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Abstract: Modern microencapsulation techniques are employed to protect active molecules or sub-
stances such as vitamins, pigments, antimicrobials, and flavorings, among others, from the environ-
ment. Microencapsulation offers advantages such as facilitating handling and control of the release
and solubilization of active substances, thus offering a great area for food science and processing
development. For instance, the development of functional food products, fat reduction, sensory
improvement, preservation, and other areas may involve the use of microcapsules in various food
matrices such as meat products, dairy products, cereals, and fruits, as well as in their derivatives, with
good results. The versatility of applications arises from the diversity of techniques and materials used
in the process of microencapsulation. The objective of this review is to report the state of the art in
the application and evaluation of microcapsules in various food matrices, as a one-microcapsule-core
system may offer different results according to the medium in which it is used. The inclusion of micro-
capsules produces functional products that include probiotics and prebiotics, as well as antioxidants,
fatty acids, and minerals. Our main finding was that the microencapsulation of polyphenolic extracts,
bacteriocins, and other natural antimicrobials from various sources that inhibit microbial growth
could be used for food preservation. Finally, in terms of sensory aspects, microcapsules that mimic
fat can function as fat replacers, reducing the textural changes in the product as well as ensuring
flavor stability.

Keywords: microencapsulation; fat substitute; sensory improvement; functional food; preservatives

1. Introduction

The use of microparticles is a worldwide trend that is constantly expanding in various
areas such as medicine, food, electronics, and environmental remediation, among others,
as microparticles can carry and protect several active compounds with broad applications.
For instance, the incorporation of microcapsules allows for the development of materials
with better mechanical and functional properties; in medicine, microcapsules function
as vehicles for the targeted administration of specific chemicals or sensors. In general,
microcapsules are applied for containing bioactive compounds and protecting them from
humidity, oxygen, light, and some other environmental factors. Microencapsulation acts as
a barrier to control release, solubility, and bioavailability; facilitates handling and transport;
and can also mask unpleasant flavors and aromas [1,2].

Microcapsules usually range between 0.2 to 5000 µm in diameter and consist of
an encapsulating or wall-material that englobes a core containing the active substance.
The final particle size depends on many factors, such as the processing method and the
nature of the encapsulating material [3]. Therefore, it is important to consider the type
of wall-material that will be used in combination with a specific encapsulation process
according to the function or destination of the microcapsule and the desired particle size;
the wall material also leads to variation in encapsulation efficiency and stability [4]. Table 1
summarizes the various techniques used for the preparation of microcapsules and Table 2

Molecules 2022, 27, 1499. https://doi.org/10.3390/molecules27051499 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27051499
https://doi.org/10.3390/molecules27051499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-0826-6578
https://orcid.org/0000-0002-0797-9165
https://doi.org/10.3390/molecules27051499
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27051499?type=check_update&version=1


Molecules 2022, 27, 1499 2 of 16

presents some application techniques as well as some of the wall and core materials that
have been used in foods. An interesting aspect of the application of microcapsules in
food—and especially of the material and the technique with which they are conducted—is
that in some cases, the microcapsules serve to conserve a compound or bioactive extract in
the product, controlling its release during storage; however, in other cases, microcapsules
promote the product release in vivo during digestion. For example, microcapsules of
carboxymethylcellulose and chitosan produced by the coacervation method allow the
gradual release of carotenoids; while microparticles made with the same technique but
with different wall-materials (chitosan–sodium tripolyphosphate) release the carotenoids
much more quickly (25%) in both yogurt and bread [5].

Microcapsules in foods have various functionalities, which are summarized through-
out this review of publications from the last 6 years (2015–2021) listed in databases such
as SCOPUS, PubMed, and Web of Science. The search included words such as “microen-
capsulation” plus “meat”, “milk”, “bread”, and “juice”, among other foods considered
in the review. Articles were considered in which microcapsules were added during food
preparation and presented accordingly with their specific functionality or application as a
preservative, functional food development, sensory improvement, fat substitution, and/or
others, which will be broken down throughout the review (Figure 1).

Table 1. Advantages and disadvantages of some common microencapsulation techniques.

Microencapsulation
Technique Process Advantages Disadvantages Representative

References

Spray drying

Drying of particles in
suspension or in emulsion
using hot air. The solution,
emulsion or suspension is

atomized in
the equipment.

High production rates and
efficiency

Easy handling product powders
Reproducibility

Low operation cost
It is used in a wide variety of

compounds, with diverse
polarities and compositions.

Short time process

Not recommended for
thermolabile compounds

Nonuniform particles
Can form aggregates

[4,6,7]

Complex coacervation

Combination of
2 polymers, such as

protein and carbohydrate
at specific pH value

and proportion

Heat-resistant
Different core compounds can be

used
Stable products

Different forms depending on
materials
Expensive

Variable encapsulation efficiency
Use of organic solvents

[8–11]

Encapsulation in
cyclodextrins

Inclusion molecular
complex in a cyclic

oligosaccharide

Controlled release of actives
Solubility and stability of

hydrophobic actives
Reduce loss and volatility

of compounds

Expensive material
Restricted to

low-molecular-weight
compounds

Can form aggregates

[12–14]

Spray chilling

Microcapsule made up of
lipids and the compound

of interest, which are
atomized in a cold
chamber, leaving a

solid particle

Low operation cost
Suitable for

heat-sensitive actives

Scaling parameters (melting,
atomizer air temperature and
pressure, cooling temperature,

feed flow)
Rapid release of actives
Specific for hydrophobic

compounds
Nonuniform particles

Variable encapsulation efficiency

[15,16]

Extrusion

Physical–mechanical
process that involves the
extrusion of the material

through a nozzle

Cost-effective method
No need for high temperatures,
nor the use organic solvents or
any specific pH condition for

its elaboration.

Different sized and shaped
products

Difficulties with
viscous solutions

[12,17,18]

Freeze drying
Freezing, sublimation

(lyophilization)
and desorption

Good option for temperature-
sensitive compounds

Slow process
Styrofoam texture

Product cost
[4,7,19]
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Table 2. Examples of microencapsulation techniques and their application in food.

Microencapsulation Technique and Conditions Wall Material Core Material Food System Application Reference

Spray drying (150 ◦C inlet temperature; feed flow
7 mL/min and airflow 40 m3/h)

Maltodextrin and gum
Arabic (50:50, w/w)

Artemide black rice
extract (polyphenols

122 ± 4.6 mg/g
extract)

Biscuit (0.32%
microcapsules in
formulation, total

polyphenols
975 ± 13 µg/g biscuit)

[6]

Complex coacervation (Oil/water emulsion, 50 ◦C,
pH 4, and lyophilized)

Gelatin and gum
Arabic (1:3) Omega-3 fish rich oil

Pomegranate juice (0.04,
0.07, 0.1% powder

microcapsules, i.e., 50, 100
and 150 mg

DHA + EPA/L)

[8]

Modified solvent evaporation (mix solution of core
and coat material, sonication at 5 ◦C with 5-s pulse

rate for 15 min, spray in chilled alcohol, and
later evaporation)

Gum Arabic,
maltodextrin,

modified starch (4:1:1)

Ferrous sulphate
hepta hydrate

Fresh cow and buffalo
milk (1:1), iron salt 25 ppm [20]

Coextrusion (coextrusion equipment with inner
(150 µm) and outer nozzles (300 µm), vibration

frequency of 300 Hz, pressure 600 mbar, and
voltage of 1.5 kV)

Sodium alginate
(1.5% w/w) with

chitosan (0.1%) and
CaCl2 (different
concentrations

Lactobacullis plantarum
299v and oligofructose

Ambarella juice (more
than 107 CFU/mL) and

oligofructose (4%)
[12]

Electrospray + mineralization + freeze drying
(equipment with stainless steel sterile needle and

aluminium plate with collector dish, voltage 7.5 kV,
flow 15 mL/h, followed by the addition of

(3-aminopropyl)trimethoxysilane and tetramethyl
orthosilicate) and freeze drying at −85 ◦C for 20 h.

Sodium alginate
(1.0% w/w) and CaCl2

(1.5 wt%)

Lactobacillus rhamnosus
GG

5.2 × 106 CFU/mL in
apple juice (pH 3.6) and

5.2 × 106 CFU/mL in beer
(5 vt% alcohol content)

[19]

Liposomes + spray drying. Lecithin solution at
high-pressure homogenization (25,000 psi)

followed by deposition of chitosan layers. Spray
dryer conditions: 90 ◦C outlet temperature, 160 ◦C

inlet temperature, 2.5 cm3/min feed rate and
0.67 m3/min air flow

Lecithin (2% w/w)
and

Chitosan (0.2%) +
maltodextrin (20%) +

lecithin (0.05%)

Sour cherry extract Stirred-type yogurt (pH
4.5; 4 mg GAE/100 g) [21]

Spray chilling + spray drying or spray drying +
spray chilling

(Spray dryer: 120 ◦C inlet air
temperature and 50 ◦C outlet air temperature,

feed rate 16.5 mL/min.
For spray chilling: molten hydrogenated palm oil,
homogenized, and spray chilled with nozzle fixed
at 38 ◦C, compressed air at 0.3 bar, aspiration rate

of 20 m3/h

Gum arabic and
β-cyclodextrin (9:1

w/w) and
hydrogenated palm

oil

Saccharomyces
boulardii, Lactobacillus

acidophilus,
Bifidobacterium bifidum

Cakes (cream-filled,
marmalade-filled, and

chocolate-coated; around
1 and 4.3 Log CFU/g

after baking)

[15]

DHA—docosahexaenoic acid; EPA—eicosapenta-enoic acid; GAE—gallic acid equivalents.
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2. Microcapsules in Food Preservation

Preservatives are compounds that prevent spoilage in food caused by enzymes, mi-
croorganisms, oxygen, and others. They should not be toxic or modify the taste, in addition
to presenting stability and effectiveness in foods to which they are added [22]. However,
many of these preservatives do not meet these requirements; they can be very effective in
the product, but because of the concentrations used, they can produce unpleasant flavors
or exhibit decreased effectiveness when in contact with the product. Microencapsulation
is an option to limit or prevent these changes. Among the most commonly encapsulated
preservatives are polyphenols (such as flavonoids and tannins capable of exerting antioxi-
dant activity and inhibiting microbial growth); organic acids (which can change the pH);
essential oil extracts derived from herbs, spices, onion, garlic, and fruits (set of a variety
of compounds including phenolics and organosulfur compounds with antioxidant and
antimicrobial capacity); bacteriocins (peptides with antimicrobial capacity); and even phage
(viruses that infect bacteria). Compounds with antioxidant capacity prevent or retard the
formation of free radicals and, therefore, oxidation reactions; meanwhile, antimicrobials,
through various mechanisms, are capable of disrupting membranes or cell walls and dissi-
pating the proton motive force, inhibiting microbial growth [23]. It should be mentioned
that many of the extracts with relevant properties are not soluble or compatible with the
matrix to which they are to be added; therefore, microencapsulation may be relevant for
their application.

2.1. Microcapsules Containing Antimicrobials
2.1.1. Meat

The benefit of microencapsulation is to enhance and prolong the effect of a bioactive
compound, even if it is subjected to long periods of heating [24]. For example, it is known
that clove and its derivatives have an antimicrobial effect due to the presence of eugenol
and other phenylpropanoids, which are very susceptible to light and temperature; further,
their solubility and volatility may limit their possible incorporation in some food matrices.
Encapsulation may improve their stability and applicability so that they can be used in
various meat products. By microencapsulating clove oil in beta-cyclodextrin and starch, its
fungicidal effect is enhanced by 0.08% [25]. Moreover, the microencapsulation of eugenol
alone in quinoa protein and gum Arabic by complex coacervation reduces total bacterial
count (from 8 to 6.5 log CFU/g) in minced meat when it is stored for 15 days at 4 ◦C,
showing better protection against free eugenol treatment [9].

Another antimicrobial example is the microencapsulation of thymol oil (4.9 mg/g) in
beta-cyclodextrin, which reduces by 0.05 the log CFU of total viable count bacteria when
they are incorporated into ground meat and stored for 8 days at 4 ◦C [26]. In the same
product, the addition of microcapsules containing Allium sativum essential oil (20%), made
by complex coacervation with gum Arabic and maltodextrin, reduced the final count of
E. coli (from 4.0 ± 0.5 to less than 1.0 ± 0.1 log CFU/g), total aerobic mesophilic bacteria
(from 8.5 ± 0.3 to 6.4 ± 0.4 log CFU/g), and sulfite-reducing anaerobes (from 3.5 ± 0.08 to
less than 1.0 ± 0.1 log CFU/g) in meat stored at 8 ◦C for 6 days [10].

The benefits of microencapsulation are not exclusive to polyphenols and extracts from
fruits, peels, or fruit seeds but also extend to antimicrobial peptides such as nisin, whose
microencapsulation reduces the growth of Listeria monocytogenes by up to 75% with respect
to the control and is 50% more effective than nisin without encapsulation when a ham is
inoculated with 103 CFU/g of Listeria [27].

The use of specific phage for Salmonella Enteritidis and Salmonella Typhimurium in raw
chicken meat at a concentration of 108 PFU/g (plaque-forming unit/g) (microencapsulated
in whey protein isolate and trehalose) decreases microbial growth by 0.57 log CFU/cm2 for
S. Enteritidis and 1.78 log CFU/cm2 for S. Typhimurium during storage at 4 ◦C for 4 days
without altering consumer acceptability or sensory aspects [28].

The microencapsulation of various antimicrobials has a synergistic effect with other
preservation techniques, such as irradiation. An example of this is the combination of
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antimicrobials such as cinnamon (Cinnamomum cassia) and nisin microencapsulated in
alginate and cellulose, which, together with 1.5 kGy irradiation, decrease the growth of
Listeria monocytogenes inoculated in ham by 86.95% after 28 days of storage [29].

2.1.2. Milk and Derivates

The inclusion of bacteria in microcapsules is not used exclusively for the elaboration of
functional products, as presented below, but also for inhibiting the growth of other microor-
ganisms and as a source of preservatives. Such is the case of the bacteria Bifidobacterium
animalis and Lactobacillus acidophilus in cheese, which inhibit the growth of fungi such as
Aspergillus niger in feta cheese during 45 days of storage; this effect is enhanced when they
are encapsulated in sodium alginate, which increases the final count of viable bacterial cells
by approximately 0.1 log CFU during storage [30].

2.2. Microcapsules Containing Antioxidants
Meat

Antioxidants are compounds that delay the oxidation of proteins and lipids by the
addition of hydrogen atoms or electrons or the removal of oxygen atoms—examples include
enzymes and polyphenols, among others.

Microencapsulation extends the effectiveness and stability of polyphenols; this has
been exemplified in the application of emulsified microcapsules of mulberry polyphenol
with gum Arabic in dried minced pork slices (8.5%), which, in addition to reducing oxida-
tion reactions, also improved the color compared with nonencapsulated mulberry polyphe-
nol, indicating that anthocyanins and other compounds in the extract were protected from
the light and heat treatments to which they were subjected during meat processing [24].
Another example is the use of propolis coproduct extract containing coumaric acid and
epicatechin, which function as antioxidants and, when encapsulated by the spray drying
method and added to the system at a concentration of 0.3 g/kg, can inhibit the lipid oxi-
dation of hamburger meat for 28 days at −15 ◦C [31]. Even the addition of encapsulated
antioxidants can stabilize changes in texture resulting from protein oxidation, such as
the case of the microencapsulation of procyanidins by extruding starch added to chicken
sausages, inhibiting the formation of disulfide bonds in proteins, protein oxidation, and
general amino acid stability on the final product [32].

Many of the rapidly growing food preservation techniques, including nonthermal
treatments such as high-pressure treatment, can accelerate oxidation processes in meat.
It has been observed that the addition of antioxidants prevents or delays this process; if
encapsulated, they provide a better antioxidant effect. An example is the case of encapsula-
tion of the pitaya shell extract (Hylocereus costaricensis) rich in polyphenols (concentration
of 49.5 mg/g) when spray-drying maltodextrin, which, when added (100 and 1000 ppm) to
ground pork patties subjected to high pressures (500 MPa for 10 min), decreases protein
oxidation (by 25%) and prevents the changes in hardness and chewiness that occur during
the process [33]. A similar case was observed with ultraviolet radiation, which induces
lipid and protein oxidation; the addition of microcapsules with different concentrations
of pitaya extracts (100–2000 ppm) in refrigerated ground pork patties for 10 days reduced
those changes [34].

3. Microcapsules in Functional Foods

A functional food is one that, in addition to providing nutrients and energy to the body,
can promote one or more beneficial functions in the body, either for disease prevention or
to activate a physiological response [35].

3.1. Incorporation of Fatty Acids

Most of the compounds that are used to develop functional foods involve the addition
of polyunsaturated fatty acids (especially omega 6 and 9), which are susceptible to oxidation
reactions and/or change the sensory profile of the product. Fatty acids are important in
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food because they have been associated with cardioprotective effects such as lowering LDL
(“bad”) cholesterol and increasing HDL (“good”) cholesterol, thus reducing heart attacks;
in some other cases, they have been associated with cancer prevention [36].

3.1.1. Meat

The microencapsulation of omega-3, -6, and -9 fatty acids improve their stability by
reducing oxidation and extending shelf life as well as providing added nutritional value
to the product in which they are added [37]. Proof of this is the addition of fish oil with a
high content of omega-3 fatty acids, such as eicosapentaenoic acid and docosahexaenoic
acid to chicken nuggets. When encapsulated by the multilayered emulsion technique
followed by spray drying (150 mg of acid/100 g), the fish oil is no longer detected at the
sensory level, and the changes in the appearance and textural characteristics that the oil
presents when it is not encapsulated are not observed; in addition, no rancidity occurs
during product storage [38], even if these microcapsules are applied in pre-fried products
or frozen products [39]. However, it is important to mention that adding higher fatty
acid content to a product, even if microencapsulated, causes greater susceptibility to the
oxidation process [40]; therefore, it is important to consider the encapsulation method and
the material to be encapsulated.

3.1.2. Milk and Derivates

The microencapsulation of fatty acids helps to increase the nutritional value of dairy
products. By incorporating 3.1% of omega-3 microcapsules in whole milk powder, it
remains stable for longer, independent of the packaging (in a metallic tin or flexible plastic)
or the storage conditions (43 ◦C without controlled relative humidity or 34 ◦C with 83%
humidity) to which the product is subjected [41]. The microcapsules also help fortify dairy
products, even those with partial milk replacement (30%). Adding microcapsules with oleic
acid (1.5 g/100 g of microcapsules) does not modify the microstructure of the fermented
milk product; although, due to the type of material that comprises the microcapsules, they
can modify other properties such as the final viscosity [42].

Another example is the incorporation of microencapsulated calcium carbonate (1%
in the formulation) in casein and maltodextrin into yogurt mousse, which, together with
the incorporation of 4.8% inulin, develops a product with sensory and rheological charac-
teristics similar to those of the original product, without microcapsules and without fat
reduction [43].

3.1.3. Cereals and Derivates

Incorporation of microcapsules with 5% fish oil (omega-3 fatty acids) made from
chitosan and modified starch in bread does not modify the acceptability of the product,
as it increases firmness (46%) and color in the a* and b* scales (152 and 8%, respectively).
The nutritional value of the product was shown to increase [44] and the formation of
hydroperoxides was prevented in the product by up to 70% relative to the oil without
encapsulation [45]. In addition to bread, fish oil encapsulated in milk by the spray drying
method has also been added to cookies, which, in addition to modifying the nutritional
value, decreases the oxidation reactions of the product by 40% with respect to the oil without
encapsulation [46]. Another example in bread involves the incorporation of flaxseed oil
encapsulated in yeast cells, which, in addition to fortifying the bread, prevents the oxidation
of fatty acids [47].

3.1.4. Fruit and Juices

The fortification of juices with fatty acids has also been studied by incorporating fish
oil into microcapsules made by complex coacervation, which increases turbidity but does
not make the juice sensorially unacceptable [8].
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3.2. Microcapsules Containg Prebiotics and Probiotics

Probiotics refers to beneficial microorganisms within the intestinal microbiota and
have high beneficial potential in host health; while prebiotics (mostly) are indigestible
oligosaccharides that benefit the host by stimulating the growth and activation of bacterial
metabolism of the microbiota [48]. However, upon incorporation into a food, probiotic
growth decreases because the bacteria are not in the ideal growth conditions. Probiotics and
prebiotics can modify the sensory characteristics of the product and microencapsulating
them helps to reduce these changes.

3.2.1. Meat

The alginate and pectin microencapsulation of lactic bacteria, together with prebiotics
such as pear cactus peel flour and 1% apple marc flour, increase the number of beneficial
bacteria (between 165 and 185%) and decrease the number of pathogens by 100% when
they are added at 5% to cooked sausages for 15 days of storage [49]. Microcapsules with
probiotics have even been studied in fermented products and found to not alter the sensory
properties of the product or the fermentation process but maintain the viability of the
bacteria and fulfill the goal of reaching the consumer [17]. Another example is the addition
of L. plantarum microencapsulated by the spray drying technique on salami, where the
final count is higher than 8 log CFU/g and the microcapsules did not influence the sensory
acceptance [50].

3.2.2. Milk and Derivates

The largest number of functional products have been characterized and implemented
in yogurts because yogurt is a product that typically presents the ideal growth conditions
for lactic bacteria, in addition to its compatibility with the use of various encapsulation
techniques in the product [51–54].

Microencapsulated probiotic bacteria such as Bifidobacterium BB-12 in reconstituted
goat’s milk and inulin obtained by the spray drying method increases the antagonistic
effect against pathogenic bacteria such as E. coli in comparison with the unencapsulated
probiotic as the microencapsulation simulates bowel conditions [55]. Part of this protective
effect is because the microencapsulation process keeps the bacteria viable; for example,
in quince seeds, L. rhamnosus bacteria remain viable up to 43.8% after 21 days under
gastrointestinal simulation conditions in a milk dessert and Lactobacillus remains viable in
yogurt for 180 days at −20 ◦C [56,57]. In some cases, the microencapsulation of Lactobacillus
casei Shirota in gum Arabic even increases the bacteria count during storage; for example,
applied in a pudding for 14 days in refrigeration increased bacteria from 8.27 to 9.16 log
CFU/g and in chocolate milk for 180 days at 25 ◦C increased to >8 log CFU/g [58]. In
pure milk, the encapsulation of B. bifidum BB01 bacteria in xanthan gum and chitosan
increases by 0.5 log CFU/g over 21 days of milk storage at 4 ◦C [59]. In mature cheeses of
the gouda type, a count of 108 CFU/g of Bifidobacterium lactis is maintained for 40 days
after microencapsulation in cyclodextrin and gum Arabic, and the microcapsule also adds
fiber (1%) [60]. An interesting detail about adding microcapsules with probiotics to food is
that they do not have adverse effects on weight gain, hematological parameters, and vital
organ function in mice when they are consumed and fulfill their function when colonizing
the intestine [58].

3.2.3. Cereals and Derivates

As in meat and dairy products, microencapsulation is a good source for the incorpora-
tion of probiotics and prebiotics in bread. For example, alginate and starch beads coated
with chitosan maintain the viability of L. acidophilus and L. casei 4 days after baking in
hamburger buns and white pan bread without altering the sensory characteristics of the
product [61].
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3.2.4. Fruits and Juices

As in the other products, microencapsulation serves as a carrier of probiotic microor-
ganisms to generate functional products. However, in juices, this process can be more
difficult due to the low pH values, which can damage the microcapsules during the storage
period or affect their stability and, therefore, that of the microorganisms. Thus, protection
in juices is different from that in other products. For example, juices such as pineapple,
raspberry, and orange—whose pH values, are 3.28, 2.75, and 3.45, respectively—degrade
the microcapsules in various proportions, with raspberry being the juice that decreased the
number of microcapsules and the number of viable microorganisms the most [62]. These
juices even lower the pH of the product to which they are added [63]. However, this prob-
lem has been solved by incorporating natural extracts such as moringa and green tea into
the microcapsules containing the microorganisms. This promotes viability upon addition
to fruit juice (kiwi, prickly pear, and carrot) and to yogurt and increases the stability of
the microcapsules and viability of microorganisms with the incorporation of oligofructose
or other prebiotics, such as inulin and fructo-oligosaccharides [12–14]. In other studies,
both fruit juice and probiotics are incorporated into the microcapsule, which gives it more
stability and allows the development of functional powdered beverages [64]. In addition
to providing protection and viability, the microencapsulation of bacteria promotes greater
digestion (in simulated conditions) and improves the sensory acceptability of the juice [65].

The incorporation of various types of microcapsules in juices resists pasteurization
processes well. However, researchers are beginning to explore the effects of nonthermal
treatments, such as high pressures. It has been observed that bacteria that are subjected to
high pressures are more resistant to stress and survival [66]. This viability can be increased
further if they are encapsulated. When added to mandarin juice, there are changes in the
physicochemical properties [67]; therefore, this is a good area of opportunity for the applica-
tion of microcapsules. The protection of probiotics during the fermentation process is found
in the case of apple juice, where the encapsulation of Lactobacillus plantarum in alginate
maintains the viability at 2 log CFU/mL more than the unencapsulated treatment [68].

3.2.5. Other Products

Within the development of new products, and in favor of healthier food consump-
tion trends, functional beers have been developed (5% vt alcohol content) that contain
microencapsulated probiotics (Lactobacillus rhamnosus GG in alginate and silica-coated
alginate) [19].

3.3. Microcapsules with Antioxidants in Functional Products

Antioxidants can serve a double function: to preserve the product or to have a ben-
eficial effect on the consumer when a certain antioxidant content remains in the finished
product. Antioxidants decrease the presence of free radicals and other compounds that
are associated with various diseases where oxidative stress is present; therefore, they can
prevent or counteract the side effects of metabolic syndrome and other diseases [69].

3.3.1. Milk and Derivates

The incorporation of polyphenols as a source of antioxidants for the consumer can
provide undesirable flavors or shorten their shelf life when interacting with light or with
the components of the food matrix in which they are incorporated. The microencapsulation
of catechin, a polyphenol present in several products, such as green tea, grapes, and
cocoa, has been reported to have health benefits. When encapsulated in cyclodextrin and
added to yogurt and milk (at 0.1 mg/mL), its flavor is masked without affecting other
sensory parameters, and 82% of the initial catechin is preserved after a simulated digestion
process [70].
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3.3.2. Cereals and Derivates

As in milk, microencapsulation helps maintain stable health compounds, such as
anthocyanins, even after a thermal process, such as cookie baking [71]. Such is the case
regarding the incorporation of microcapsules of sour cherry pomace extract in whey protein,
which prevents the loss of anthocyanins due to processing and preserves the antioxidant
capacity of the extract in the product [72]. Similarly, the microencapsulation of black rice
extract (Oryza sativa L.) in biscuits keeps 50% more polyphenols in the product than does
the control [6]. Similar behavior is observed with the microencapsulation of the beetroot
pulp network (a byproduct of the juice industry), which contains betalains that can be
incorporated into water biscuits, increasing their antioxidant capacity as well as decreasing
the concentration of furosine (a molecule that decreases protein digestibility) by 50% [73].
The incorporation of microencapsulated green tea polyphenols into maltodextrin made
by the lyophilization method maintains a considerable content of polyphenols after the
bread-baking process, up to 62.84% [74], and even preserves compounds with beneficial
health effects, such as hydroxy-citric acid, during the baking process [7].

3.4. Other Functional Benefits of Microcapsules
3.4.1. Milk and Derivates

One of the most common reasons why people do not consume dairy products is
because they lack the enzyme lactase; thus, they must consume this enzyme externally
or consume lactose-free products. Microencapsulation has proposed a solution to this
problem by incorporating the enzyme into the same dairy product. β-D-galactosidase
was microencapsulated in hydroxypropyl methylcellulose phthalate, which was added to
milk (approximately 0.148 g of enzyme), controlling its release, preventing its hydrolysis,
and retaining 81.18% of the enzyme after 12 days in refrigeration [75]; the formulation of
microemulsions in caseinates and sodium lecithin has also been proposed to encapsulate
lactase and control its release and degree of hydrolysis in products such as skim and full-fat
milk [75,76].

Another interesting fact is that the incorporation of microcapsules with minerals such
as iron in infant milk formula increases their absorption compared with when the mineral
is added without any protection, as the microcapsules of iron encapsulated in nondigestible
polymers, such as resistant starch and pectin, increase iron absorption by up to 53% in
rats fed powdered milk [77]. An effect similar to that on infant milk formula is observed
in feta cheese that incorporates microcapsules of iron and ascorbic acid (80 mg/kg and
150 mg/kg, respectively), which increases the iron content compared with the unmodified
product and remains within sensory parameters [78]. A similar effect is observed on milk
fortification by incorporating iron microencapsulated in maltodextrin, gum Arabic, and
modified starch [20].

3.4.2. Cereals and Derivates

As mentioned earlier, the microencapsulation of minerals such as iron increases re-
sistance to food processing and bioavailability in milk. This also occurs in the process
of baking bread. By adding iron microcapsules to modified starch, the bioavailability
is increased from 14% for iron without encapsulating to up to 99%, indicating that the
microcapsules protect iron from inhibitors such as chelating agents, phytic acid, and its
derivatives, and increase solubility and degradation during the digestion process [79]. This
example is interesting in that the microcapsules do not interfere with the fermentation
process of the product, and substances that help iron absorption, such as ascorbic acid, can
also be included in the microcapsule.

4. Microcapsules for Fat Replacement

The type and amount of fat in food are of the utmost importance and improve the
sensory characteristics of the product, such as texture, taste, and even color. In some cases,
fat is the main ingredient, when part of an emulsion. Partially or totally replacing fat is
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a common strategy used to create products with fewer calories. This implies a change in
sensory acceptance or shelf life, and the substitution may not be appropriate depending on
the functionalities of the fat in the product. It has been observed that microcapsules can
be a fat substitute, depending on the technique with which they are made, as it has been
reported that microcapsules made by the complex coacervation technique can function as
fat mimetics [11].

Fat Replacement in Meat

The replacement of fat with empty microcapsules or with the incorporation of some
bioactive compounds improves sensory appearance parameters such as texture in addition
to extending the stability of the products. An example of this is the incorporation of
microcapsules with chia oil and rosemary at 10% of the final formulation to substitute
50% of the amount of fat (pork back fat) that is added to hamburger meat, considerably
improving sensory parameters such as the texture and positive descriptors such as pleasant
herbal odors after 120 days of storage compared with the control (to which the fat was
completely replaced), which presented odors resulting from the oxidation of lipids [16]. It
should be mentioned that the microcapsules were made by the ionic gelation in the sodium
alginate technique. Similar behavior has been observed with microcapsules that contain
only chia oil when used to replace 50% of the fat in hamburger meat [80].

As seen in the functional food section, the incorporation of microcapsules with fatty
acids in certain studies, in addition to increasing the nutritional value, also decreased the
content of added fat. Such is the case for the addition of microcapsules of konjac glucoman-
nan, which contain fatty acids and replace 25, 50, and 75% of the fat in a Spanish sausage
by decreasing the fat content and modifying the textural properties of the product such as
hardness, gumminess, and chewiness [81]. Similar results were obtained with the microen-
capsulation (emulsion and spray dryer with caseinate and lactose) and incorporation of
vegetable oils on deer pate, which decreased the cholesterol content and balanced its fatty
acid composition [37].

5. Application of Microcapsules for Sensory Improvement

The sensory aspects of a product are of great relevance, as they are strongly involved
in the initial intention to buy a product [82]. It has been observed that the addition of
various types of microcapsules can modify product texture, appearance, taste, and color, as
explained in this section.

5.1. Meat

The microencapsulation of probiotic bacteria, in addition to adding value to the
product in terms of health, also improves the aroma, sensory appearance, and other
important attributes in the product. Lactobacillus rhamnosus microencapsulated in a mixture
of polymers (alginate, gellan gum, gelatin, fructooligosaccharides, and peptides; probiotic
concentration approximately 107 CFU/g) using the extrusion technique and added as
a starter culture in a fermented product promotes an increase in the concentration of
volatile compounds with favorable sensory qualities, such as aldehydes, esters, phenols,
and terpenes [17]. Not only probiotic bacteria but also the bacteria used as starter cultures
remain viable through microencapsulation, which also improves the sensory properties of
sausages [83].

The microencapsulation of natural dyes is a trend that helps the substitution of syn-
thetic dyes, increasing their effectiveness and protection against environmental factors.
Maltodextrin microcapsules containing jabuticaba extract (Myrciaria cauliflora) can be used
as dye substitutes or decrease the concentration of dye required when applied at 2% in
fresh sausages, in addition to having benefits as an antioxidant and antimicrobial [84].
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5.2. Milk and Derivates

Natural dyes, such as canthaxanthin, when microencapsulated in alginate and high
methoxyl pectin using the multiple emulsion and external gelation technique, protect
against the color degradation that occurs in fermented dairy products when unencapsulated
canthaxanthin is added [85].

Similar to color, microencapsulation allows flavor to gradually release and persist
for longer compared with flavor that is not encapsulated. An example of this is the
incorporation of caramel microcapsules in milk with coffee for 15 days under accelerated
storage conditions at 30 ◦C, where the presence of volatile flavor compounds is still detected,
whereas nonencapsulated caramel is no longer detected at 9 days after storage [86].

In yogurt, the incorporation of alginate–chitosan microcapsules containing Streptococ-
cus thermophilus and Lactobacillus delbrueckii (made by the ionic extrusion-gelation method)
increase product acceptance in terms of aroma and taste by consumers, a qualification that
is higher with respect to the product that does not contain encapsulated bacteria, due to
the generation of various organic acids [18].

5.3. Cereals and Derivates

The addition of microcapsules with sour cherry pomace extract in whey protein
modifies the final texture of cookies, increasing the softness (by 43%) and red color (by
1400%), which could serve to color a strawberry cookie, or when a pink color is desired
without using extra synthetic or natural dyes, and reduces the brightness by 33% [71].

The presence of enzymes can significantly modify the sensory profile of a product.
Such is the case with the addition of the glucose oxidase enzyme in wheat flour dough
and in steamed bread, which has good performance in improving bread texture and
loaf volume. However, the enzyme has low stability, and its activity decreases during
processing. Encapsulating it (300–1000 U/kg) decreases these effects and decreases its
catalytic speed, which makes the mass present better properties such as extensibility and
elastic modulus. In bread, encapsulation results in better microstructure, texture properties,
and general sensory appearance. A similar effect is produced with the microencapsulation
of alpha amylase in beeswax, which, when added to gluten-free bread, decreases its catalytic
efficiency 2-fold and provides greater thermal stability. The product has a lower hardness
and better sensory quality and acceptability [87].

The volatile compounds that provide the aroma in various products are susceptible
to changes in temperature during processing or storage, in addition to contributing to
one of the most important sensory parameters in the acceptability of a product. The
microencapsulation of aromas provides greater sensory quality in not only aroma but also
taste and global acceptance, and even increases the intention to purchase the product—for
example, in a cheese bread containing Swiss cheese microcapsules in maltodextrin and
starch modified and prepared by the spray drying method [88].

5.4. Fruits and Juices

The encapsulation of juices by various techniques to create juice powders allows
the elimination of some desirable and undesirable aromas in the final product. This is
exemplified by microencapsulation in maltodextrin by spray drying of fermented noni
juice from which undesirable volatile compounds such as hexanoic acid and octanoic acid
were removed [89].

6. Perspectives of Microencapsulation in Foods

As mentioned in this review, microencapsulation constitutes a great area to develop
solutions in the food industry by the incorporation of active and functional ingredients
within the food matrix. Microcapsules not only offer protection and enhance bioavailability
and stability of bioactive substances and natural dyes, but also improve flavor by masking
the taste of fortified foods with added vitamins and minerals, and prevent their interaction
with other ingredients, thus facilitating their delivery. However, some constraints may
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be taken to verify the quality and stability of microencapsulated ingredients such as cost,
encapsulation efficiency, water solubility, release rate, particle size, taste, and microscopic
structure to avoid premature release, among other undesired outcomes.

Palatability plays a role for the inclusion of microcapsules in the food matrices, as they
may be rejected by consumers, especially for large-sized particles or due to variations in
consistency and texture. One of the key points includes the compatibility of the food matrix
that must be capable of masking the presence of large-sized microcapsules. Generally,
microcapsules refer to particles ranging from 0.2 to 5000 µm, while nanocapsules are smaller
than 0.2 µm. Encapsulation in the nanoscale can be used to elaborate nanodispersions with
greater efficiency to be used in the beverage industry, as well as for the development of
packaging materials.

Furthermore, encapsulation efficiency, size, density, and stability vary according to the
encapsulating process and wall material, but factors such as speed homogenization, pH,
addition of mono or divalent ions (NaCl, MgCl2), and ionic strength must be carefully con-
trolled to optimize the microcapsules’ properties. In addition, the microcapsule structure
for single-core or multicore particles with single or multiwall structures may vary within
the manufacture process.

Therefore, advances in microencapsulation involve the development of resistant and
safe biopolymers that constitute a wall structure capable of preventing undesired core
leakage and fulfill food industry requirements in relation to the desired application while
complying with regulatory and safety aspects. Another consideration is the lack or incon-
sistency of the safety and toxicity studies related to the use of microcapsules; therefore,
further studies must be conducted to support the legislation and safety regulations of
microcapsules for food consumption.

7. Conclusions

The application of microcapsules in food represents a very important area of opportu-
nity, as applications that are very common for some products have not been explored in
other products, such as antioxidants in emulsions of dairy products or probiotics in bakery
products. There are many articles that discuss the formation, optimization, and stability of
microcapsules in various media; some of these microcapsules could be used in certain food
matrices but have not been followed up in their application or in their development on an
industrial scale.

As observed throughout the review, the incorporation of microcapsules in food has al-
lowed the successful development of functional, low-fat, or sensorially improved products,
among others. The diversity of techniques and materials for its preparation provides great
versatility in terms of applications and functionalities in the various food products in which
they are used, including resistance to heat treatments such as pasteurization and baking.
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