pioneering model of double intermolecular proton-
transfer for neutral and ionized pairs has been extensively
studied by various quantum-chemical methods in the last
20 years. Some representative reports are cited here [32,
35–55]. Kumar and Sevilla [32], reviewing changes oc-
curring in DNA exposed to high-energy radiation, paid
attention to very fast (<20 ns) proton-coupled electron-
transfer and discussed numerous experimental and theo-
retical works on intermolecular proton-transfer for radical
ions. The authors found that in frozen aqueous solution
upon one-electron loss a nucleobase becomes more acidic
and can be deprotonated by a base, and upon one-electron
gain it becomes more basic and can be protonated by an
acid [56].

However, in the gas phase and in less polar environments,
such as lipids and proteins present in living organisms, acid-
base properties and proton-transfer reactions can be different
from those in aqueous solution. For example, in aqueous so-
lution amino acids and peptides exist in their zwitterionic
forms, whereas in the gas phase intramolecular proton-trans-
fers from acidic to basic groups for amphiprotic com-
pounds are prohibited (ΔG > 100 kcal mol-1) [57].
Another example is guanidine which is a very strong base
in aqueous solution (pKa > 13), whereas in the gas phase
its basicity is lower than that of triethylamine [3, 58].
Hence, it is possible that acid-base properties of radical
ions, their stabilities and reactivities can be different in
the gas phase than in aqueous solution.
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Some information on stability of gaseous radicals of
nucleobases can be found in reports of Tureček [5, 6], who
used MS technologies. Nevertheless, there are little data on
their acid-base properties. More information can be found for
hydrated radicals of nucleobases [12–14, 32, 56]. For exam-
ple, Sevilla and co-workers [56] proposed singly (pH 7-9) and
doubly (pH>11) deprotonated species for the guanine canon-
ical radical cation in frozen aqueous solution, whereas Choi
et al. [12] showed that the deprotonated guanine radical cation
can be rapidly converted by protonation to a new radical cat-
ion, its tautomer. The authors employed different spectroscop-
ic techniques. Sevilla and co-workers used ESR and UV-
visible spectroscopy, whereas Choi et al. applied time-
resolved resonance Raman spectroscopy combined with pulse
radiolysis. The phenomena observed by Sevilla, Choi, and
their co-workers clearly showed that proton-transfer reactions
for ionized nucleobases, not yet paired in the DNA structure,
may be crucial for better understanding various aging and
disease processes. These fascinating experiments and interest-
ing discussions between the authors [13, 14], encouraged us to
continue our studies on free nucleobases and their models,
undertaken about ten years ago.

In this work, we chose 1-methylcytosine (MC in Chart 1)
for modeling some tendencies of cytosine, combined with
sugar in the DNA structure, to intramolecular proton-transfers.
MC is frequently chosen to understand various properties of
cytosine included in nucleic acids [59–64], because its substi-
tution at N1 eliminates one labile proton and reduces a large
number of prototropic tautomers occurring for isolated cyto-
sine [28] to that possible for cytosine connected with sugar.
This change can induce significant differences in geometric
parameters and in relative stabilities of canonical and rare
forms of cytosine. For our investigations, the neutral (MC),
positively ionized (MC – e→MC+•), and negatively ionized
forms (MC+e→MC-•) were taken into account.

We studied the effects of positive and negative ionization
on MC isomers in two extreme environments, the gas phase
and aqueous solution. Two levels of theory were chosen here:
the density functional theory (DFT) method [65] with the
three-parameter hybrid functional of Becke [66] and the
non-local correlation functional of Lee, Yang, and Parr
(B3LYP) [67], and the 6-311+G(d,p) basis set [68], and the
polarizable continuum model (PCM) [69, 70]. For selected
isomers, we also tested the aug-cc-pVDZ basis set [71]. The

PCMmodel does not include typical specific interactions with
water molecules. Nevertheless, the PCM results can provide
information on medium-polarity effects. The B3LYP func-
tional was recommended and applied by Schaefer and co-
workers for charged forms, particularly for radical anions
[15, 20, 21, 50, 51], and used by Sevilla and co-workers for
ionized nucleobases [52, 53, 56]. It has been successfully ap-
plied to proton-transfer reactions for mono- and
polyfunctional bases [72, 73] as well as to tautomeric conver-
sions for simple [74–82] and more complex tautomeric sys-
tems including ionized nucleobases and their model com-
pounds [24–28]. The PCM method was already used for in-
vestigations of radical ions of DNA bases and also for estima-
tions of the IPs and/or EAs in aqueous solution [19, 83–85].
More details on selection of quantum-chemical methods are
given in Electronic supplementary material (ESM).

Methods

Geometries of neutral and ionized forms of 1-methylcytosine
(Fig. 2) were optimized at two levels of theory {B3LYP/6-311+
G(d,p) [65–68] and PCM(water)//B3LYP/6-311+G(d,p) [69,
70]} using the Gaussian-03 program [86]. For selected radical
anions, calculations were also carried out at the B3LYP/aug-cc-
pVDZ level [65–67, 71]. Thermodynamic parameters were es-
timated at the same level of theory which was applied to geom-
etry optimization. Computational details are given in ESM. The
geometry-based harmonic oscillator model of electron delocal-
ization (HOMED) indices [87, 88] were estimated for neutral
and ionized isomers ofMC using the same parameterization as
that described previously [28, 88]. Details on the HOMED
estimation are given in ESM. The harmonic oscillator model
of aromaticity (HOMA) index [89–91], and the harmon-
ic oscillator model of heterocyclic electron delocaliza-
tion (HOMHED) index [92] were not applied here for
MC for the reasons discussed previously [24, 26].

Results and discussion

Possible isomers for MC

Similar to the canonical form of cytosine included in DNA,
MC possesses one proton at N8 that can be intramolecularly
transferred between three tautomeric atoms, N8, O7, and N3.
Each proton-transfer is accompanied by migration of double
bond(s) [29]. The complete tautomeric mixture for MC con-
sists of three prototropic tautomers (1-3) (Fig. 2). Gutowski
and co-workers [23, 93], characterizing the valence anionic
states of MC, considered additionally two zwitterionic forms
(4a and 5a) with the proton at C5 and C6. Rotational and/or
geometric isomerism for exo groups (–OH and = NH,
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respectively) are also possible. Hence, considering these four
types of isomerism: prototropic tautomerism, formation of
zwitterions, rotational and geometric isomerism, a mixture
of 11 isomers ofMC should be analyzed to obtain a complete
picture of intramolecular proton-transfer. For neutral MC,
zwitterionic forms probably do not exist. However, they can
be stabilized by ions or free electrons [93]. They can occur for
ionized (redox) forms. Analogous to cytosine, present in nor-
mal DNA, the amino isomer 1 of MC can be called the
Bcanonical^ tautomer [30], and the isomer 2a, responsible
for DNA mutations, can be named the Brare^ form [31].

The mixture of all 11MC isomers can only be investigated
by quantum-chemical methods. Experiments give a possibili-
ty to characterize the major forms [94]. Rare isomers, and
sometimes even minor ones, are undetectable for tautomeric
systems. Very often, their signals, being in the background,
cannot be identified. Some isomers of neutral 1-
methylcytosine have already been studied in various environ-
ments [95–101]. There are also a few documents on radicals
[102–107] and metal complexes [108–110]. However, litera-
ture data are not complete forMC and only a little information
can be derived on ionization effects. Even for the neutral
forms, conformational or configurational isomerism of the
exo groups has not always been taken into account.

Geometries, charges, spin densities, and delocalization
of n- and π-electrons

DFT calculations showed that heavy atoms of neutral MC
isomers are in the ring plane (Table S1 in ESM) indicating

that n- and π-electrons are well delocalized. For the amino
tautomer 1, its exo NH2 group has a pyramidal conformation
analogous to that in adenine and other amino derivatives of
pyrimidine [24, 26, 81]. For the imino isomers 2a-3d, proton-
transfer from N8 to N3 or O7 does not destroy the ring pla-
narity. The exo groups are in the ring plane. The CC and CX
(X=N or O) bond lengths depend on position of labile proton
and on isomerism of exo groups. Ionization affects the CC and
CX bond lengths and the ring planarity. Similar to isolated
cytosine [28], the exo NH2 group is in the ring plane for 1+•,
while this group has a twisted pyramidal conformation for 1-•.
The exo=NH and−OH groups are more twisted for radical
anions than for radical cations. However, the dihedral angle
is not larger than 12°.

An analysis of charge and total atomic spin densities
(Table S2 in ESM) shows important differences in ionization
mechanisms. One electron can be taken from different hetero-
atoms and/or π-bonds in MC isomers. Various sites in MC
isomers can also attach one electron. Generally, the labile proton
position (N8, N3, O7, C5, or C6) generates the charge distribu-
tion and unpaired spin density on other atoms. For MC+• iso-
mers, the spin density is delocalized on the following atoms: N1
(for 1-3d), N3 (for 1 and 3a-5b), N9 (for 2a-5b), O7 (for 1, 4a
and 4b), and C5 (for 1-3d, 5a, and 5b). For MC-• isomers, the
spin density is mainly carried by carbon atoms: C2 (for 3a-3d),
C4 (for 1-3d), C5 (for 3a-3d, 5a, and 5b), and C6 (for 1-2b, 4a,
and 4b), but its high concentration also exists on N3 (for 1) and
N9 (for 2a and 2b). Detailed analysis showed clearly that the
unpaired electron stabilizes the structures 4a, 4b, 5a, and 5b,
which were not found for neutral MC as zwitterions.
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Delocalization of n- and π-electrons in neutral and ionized
MC isomers can be quantitatively measured using the
geometry-based HOMED indices. Estimations were made
for geometries optimized at the DFT level for the ring (six
bonds – HOMED6) and for the whole tautomeric system,
including exo groups (eight bonds – HOMED8). The calcu-
lated HOMED6 and HOMED8 values are given in Table S3
(ESM). For the neutral canonicalMC-isomer 1, n-π conjuga-
tion in the six-membered ring (HOMED6=0.768) is analo-
gous to that for the corresponding isomer of cytosine
(HOMED6=0.785 [28]). The HOMED8 index is slightly
larger for both MC (0.779) and C (0.791). For the neutral
iminoMC-isomers 2a, 2b, and 3a-3d, electron delocalization
slightly decreases, and the HOMED6 and HOMED8 indices
(0.64-0.73) are lower than those for 1. Additionally, favorable
and unfavorable interactions between exo and endo groups
affect electron delocalization. The HOMED indices are larger
for isomers with favorable interactions. These effects are more
important for 1-methylcytosine than for cytosine, indicating
an important geometric difference between MC and C.

Positive or negative ionization decreases electron delocal-
ization for 1, in higher degree for its radical cation
(HOMED8 = 0 . 599 ) t h an f o r i t s r a d i c a l a n i on
(HOMED8=0.700). Ionization of imino isomers induces dif-
ferent effects on electron delocalization. For example, the
HOMED8 indices (> 0.9) for 3a+•-3d+• strongly increases,
while for 2a+• and 2b+• they slightly decrease (< 0.7). For
radical anions, there is no important difference in the
HOMED indices between 3a-•-3d-• and 2a-•-2b-• (HOMED8
0.56-0.76). Nevertheless, different conformations of exo –OH
group cause stronger effect on the HOMED index
(ΔHOMED8 0.18) than various configurations of exo=NH
group (ΔHOMED8≤0.04). Moreover, the charged radicals
4a and 4b (HOMED8<0.5) are less delocalized than 5a and
5b (HOMED8>0.5). Differences between the HOMED8 in-
dices of 5a and 4a and also between the HOMED8 indices of
5b and 4b are larger for radical cations (ΔHOMED8>0.4)
than for radical anions (ΔHOMED8<0.2). Due to these dif-
ferences and various ionization mechanisms for individual
isomers, no linear relationship exists between the geometry-
based indices of positively and negatively ionized isomers of
1-methylcytosine (Fig. S1 in ESM).

It should be noted here that the HOMED indices esti-
mated for 1-3d of MC, MC+•, and MC-• are not parallel
to those found previously for the corresponding isomers
of cytosine [28]. Lack of linear relationships between the
geometry-based indices (Fig. 3) indicates that the total
effect of Me, substituted at N1, is completely different
for individual isomers. For example, when going from
cytosine to 1-methylcytosine the HOMED8 index de-
creases in different degree for the neutral (by 0.012), pos-
itively (0.267), and negatively ionized (0.003) amino form
1. For the imino isomers 2a and 2b, the HOMED8 indices

decrease for radical cations and increase for neutral and
negatively charged forms. For the imino isomers 3a-3d,
variations of the HOMED8 indices depend on conforma-
tion of exo−OH group. They increase for neutral 3a and
3c, and they decrease for neutral 3b and 3d. Reverse
effects occur for 3a-•-3d-•. For 3a+•-3d+•, which are very
well delocalized for MC+• and C+• (HOMED8>0.9), var-
iations of the HOMED8 indices are very small (< 0.02).

Relative thermodynamic parameters

The isomers 4a, 4b, 5a, and 5b (Fig. 2) exist only for posi-
tively and negatively ionized 1-methylcytosine. For neutral
MC, zwitterions are unstable and during optimization the ini-
tially built isomers 4a and 4b transform into open-ring struc-
tures with the N1−C2 bond broken, whereas 5a and 5b go to
bicyclic structures with the additional N3−C5 bond formed.
The instability of the neutral isomers 4a and 5a has already
been signaled [93]. For all stable isomers ofMC, neutral 1-3d
and ionized 1-5b, real frequencies were found for minima.

Relative thermodynamic parameters {Δ(E+ZPE), ΔH,
TΔS, ΔG), equilibrium constants (as pK), and percentage
contents (%) estimated at the DFT level for the MC, MC+•,
and MC-• isomers in vacuo are summarized in Table S4
(ESM). First perusal of these values clearly indicates that the
canonical form 1 is the favored isomer at each oxidation state.
As could be expected [28, 93, 95–99], the isomers 3a-3d can
be neglected in the isomeric mixture of neutral 1-
methylcytosine. The MC mixture consists mainly of three
neutral isomers: 1 (97.3 %), 2a (2.6 %), and 2b (0.1 %). A
small amount of 2a and 2b has been detected in a frozen argon
matrix [95]. Positive or negative ionization dramatically
changes the composition of the isomeric mixture of MC in
the gas phase.

Positive ionization of 1-methylcytosine affects the percent-
age contents of the three isomers: 1 (78.7 %), 2a (18.3 %), and
2b (3.0 %). The isomers 3a-3d (< 0.001 %) are very rare
forms and can be neglected in the isomeric mixture of MC+
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•. The isomers 4a-5b (< 1⋅10-20%) have no importance for the
structure and properties of MC+•. Since analogous calcula-
tions were performed for isolated cytosine [28], DFT results
for MC+• and C+• can be analyzed. This analysis clearly
shows that stability of 2a strongly increases when cytosine
is substituted at N1. This isomer becomes a minor one for
MC+• in the gas phase, whereas it is a rare form for C+• (<
3 %). For negatively ionized forms, the contribution of 2a in
the isomeric mixture ofMC-• (0.6 %) is analogous to that for
C-• (0.1 %). Interestingly, the amounts of 4a- 5b strongly
increase for MC-•, and one of them (4a, 1.8 %) cannot be
neglected in the isomeric mixture. This mixture mainly con-
tains the canonical tautomer 1 (97.6 %). The other imino iso-
mers (< 0.005 %) can be neglected. A use of larger basis set
(aug-cc-pVDZ) in DFTcalculations for the negatively ionized
isomers 1, 2a, and 4a confirms the tautomeric preference (1,
98.2 %) for MC-•.

Relative thermodynamic parameters for the MC, MC+•,
and MC-• isomers can be plotted against those previously
calculated at the same level of theory for the corresponding
isomers of cytosine [28]. The plots of the calculated ΔG
values for MC, MC+•, and MC-• isomers against those for
cytosine (Fig. 4) show significant differences for 3b and 3d,
for which the exo−OH group unfavorably interacts withMe at
N1 in MC, and favorably interacts with N1 in C. These op-
posite intramolecular interactions lead to strong deviations of
points referring to these two isomers. For other MC isomers,
the ΔG values correlate quite well with those of the corre-
spondingC isomers. For example, the slope of linear relation-
ship for neutral isomers (1.05) and the correlation coefficient
(r = 0.9999) are close to unity. The same is true for ion-
ized isomers, radical cations and radical anions.
Generally, relative parameters for neutral and ionized
isomers of 1-methylcytosine (except 3b and 3d) are
parallel to those of cytosine.

An application of the PCM(water) model to the DFT-
optimized geometries of MC isomers displays an interest-
ing effect of medium polarity (Table S5 in ESM, ZPEs

estimated at the DFT level were applied to the total elec-
tronic energies calculated at the PCM(water) level). For
neutral MC isomers, the canonical form 1 is favored in
aqueous solution (100 %, assuming that thermal correc-
tions and entropy terms in aqueous solution are the same
as those in the gas phase). Relative energies of 2a and 2b
are larger than 6 kcal mol-1, and thus their contributions in
the isomeric mixture of neutral MC may be lower than
0.01 %. Relative energies of 3a-3d do not change very
much when going from nonpolar (gas phase) to polar
environment (aqueous solution). Their amounts can be
neglected in the isomeric mixture of MC. Generally, the
relative energies calculated at the PCM(water) level are
almost parallel to those estimated at the DFT level, and
a good linear relationship is found (r = 0.991) for neutral
isomers of MC (Fig. 5). The slope of this line (0.87) is
slightly lower than unity indicating some attenuation of
isomerization effects in aqueous solution.

For MC+• isomers, polar solvent seems to influence
tautomeric equilibria and isomeric preferences. In aqueous
solution, the rare isomer 2a seems to be the favored one
(45.0 %). Its rotamer 2b also contributes in the isomeric
mixture (32.0 %). The canonical form 1 is rather a minor
form (22.9 %). The other iminol isomers can be
neglected. A change of the relative energies for MC+•

isomers when going from one extreme environment to
the other one slightly destroys the linear relation observed
for neutral isomers (Fig. 5). Larger deviations of points
are found for MC-• isomers. The canonical form 1 pre-
dominates for MC-• (97.9 %) in aqueous solution. The
contribution of the rare isomers 2a and 2b is very small
(< 0.01 %). The very rare isomers 3a-3d (<< 0.01 %) can
be neglected. The isomer 4a (1.7 %) significantly contrib-
utes in the isomeric mixture of MC-•. The amounts of 4b
(0.3 %), 5a (0.08 %), and 5b (0.03 %) seem to be larger
than those in the gas phase but they do not exceed 0.5 %.
Generally, polarity of water affects the relative energies of
imino isomers. It also reduces differences between the relative
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energies for the rotamers a and b of 4 and 5 from ca.
6 kcal mol-1 in vacuo to ca. 1 kcal mol-1 in aqueous solution.

Properties of the favored neutral and ionized isomeric
mixtures

Considering only major, minor, and rare isomers (> 0.001 %)
for neutral and ionized 1-methylocytosine, the following ion-
ization processes can be drawn (Scheme 1). In vacuo, the
neutral and positively ionized isomeric mixtures of MC con-
tain three isomers (1, 2a, and 2b), whereas at least five isomers
(1, 2a, 2b, 4a, and 5a) can be considered for the negatively
ionized molecule. For each oxidation state, the canonical iso-
mer 1 is the favored form for 1-methylcytosine. The rare iso-
mer 2a seems to be present in the highest amount (ca. 20 %)
only for MC+•. For MC and MC-•, its contribution in the
isomeric mixture is considerably lower (< 3 % and<1 %,
respectively). In aqueous solution, composition of the isomer-
ic mixture dramatically changes only for MC+•. In this case,
the rare isomer 2a becomes the favored one (45 %), and the
canonical isomer 1 is rather a minor form (23 %). 2b also has
an important contribution (32 %). For neutral and negatively
ionized 1-methylcytosine, the isomer 2a is indeed the rare
form (< 1 %). The isomers 4a-5b, strongly stabilized by an
unpaired electron, can also be considered as rare forms for
MC-• (≤ 2 %).

The positive and negative ionization processes can be char-
acterized by the ionization potential (IP) and by the electron
affinity (EA), respectively. Unfortunately, there are no exper-
imental data for 1-methylcytosine. However, there are exper-
imental data for canonical cytosine (IP=8.45 eV [111] and
EA = 0.23 eV [112]) and for unsubstituted pyrimidine
(IP=9.33 eV [3] and EA<−0.25 eV [113]). It should be noted
that the level of theory applied here {(B3LYP/6-311+G(d,p)}
reproduce well the IP (9.18 eV) and EA (−0.14 eV) for py-
rimidine. Moreover, the DFT-calculated EA for pyrimidine is

close to that (−0.17 eV) found at the G3MP2B3 level [3]. This
confirms that the level of theory applied here is sufficient and
appropriate for neutral and ionized species, radical cations,
and radical anions.

If we assume that removing or adding one electron does not
very much affect the structure of MC isomers, we can calcu-
late in vacuo and in aqueous solution the microscopic IP and
EA for the individual tautomers-rotamers 1-3d, taking the
energies of neutral and ionized forms into account (Table S6
in ESM). The macroscopic parameters referring to the isomer-
ic mixture ofMC (Scheme 1) can also be estimated. They are
as follows: IP=8.2 and 6.3 eVand EA=−0.4 and 1.8 eVin the
gas phase and aqueous solution, respectively. Polarity of water
changes the ionization parameters (IP and EA) by ca. 2 eV. An
analogous hydration effect has been found for nucleic acid
bases and their models [16–19, 24, 26]. The negative adiabatic
EAvalue forMC, close to that for pyrimidine [113], confirms
our spin-density analysis (Table S2 in ESM). Upon negative
ionization the pyrimidine ring preferentially takes one elec-
tron. Additionally, the negative EAs for MC isomers indicate
that negatively ionized forms, possessing energies very close
to that of neutral ones, do not exist for a suitable time period.
EA measurements cannot be performed with good precision.
There are also other molecules which possess negative EAs in
the gas phase [3, 15, 113]. Nevertheless, they can be investi-
gated in solution or clusters, for which the EAs are positive.

Basicity and acidity of neutral and ionized MC in the gas
phase

There are no solvent molecules in the gas phase and acid-base
properties of organic compounds depend only on functional
groups. Acidity or basicity can be described by thermodynam-
ic parameters of the corresponding deprotonation or proton-
ation reaction,ΔH andΔG, which differ by the entropy term,
ΔG=ΔH - TΔS [3, 114]. For deprotonation of AH group
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(AH→A-+H+), these thermodynamic parameters refer to the
deprotonation enthalpy (DPE=ΔHacid) and to the gas-phase
acidity (GA=ΔGacid). For protonation of B group (B+H+→
BH+), the proton affinity (PA=− ΔHbase) and the gas-phase
basicity (GB=− ΔGbase) were proposed. The use of different
symbols for acids and bases is only formal, because
DPE(AH)=PA(A-), GA(AH)=GB(A-), PA(B)=DPE(BH+),
and GB(B)=GA(BH+). Both, the DPE and PA values are on
the same ΔH scale, and the GA and GB values are on the
same ΔG scale. Stronger acid has lower DPE and GA values
and stronger base has larger PA and GB values.

In the case of neutral 1-methylcytosine, experimental gas-
phase acidity and gas-phase basicity parameters have been
determined in 2008 by Lee and co-workers [97]. The authors
used a Fourier transform ion cyclotron resonance mass spec-
trometer and the bracketingmethod, and derived the following
macroscopic acid-base parameters: DPE = 349 ± 3 and
GA=342±3 kcal mol-1 for deprotonation of neutral MC to
its monoanion MC-H+ (MC→MC-H+ + H+), and PA=230
±3 and GB=223±3 kcal mol-1 for protonation of neutralMC
to its monocation MCH+ (MC+H+→MCH+). Comparison
of these experimental data with those found for other organic
compounds in the gas phase [3] shows that 1-methylcytosine
displays acidity close to that of pyrrole (DPE=359.6 and
GA=351.8 kcal mol-1) and basicity close to that of imidazole
(PA=225.3 and GB=217.3 kcal mol-1) and 2-aminopyridine
(PA=226.4 and GB=218.8 kcal mol-1). Both pyrrole and 1-
methylcytosine belong to the family of NH acids, for which
the NH group is deprotonated. On the other hand, imidazole,
2-aminopyridine, and 1-methylcytosine belong to the family
of N bases which contain the amidine group>N−C=N− with
the imino N site preferentially protonated.

Using the B3LYP functional and the 6-31+G(d) basis set,
Lee and co-workers [97] additionally found the following mi-
croscopic parameters for deprotonation of the neutral canoni-
cal form 1 at N8 and for its protonation at N3: DPE=348.3,
GA=340.3, PA=230.0, and GB=222.4 kcal mol-1, respec-
tively. For the neutral rare form 2a, these parameters for de-
protonation at N3 and for protonation at N8 are as follows:
D P E = 3 5 0 . 7 , G A = 3 4 4 . 5 , PA = 2 3 2 . 9 , a n d
GB=224.9 kcal mol-1, respectively. Deprotonation of 1 and
2a leads to the same monoanion MC-H+, and their proton-
ation goes to the same monocation MCH+ (Scheme 2). For
comparison, at the B3LYP/6-311+G(d,p) level we found the
following values for 1 (355.8, 347.0, 232.0, and
224.2 kcal mol-1) and 2a (353.2, 344.9, 234.6, and
226.3 kcal mol-1).

To our knowledge, gas-phase acidity and gas-phase basic-
ity for radical cations and radical anions of 1-methylcytosine
have not yet been reported in the literature. Nevertheless, they
can be estimated on the basis of our DFT calculations per-
formed for selected neutral and charged radicals. According
to Sevilla and co-workers experiments performed for

nucleobases and their models [32, 107], deprotonation of rad-
ical cation of 1-methylcytosine and protonation of its radical
anion can lead to the corresponding neutral radical: MC+

•−H+→MC-H• andMC-•+H+→MCH•. Acidity and basic-
ity parameters for these deprotonation and protonation reac-
tions in the gas phase can be predicted from the calculated
thermodynamic parameters for the corresponding radicals by
the same procedure applied for neutral 1-methylcytosine (see
Computational details in ESM). For the canonical and rare
isomers of 1-methylcytosine, their radical cations 1+• and
2a+• can be deprotonated to the same neutral radical MC-H•,
whereas their radical anions 1-• and 2a-• can be protonated to
the other neutral radicalMCH• (Scheme 3). At the DFT level,
the following microscopic parameters were estimated in the
gas phase for these reactions (in kcal mol-1): DPE(1+
•) = 230.6, GA(1+•) = 223.4, DPE(2a+•) = 230.4, GA(2a+
•) = 222.5, PA(1-•) = 350.8, GB(1-•) = 343.2, PA(2a-•) = 353.5,
and GB(2a-•) = 346.2, respectively.

Interestingly, gas-phase acidities of the radical cations 1+•

and 2a+• are close to that of the monocationMCH+, and gas-
phase basicities of the radical anions 1-• and 2a-• are close to
that of the monoanion MC-H+. In other words, gas-phase
basicity of the neutral radical MC-H• and gas-phase acidity
of the neutral radical MCH• are close to those of neutral 1-
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methylcytosine (Fig. 6). Moreover, the radical cations 1+• and
2a+• are stronger bases than neutral water (PA=165.2 and
GB= 157.7 kcal mol-1 [3]), indicating that water cannot
deprotonate them in the gas phase (apolar environment).
Water is too weak a base. Water is also too weak an acid
(DPE=390.3 and GA=383.7 kcal mol-1 [3]), and cannot pro-
tonate the radical anions 1-• and 2a-•. Other compounds, being
stronger bases and stronger acids than 1-methylcytosine in the
gas phase, can be considered in the future for deprotonation of
its radical cations and for protonation of its radical anions in an
apolar environment.

How the Bcanonical^ form ofMC can be converted into its
Brare^ form?

Various routes can be considered for transformation of the
canonical tautomer 1 into the rare isomer 2a for neutral and
ionized 1-methylcytosine, one-step, two-steps, or multi-steps
amino-imino conversion. In the gas phase, the labile proton
can be transferred intramolecularly fromN8 to N3 through the
corresponding transition state (Scheme 4). We found three
transition states between the neutral isomers 1 and 2a (TS)
and their positively (TS+•) and negatively (TS-•) ionized forms
at the DFT(B3LYP)/6-311+G(d,p) level. Each of these transi-
tion states possesses one imaginary frequency. Inclusion of
thermal corrections when proceeding from 0 to 298 K and
entropy terms, leads to the following relative Gibbs energies
(relative to the canonical tautomer) for TS, TS+•, and TS-•:
ΔG=40.4, 42.0, and 36.0 kcal mol-1, respectively. The esti-
mations indicate that positive ionization slightly increases the
energetic-barrier for tautomeric conversion between the amino
and imino isomers whereas negative ionization slightly de-
creases it. Our DFT calculations show additionally that the
energetic-barrier for the neutral tautomers 1 and 2a is slightly
lower than that found by Fogarasi [76] (ΔE=45-50 kcal mol-1

at the B3LYP, MP2, and various CC levels) for tautomeric
conversion in the parent system, formamidine (HN=CH
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−NH2/H2N−CH=NH). When one water molecule participates
in this conversion, the energetic-barrier diminishes by 25-
30 kcal mol-1. An analogous decrease of the energetic-
barrier for amino-imino conversion may be expected for the
MC isomers.

Tautomeric amino-imino conversion between the canonical
and rare tautomers of 1-methylcytosine can also run through
two-steps proton-transfer reaction. For neutral forms, the
monoanionMC-H+ or monocationMCH+ can be an interme-
diate product between the isomers 1 and 2a as shown in
Scheme 2. For radical ions, tautomeric conversion between
1+• and 2a+• can run through the neutral radicals MC-H• and
that between 1-• and 2a-• can run through the other neutral
radical MCH• as shown in Scheme 3.

Investigating gas-phase basicities of organic compounds
by quantum-chemical methods, Makisć and co-workers [72]
analyzed the following steps from neutral (B) to
monoprotonated (BH+) forms: positive ionization of base (B
– e→B+•), formation of hydrogen atom (H+ + e→H•), and
formation of conjugate acid (B+•+H•→BH+). These steps are
in agreement with experiment. Gas-phase basicities can be
measured using various MS techniques with positive ioniza-
tion, and ions B+• and BH+ detected and analyzed [3, 57, 114].
Taking into account the MS experiments and the Btriadic
analysis^, tautomeric conversion between 1 and 2a can also
run through MCH+, 1+•, and 2a+•. An analogous tautomeric
conversion between 1 and 2a can be proposed for negative
ionization in the gas phase, where 1-•, 2a-• andMC-H+ can be
intermediates (Scheme 5).

Another conversion-route between the ionized canonical
and rare isomer of 1-metylcytosine can be proposed on the
basis of Choi et al. experiments for guanidine radical cations
[12]. The authors observed the neutral radical as an interme-
diate between two ionized isomers. On the other hand, Sevilla,
Tureček, and their co-workers [5, 6, 32, 56, 106, 107] pro-
posed a deprotonation reaction for radical cations and

protonation reaction for radical anions, both leading to the
corresponding neutral radicals. Taking these experimental ob-
servations into account, tautomeric conversion between the
ionized canonical and rare isomers of 1-methylcytosine can
also run through MC-H• or MCH• (Scheme 6).

The route of proton-transfer between the canonical and rare
isomers of 1-methylcytosine may depend on the method of
investigation. For example, in matrix isolation IR, MW, and
REMPI experiments, the intramolecular proton-transfer pro-
posed in Scheme 4a may take place for the neutral isomers.
During experimental MS gas-phase acidity/basicity determi-
nations, tautomeric conversion may run through the monoca-
tion MCH+ or monoanion MC-H+ (Scheme 5). The neutral
radicals MC-H• or MCH• may be intermediates between the
radical ions (Scheme 6) in zero kinetic energy photoelectron
spectroscopic studies.

Conclusions

Our calculations carried out in the gas phase at the DFT level
and in aqueous solution at the PCM(water) level for the iso-
meric mixture of neutral and ionized 1-methylcytosine show
clearly that positive and negative ionization change both the
geometry- and energy-based parameters. Electron delocaliza-
tion in the pyrimidine ring and also in the whole tautomeric
system dictates the isomeric preference only for neutral MC.
The most delocalized amino isomer 1 (HOMED8=0.779) is
favored for MC. When going from the neutral to charged
radicals, electron delocalization changes dramatically. Due to
completely different Me effects for individual MC isomers,
the changes are not parallel to those observed earlier for cyto-
sine (Fig. 3) [28]. Only relative thermodynamic parameters for
MC isomers correlate well with those for the corresponding
isomers of cytosine (Fig. 4). Some exceptions are the isomers
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3b and 3d with unfavorable interactions between OH and Me
groups.

In the gas phase, whichmodels apolar environments (lipids),
positive or negative ionization does not change the tautomeric
preference (Scheme 1). Ionization influences the isomeric mix-
ture. The canonical isomer 1 is favored for MC, MC+•, and
MC-•. The rare isomer 2a, responsible for DNA mutation [31],
appears in detectable amounts in the isomeric mixture of MC,
MC+•, and MC-• with the highest contribution for MC+•. Its
percentage content increases in aqueous solution, which
models a more polar environment (enzymes, receptors, pro-
teins, nucleoproteins, etc.). The rare isomer 2a becomes the
favored form forMC+•, while the canonical tautomer 1 is only
a minor form. ForMC-•, the percentage contents of the radical
anions 4a-5b are larger than that of 2a. They are well stabilized
by an unpaired electron. Polarity of water does not affect their
contributions in the isomeric mixture. Positive ionization
strongly increases the energies of 4a-5b such that they can be
neglected in the isomeric mixture of MC+•. For neutral MC,
they do not exist. Four rotamers of 3 can be neglected at each
oxidation state in both extreme environments.

The most important effects observed for tautomeric 1-
methylcytosine seem to result from interactions of MC
with positively ionized agents. They are completely differ-
ent from those observed previously for isolated cytosine
and better describe some tendencies of cytosine included
in DNA to intramolecular proton-transfer than isolated cy-
tosine. Interestingly, gas-phase acidities of radical cations of
MC are close to that of its monocation, and gas-phase
basicities of radical anions are close to that of its
monoanion. Water in the gas phase is too weak a base to
deprotonate MC+• and also it is too weak an acid to pro-
tonate MC-•. This observation suggests that radical ions
may live a longer time in an apolar than polar environment
and may be responsible for changes in nucleic acids. Figure 7
summarizes the DFT-calculated relative Gibbs energies of

possible structures which 1-methylcytosine may adopt when
proceeding from the canonical to rare isomer.
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