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Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs about 22 nucleotides in length that regulate the expression of target 
genes post-transcriptionally, and are highly involved in cancer progression. They are able to impact a variety of cell processes 
such as proliferation, apoptosis and differentiation and can consequently control tumor initiation, tumor progression and 
metastasis formation. miRNAs can regulate, at the same time, metabolic gene expression which, in turn, influences relevant 
traits of malignancy such as cell adhesion, migration and invasion. Since the interaction between metabolism and adhesion 
or cell movement has not, to date, been well understood, in this review, we will specifically focus on miRNA alterations 
that can interfere with some metabolic processes leading to the modulation of cancer cell movement. In addition, we will 
analyze the signaling pathways connecting metabolism and adhesion/migration, alterations that often affect cancer cell dis-
semination and metastasis formation.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that, 
at a post-transcriptional level silence their target mRNAs 
via translational repression or mRNA degradation. They are 
mainly located in introns or exons of protein-coding genes, 
as well as in intergenic regions. Most of them are transcribed 
in the nucleus by RNA polymerase II, generating a long 

primary miRNA (pri-miRNA), which is then processed 
by the DROSHA-DGCR8 complex to release a precursor-
miRNA (pre-miRNA). Exportin 5 subsequently translocates 
the pre-miRNA to the cytoplasm where it is cleaved by the 
RNase III Dicer to form a mature miRNA. It is eventually 
loaded onto Argonaute family (AGO) proteins to form the 
effector RNA-induced silencing complex (RISC) [1]. miR-
NAs are master regulators of protein-coding gene expres-
sion: indeed, more than 60% of human genes have, at least, 
one conserved miRNA binding site [2]. Moreover, each 
miRNA may have hundreds of targets and a single mRNA 
may be regulated by several miRNAs. Therefore, altera-
tions in their expression are often associated with diseases, 
including cancer in which they act as tumor suppressors or 
oncomiRs. The first link between miRNAs and tumors refers 
to the miR-15/16 cluster in Chronic Lymphocytic Leukemia 
[3]. Up to now, a many alterations in miRNA expression 
have been identified in tumors [4] and have been related to 
cancer hallmarks [5]. In particular, miRNAs are well-known 
regulators of adhesion, invasion, metastatic process [6] and 
recently, emerging evidence supports their role in the regula-
tion of cancer metabolism.
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Cell metabolism is the sum of reactions supporting cell 
survival, proliferation, migration, resiliency to noxious 
stresses and the control of oxido-reductive balance. One 
century ago, Warburg observed that cancer cells use glyco-
lysis as the main energetic pathway, either in the presence or 
absence of oxygen [7]. Consequently, the reprogramming of 
cell metabolism depending on the environmental conditions 
is considered a cancer hallmark [8]. Although the Warburg 
effect fuels cancer cells to metastasize [9], mitochondrial-
related metabolic pathways are not necessarily defective in 
neoplasia. Many cancers rely on oxidative phosphorylation 
(OXPHOS) and aerobic mitochondrial metabolism [10], 
based on a tricarboxylic acid (TCA) cycle and fatty acid 
β-oxidation (FAO). Moreover, to survive in poor nutri-
ent and hypoxic conditions, cancer cells use opportunistic 
nutrient acquisition strategies as, for example, the uptake 
of amino acids via micropinocytosis or apoptotic bod-
ies [11]. Since histone acetylation alters the expression of 
oncosuppressors, epigenetic alterations are also associated 
with changes in metabolism. Acetyl-CoA (Ac-CoA) is the 
substrate for histone acetylases [12] and proteins control-
ling tumor progression [13]. Thus, a metabolic drift towards 
increased cytosolic Ac-CoA production may increase his-
tone acetylation and confers proliferative/promigratory 
phenotypes in cancer cells [14]. It is important to note that 
tumors are characterized by metabolic plasticity: cancer cells 
may process the same substrate in different ways and use 
distinct energy sources to adapt to the tumor microenviron-
ment (TME). In addition, metabolic heterogeneity within 
the same tumor mass further complicates the picture. As it 
has been demonstrated, metabolic rewiring in cancer cells 
is driven both by intrinsic and extrinsic factors, and affects 
not only energy production and biomolecule synthesis, but 
also cancer biology extensively [15]. Figure 1 highlights the 
main metabolic pathways in cancer cells.

In healthy tissues, homeostasis mainly depends on adhe-
sion between cells and the extracellular matrix (ECM). 
These interactions are mediated by a large group of trans-
membrane receptors, generically defined as Cell Adhesion 
Molecules (CAMs), which include the calcium-dependent 
integrins, cadherins and selectins as well as the calcium-
independent Immunoglobulin superfamily CAMs [16]. The 
same adhesion receptors control proliferation, tissue integ-
rity and cell migration and are able to activate signaling cas-
cades and mechano-signals [17]. Therefore, any abnormal 
change in cell adhesion can lead to malignant transformation 
and tumor progression [18]. In this context, miRNAs are 
pivotal regulators of adhesion receptor expression, which 
impacts tumor progression.

The aim of the present review is to discuss how miR-
NAs are involved in the regulation of glucose and glutamine 
metabolism and in the expression of adhesion molecules 
during cancer progression. In addition, we dissect the 

interplay between adhesion/migration and metabolism in 
malignancy and finally we discuss how miRNAs interfere 
with these hallmarks of cancer.

How miRNAs tightly regulate cell 
metabolism

The metabolic reprogramming of cancer cells is tightly 
regulated at transcriptional or post-transcriptional levels, 
where miRNAs play important roles [19]. Notably, both 
tumoral or stromal miRNAs may operate here, making the 
metabolic crosstalk within the TME highly variegate [20]. 
Since glucose and glutamine metabolism strongly promotes 
cancer cells, a high amount of lactate and their derivatives 
are released in the extracellular milieu, affecting the TME 
composition and favoring angiogenesis and tumor progres-
sion [21]. A research that used over 6000 tumors revealed 
miR-34a-5p, miR-106b-5p, miR-146a-5p and miR-155-5p as 
the universal controllers of cancer metabolism, thus defining 
them as metabomiRs [22]. However, other miRNAs have 
been found involved in the control of cancer metabolic path-
ways. Here, we focus on the link between glucose-related 
pathways or glutaminolysis and miRNAs in cancer cells 
(Fig. 2 and Table 1).

Glucose uptake and glucose‑related pathway

Cancer cells show an enhanced glucose uptake and an 
alteration of glucose-related pathways including glycolysis, 
pentose phosphate pathway (PPP), gluconeogenesis and gly-
cogenolysis compared to their normal counterparts. These 
aspects will be reviewed in the next paragraphs.

Glucose uptake

The glucose transporters (GLUTs) move the glucose through 
the plasma membrane by means of facilitated diffusion. 
GLUT1 is the predominant carrier and its overexpression 
is associated with malignancy and poor prognosis in can-
cer [23, 24], where it can be controlled by miRNAs. For 
instance, in renal cell carcinomas (RCC), GLUT1 is down-
regulated by miR-1291 [25]. Since miR-1291 levels are 
lower in tumors compared to those in surrounding normal 
tissues, this phenotype confers a metabolic advantage to 
RCC cells. In gliomas, GLUT1 is inhibited by miR-451, 
which targets the calcium-binding protein 39 (CAB39), 
thereby arresting glucose uptake and metabolism, as well 
as lactate production. In addition, glioma xenografts pre-
treated with miR-451 show a reduced GLUT1 expression 
compared to controls [26]. In the same tumor type, GLUT1 
is also an indirect target of miR-181b. Histological analyses 
on miR-181b overexpressing xenografts revealed a decrease 
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of GLUT1 expression and viceversa for miR-181b depleted 
tumors [27]. In oral squamous cell carcinomas (OSCC), 
GLUT1 is up-regulated by the oncogenic miR-10a which 
promotes glucose uptake and glucose metabolism leading 
to increased cell proliferation, indicating that glucose is 
required to sustain cancer proliferation and aggressiveness 
[28]. Similarly, miR-1204 levels and GLUT1 are positively 
correlated in biopsies of ovarian squamous cell carcinomas 
and not in non-transformed ovarian tissue, suggesting a spe-
cific pathway for ovarian cancer [29]. Several oncosuppres-
sor miRNAs downregulate GLUT1 as, for example miR-132 
in prostate cancer (PC), where GLUT1 is also regulated by 
cucurbitacin D (Cuc D), an anti-cancer plant steroid [30], 
thus indicating that metabolic effects may be manipulated 
not only with miRNA mimics or anti-miRNAs/sponges, 

but also with pharmacological or natural products. In addi-
tion, an inverse correlation between miR-22 and GLUT1 
expression was found in breast cancer samples. Low miR-22 
and high GLUT1 levels are significantly associated with a 
shorter disease-free survival or overall survival, thus impact-
ing prognosis [31]. Although GLUT1 is the predominant 
isoform in tumors, other GLUT isoforms can also be modu-
lated by miRNAs. In fact, Kim and colleagues showed that 
miR-155 knock-out leads to reduced GLUT1, GLUT3 and 
GLUT4 expression (32). Besides modulating GLUT1 lev-
els, miRNAs may also relocate it. For instance, miR-361-5p 
regulates the translocation of GLUT1 from the plasma mem-
brane to the cytoplasm, thus reducing anaerobic glycolysis, 
proliferation and invasion. In contrast, fibroblast growth 
factor receptor 1 (FGFR1), a miR-361-5p target, reverses 

Fig. 1  Main metabolic pathways in cancer cells. The figure represents 
a schematic overview of the main metabolic pathways and enzymes 
in cancer cells. α-KG alpha-ketoglutarate, Ac-CoA acetyl-CoA, ATP 
adenosine triphosphate, FAO fatty acid β-oxidation, G1P glucose-1 
phosphate, G6P glucose-6 phosphate, G6PC glucose-6-phosphatase, 

G6PD glucose-6-phosphate-dehydrogenase, GLS glutaminase, HK 
hexokinase, LDH lactate dehydrogenase, OXPHOS oxidative phos-
phorylation, PDH pyruvate dehydrogenase, PK pyruvate kinase, 
PYGB glycogen phosphorylase B, TCA cycle tricarboxylic acid cycle
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GLUT1 subcellular translocation [33]. Overall, the effects 
of miRNAs on glucose uptake are particularly variegate.

Glycolysis

Glycolysis is one of the main energetic pathways in tumors, 
which produces 2 adenosine triphosphate (ATP) molecules 
when glucose is metabolized into lactate, or, a higher num-
ber of ATP units when it generates pyruvate. miRNAs con-
trol some of the main glycolytic enzymes, such as those 
mentioned in the following paragraphs.

The hexokinase (HK), a key glycolytic enzyme 
and the branching point of PPP, converts glucose into 

glucose-6-phosphate (G6P), so it is not surprising that HK 
expression is controlled by miRNAs. Indeed, in liver can-
cer, miR-199a-5p directly targets HK2, decreasing glucose 
consumption, lactate production, G6P and ATP levels. In 
patients with liver tumors, HK2 is upregulated and miR-
199a-5p is deregulated [34]. In OSCC, miR-143 directly 
targets HK2, thus suppressing glycolysis and decreas-
ing lactate dehydrogenase A (LDHA) levels and activity. 
Moreover, a negative correlation between miR-143 [35] 
or miR-98 [36] and HK2 has been detected in oral tumor 
tissues and in colorectal cancer (CRC), respectively. Like-
wise, HK2 levels negatively correlate with miR-185 [37] 

Fig. 2  miRNAs as tight regulators of cell metabolism. The illustra-
tion shows the involvement of miRNAs in the regulation of metabolic 
processes in cancer cells. α-KG alpha-ketoglutarate, Ac-CoA acetyl-
CoA, ASCT2 alanine, serine, cysteine and glutamate transporter, 
G1P glucose-1 phosphate, G6P glucose-6-phosphate, G6PC glucose-
6-phosphatase, G6PD glucose-6-phosphate-dehydrogenase, LC gluta-
mate-cysteine ligase catalytic subunit, GLS glutaminase, GLUT glu-
cose transporter, GOT1 glutamate-oxaloacetate transaminase, GSH 

glutathione, HIF1α hypoxia-inducible factor 1-alpha, HK2 hexoki-
nase2, LDHA lactate dehydrogenase A, MCT1 monocarboxylate 
transporter 1, PDH pyruvate dehydrogenase, PDHK pyruvate dehy-
drogenase kinase, PGC-1α peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha, SIX1 sine oculis homeobox 1, PK pyru-
vate kinase, PYGB glycogen phosphorylase B. Black miRNAs direct 
targeting, gray miRNAs indirect targeting. Blocking arrows block by a 
miRNA, arrows final activation by miRNAs
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and miR-497 [38] in osteosarcoma samples, suggesting a 
multiple miRNA control within the same tumor type.

Pyruvate kinase (PK) catalyzes the transfer of a phos-
phate group from phosphoenolpyruvate (PEP) to ADP with 
the consequent formation of pyruvate and ATP. The isoform 
M2 (PKM2) is a direct target of miR-338-3p in ovarian can-
cer [39] and miR-139-5p in gallbladder carcinoma [40].

LDHA is the last glycolytic enzyme of the glycolytic 
pathway and is closely controlled by miRNAs. Since LDHA 
is a miR-34a direct target, it is negatively correlated with 
such miRNA in breast cancer. In addition, LDHA-induced 
glycolysis can be inhibited by miR-34a [41]. In the same 
tumor type, LDHA, is downregulated by miR-34a-5p, 
together with PKM2. In human breast cancer samples or 

Table 1  miRNAs involved in cancer cell metabolic pathways

miRNA Direct target Pathway Cancer type Reference

miR-1291 GLUT1 Glucose uptake Renal cell carcinoma [25]
miR-451 CAB39 Glucose uptake

Glycolysis
Glioma [26]

miR-181b SP1 Glucose uptake Glioma [27]
miR-10a Glucose uptake Oral squamous cell carcinoma [28]
miR-1204 Glucose uptake Ovarian squamous cell carcinoma [29]
miR-132 GLUT1 Glucose uptake Prostate cancer [30]
miR-22 GLUT1 Glucose uptake Breast cancer [31]
miR-155 PIK3R1, FOXO3a Glucose uptake

Glycolysis
Breast cancer [32]

miR-361-5p FGFR1 Glucose uptake
Glycolysis

Breast cancer [33]

miR-199a-5p HK2 Glycolysis Liver cancer [34]
miR-143 HK2 Glycolysis Oral squamous cell carcinoma [35]
miR-98 HK2 Glycolysis Colorectal cancer [36]
miR-185 HK2 Glycolysis Osteosarcoma [37]
miR-497 HK2 Glycolysis Osteosarcoma [38]
miR-338-3p PKM2 Glycolysis Ovarian cancer [39]
miR-139-5p PKM2 Glycolysis Gallbladder carcinoma [40]
miR-34a LDHA Glycolysis Breast cancer [41]
miR-34a-5p Glycolysis Breast cancer [42]
miR-124 MCT1 Glycolysis Pancreatic ductal adenocarcinoma [43]
miR-150-5p SIX1 Glycolysis Melanoma [44]
miR-3662 HIF-1α Glycolysis Hepatocellular carcinoma [45]
miR-106b PLK3 Glycolysis Prostate cancer [46]
miR-1 G6PD, PGD, TKT Pentose phosphate pathway Lung cancer, cervical cancer, pituitary 

cancer, hepatocellular carcinoma
[48, 50–51]

miR-206 G6PD, PGD, TKT Pentose phosphate pathway Lung cancer
Cervical cancer

[48–49]

miR-122 G6PD Pentose phosphate pathway Hepatocellular carcinoma [52, 66]
ACT2, GLS Glutaminolysis

miR-23a PGC-1α
G6PC

Gluconeogenesis Hepatocellular carcinoma [53]

miR-133a-3p PYGB Glycogenolysis Ovarian cancer [54]
miR-137 ASCT2 Glutaminolysis Glioblastoma, colorectal cancer, pancre-

atic ductal adenocarcinoma, prostate 
cancer

[59]

miR-153 GLS Glutaminolysis Glioblastoma [60]
miR-203 GLS Glutaminolysis Melanoma [61]
miR-145 c-Myc Glutaminolysis Ovarian cancer [62]
miR-18a GCLC Glutaminolysis Liver cancer [63]
miR-9-5p GOT1 Glutaminolysis Pancreatic cancer [65]
miR-105 MXI1 Glutaminolysis, glycolysis Breast cancer [67]
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TCGA datasets, low miR-34a-5p expression correlates with 
high LIN28B levels and, together with high MYC levels, 
it predicts poor survival. Interestingly, the LIN28B/MYC/
miR-34a-5p pathway can be therapeutically exploited: in 
fact, when using LIN28B inhibitors, miR-34a-5p increases 
and PKM2 decreases while tumor growth and lung metasta-
sis are suppressed [42]. In conclusion, miR-361-5p inhibits 
glycolysis in breast cancer cells and FGFR1, a miR-361-5p 
target, reverts the anti-glycolytic function of those small 
RNAs and represses OXPHOS by upregulating LDHA and 
pyruvate dehydrogenase kinase-1 (PDHK1) function. An 
inverse expression between miR-361-5p and FGFR1 is pre-
sent in clinical samples [33]. The modulation of LDHA by 
miRNAs may also be coordinated by the monocarboxylate 
transporter 1 (MCT1), which transports lactate out of cancer 
cells. Indeed, miR-124 inhibits glycolysis and lactate export 
by targeting MCT1 in pancreatic ductal adenocarcinoma 
(PDAC). As a consequence, intracellular acidification slows 
down the glycolytic flux and LDHA activity, thus reducing 
tumor growth and invasion [43].

Lastly, miRNAs may also act on transcription factors 
(TFs) involved in aerobic glycolysis, such as sine oculis 
homeobox 1 (SIX1), targeted by miR-150-5p. As a matter of 
fact, as a consequence of SIX1 down-modulation, glycolysis 
is reduced due to a decrease in glucose uptake, lactate and 
ATP production, extracellular acidification rate (ECAR) and 
an increase in oxygen consumption rate (OCR) [44]. Similar 
results are observed for miR-3662 which suppresses glyco-
lysis by directly targeting Hypoxia-inducible factor 1-alpha 
(HIF-1α) in hepatocellular carcinoma (HCC) [45]. Another 
TF involved in glycolysis and in the promotion of invasive 
behavior is STAT3 that in PC cells is indirectly regulated by 
miR-106b, suppressing HK2 transcription [46].

Pentose phosphate pathway (PPP)

Glycolysis can be directed to the PPP that supplies cells with 
nicotinamide adenine dinucleotide phosphate (NADPH), 
maintaining a reserve of reduced glutathione (GSH) and 
ribose-5-phosphate, a precursor for nucleotide synthesis 
[47]. Controlling both glycolysis and the flux toward the 
PPP is of paramount importance for the survival and/or 
malignancy of cancer cells. In particular, the diversion of 
G6P toward PPP increases tumor aggressiveness by proving 
ribose 5-phosphate and reductive equivalents as NADPH 
that are exploited in lipid biosynthesis as well as in the 
protection from oxidative stress. This linkage with the pro-
tection from oxidative damage is demonstrated by reduced 
levels of the ROS-sensitive nuclear factor erythroid 2-related 
factor 2 (Nrf2) in cells with high levels of glucose-6-phos-
phate-dehydrogenase (G6PD), the rate-limiting enzyme of 
the PPP pathway. The increase of G6P and the consequent 
decrease in Nrf2 activity is mediated by miR-1 and miR-206 

in lung cancers [48]. In tumors, G6PD levels increase with 
tumor grade and the enzyme is targeted by miR-206 [49] 
and miR-1 [50] in cervical cancers associated with papil-
lomavirus infections, whereas it is downregulated by miR-1 
in pituitary tumors [51]. Moreover, in HCC samples, G6PD 
levels negatively correlate with miR-1 and the liver-specific 
miR-122, while loss of expression of these two miRNAs 
promotes tumor growth [52].

Gluconeogenesis and glycogenolysis

Gluconeogenesis is a mechanism used to maintain proper 
blood glucose levels, thus generating glucose from non-
carbohydrate carbon molecules. It mainly occurs in the 
liver, and it may, therefore, be altered during liver tumo-
rigenesis. To study gluconeogenesis in HCC, Wang et al. 
used a choline-deficient diet in mice and found a dramatic 
inhibition of the peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha (PGC-1α) and glucose-6-phos-
phatase (G6PC) at the expense of miR-23a direct targeting. 
Relevantly, a negative expression correlation of PGC-1α and 
G6PC with miR-23a was also found in human specimens 
[53]. Alternatively, the excess of glucose may be stored 
as glycogen and its metabolism can be critical for cancer 
development. Indeed, glycogen phosphorylase B (PYGB), 
the rate-limiting enzyme in glycogenolysis, is involved in 
various tumors, including ovarian cancer where its levels are 
upregulated and correlate with poor prognosis. Mechanisti-
cally, PYGB is targeted by miR-133a-3p, and an indirect 
correlation between miRNA and enzyme is present in ovar-
ian cancer samples [54]. Overall, as presented, miRNAs are 
able to affect glucose-related pathways at different levels.

Glutaminolysis

Glutamine is the preferred amino acid of cancer cells, 
which fuels the TCA cycle via its oxidative metabolism 
[55]. It represents a key source of carbon and nitrogen 
for the de novo biosynthesis of nucleotides, non-essential 
amino acids, lipids [56, 57] and anaplerotic metabolites 
for the TCA cycle, lipids, nucleotides and precursors of 
GSH. Indeed, proliferating cancer cells display a high 
glutamine demand [58]. Multiple tumor cells and TME-
related molecules, including miRNAs, control glutamine 
uptake and metabolism. Glutamine enters the cells mainly 
through the alanine, serine, cysteine, and glutamate trans-
porter (ASCT2), targeted by the oncosuppressor miR-137, 
which inversely correlates with ASCT2 in glioblastoma, 
CRC, PDAC and PC. The epigenetic downregulation of 
miR-137 results instead in an increased glutamine uptake, 
enabling cancer cells to survive in an adverse environment 
thanks to the favorable supply of glutamine [59]. Upon 
entry, glutamine is converted to glutamate by glutaminase 
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(GLS), an enzyme directly targeted by miR-153, and miR-
203, frequently downregulated in glioblastoma and mela-
noma, respectively [60, 61]. miR-145 has recently been 
shown to inhibit glutaminolysis in ovarian cancer cells by 
down-regulating c-Myc, an event which reduces GLS tran-
scription [62]. The decreased proliferation caused by low 
c-Myc levels and a reduced use of glutamine may explain 
why miR-145 overexpressing ovarian cancers have a low 
proliferation rate and aggressiveness. In addition, c-Myc 
may orchestrate the rewiring of glutamine metabolism via 
miR-18a upregulation. C-Myc-regulated miR-18a down-
regulates the glutamate-cysteine ligase catalytic subunit 
(GCLC), the rate-limiting enzyme of glutathione synthe-
sis in liver cancer, reducing the availability of GSH [63]. 
Since active c-Myc potentially increases the availability 
of glutamine, conferring a selective advantage of cancer 
cells over non-transformed tissues, c-Myc/miR-18a-over-
expressing cells are more susceptible to oxidative damages 
because of their inability to exploit glutamine to synthe-
size GSH.

To fuel the TCA cycle, glutamate is metabolized to 
alpha-ketoglutarate (α-KG) by glutamate dehydrogenase 
(GDH). Alternatively, it is converted to α-KG by transam-
inases, such as the glutamate-oxaloacetate transaminase 
(GOT1). PDAC strongly relies on GOT1 activity for sus-
tained cell proliferation [64]. miR-9-5p acts as a tumor 
suppressor through GOT1 direct targeting, thus impairing 
PC cell proliferation and invasion and affecting the glu-
tamine-dependent NADPH production and redox homeo-
stasis [65]. As for glucose metabolism, a single miRNA 
may have multiple targets in glutamine metabolism. For 
instance, depletion of miR-122 in HCC shows the upreg-
ulation of ASCT2 and GLS. The ensemble of miR-122, 
ASCT2 and GLS may be considered a prognostic signa-
ture: so, miR-122 levels inversely correlate with ASCT2/
GLS in patients, whereas high expression of ASCT2 and 
GLS correlates with poorer prognosis [66].

Ultimately, glutamine metabolism may also be influ-
enced by extracellular vesicles (EVs) that play an essential 
role in the metabolic crosstalk between tumor cells and 
Cancer Associated Fibroblasts (CAFs). For instance, the 
triple negative breast cancer cells MDA-MB-231 release 
miR-105-rich EVs that force CAFs to up-regulate c-Myc, 
thus reprogramming CAFs metabolism to increase glu-
taminolysis and glycolysis. The final products of these 
pathways, glutamate and pyruvate or acetate, are released 
by CAFs and can be exploited opportunistically by cancer 
cells [67].

Interestingly, by inhibiting both glutamine and glucose 
metabolism, a synergistic effect is shown in osteosarcoma 
[68]. Similarly, the modulation of miRNAs that act on glu-
cose and glutamine metabolism may represent a powerful 
new therapeutic approach in cancer treatment.

miRNAs as relevant regulators of adhesion/
migration/invasion processes

Integrins are a large family of adhesion receptors and the 
main components of focal adhesions (FAs), large molecular 
complexes that transmit a signal bidirectionally, from the 
outside to the inside of the cells and viceversa [69]. Impor-
tantly, FAs are highly dynamic structures that undergo 
continuous reorganization in response to TME stimuli 
including ECM alterations, growth factors and nutrient 
availability [70]. Changes in migration are mainly driven 
by the cytoskeleton, crucial for FA turnover, and composed 
of microtubules, actin and intermediate filaments [71]. Inte-
grins and their associated complexes form the adhesome, 
consisting of ~ 200 proteins [72], whose deregulation is 
tightly associated with several diseases [73]. Interestingly, 
the adhesome components may be targeted by miRNAs, thus 
resulting in alteration of adhesion or motility.

Adhesome formation

Adhesome components are divided into distinct functional 
categories: adhesion receptors responsible for the ECM–cell 
signal transmission; actin regulating proteins controlling 
the communication between integrins and actin network 
remodeling; adaptor proteins that serve as hubs; kinases and 
phosphatases, mainly responsible for the phosphorylation or 
dephosphorylation of adhesome proteins, including GTPase 
activating proteins (GAPs) and guanine nucleotide exchange 
factors (GEFs) [73, 74]. All these proteins are regulated by 
miRNAs, as discussed below and summarized in Fig. 3.

Adhesion receptors

Among integrin heterodimers, the role of α5β1, αvβ3 or 
αVβ5 in the formation of fibronectin-dependent or inde-
pendent adhesion complexes in cancer cells has been 
well explored [75, 76]. Various miRNAs target the single 
subunits of integrins: for example, miR-98 and miR-92b 
directly target ITGβ3 and ITGαV in non-small cell lung 
cancer (NSCLC) and esophageal squamous cell carci-
noma (ESCC), respectively [77, 78]. Sometimes, a single 
miRNA may target several heterodimers, as is the case of 
miR-30, capable of affecting α2β1, α5β1, α4β1 and αvβ3 
integrins, thus influencing bone metastasis formation 
[79]. In HCC, ITGβ5 stabilizes β-catenin by enhancing 
its stability and here, miR-185 directly targets ITGβ5. Rel-
evantly, in these tumors, miR-185 expression is decreased 
compared to normal tissues while ITGβ5 and β-catenin are 
increased [80]. Similarly, other pathways linked to integ-
rins are involved in cancer progression, i.e., the miR-92b/
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ITGα6/Akt axis in ESCC [81] or the miR-214/miR-148b/
ITGa5 axis in melanomas and breast cancers [82]. miR-
214 is a pro-metastatic miRNA, while miR-148b exerts an 
anti-metastatic function in tumor progression even though 
they both act on adhesion receptors. As a matter of fact, 
miR-148b targets ITGA5 and ALCAM leading to dissem-
ination inhibition. Conversely, miR-214 overexpression 
reverts the miR-148b-dependent phenotype by inducing 
miR-148b downregulation with the consequent derepres-
sion of ITGA5 and ALCAM [82]. These results suggest 
that adhesion receptors may be the final effectors of miR-
on-miR pathways.

Adhesion complex regulators

When integrins bind to ECM proteins, the involvement 
of large protein complexes and signal transduction occur 
leading to the formation of various evolving complexes, 
such as primitive adhesions, focal complexes, FAs and 
fibrillar adhesions [83]. Several adaptor proteins, which 
regulate cell signaling and trafficking inside the cells, 
are able to localize in these complexes and to participate 
in the stabilization of signaling proteins [84]. Their loss 
of function leads to an upregulation of signal transduc-
tion, which can be detrimental for tumor progression 

Fig. 3  The adhesome is affected by miRNAs. The figure shows the miRNA-dependent post-transcriptional regulation of gene expression 
involved in adhesion and epithelial to mesenchymal transition (EMT)
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[85]. The expression of some proteins which participate 
in the formation of these complexes is under miRNA con-
trol. Among them, talin, a protein which is controlled by 
miR-124 is capable of linking the cytoskeleton to the cell 
membrane by binding to actin filaments and to integrin 
cytoplasmic tails [86]. In PC, miR-124–talin interaction 
exerts an antitumoral effect by reducing cell adhesion, 
migration, and invasion via integrins and the FAK/Akt 
pathway and an inverse correlation between these two 
players was found in clinical specimens [87]. Paxillin, 
located at the interface between the plasma membrane and 
the actin cytoskeleton, is controlled by miR-137, miR-
145, miR-218 and miR-125b [88, 89]. p140Cap, a multi-
site docking protein co-distributed with cortical actin and 
actin stress fibers and absent in FA [90], is regulated by 
several miRNAs [91].

Cortactin (CTTN), a protein which enables the forma-
tion of actin filaments at the leading edge of migrating 
cells, is controlled by miR-182 and its levels are inversely 
correlated with this small non-coding RNA, in NSCLC 
[92]. Actinins are proteins involved in filament crosslink-
ing processes and the isoform alpha-actinin-4 (ACTN4) 
is inversely correlated with miR-548b in OSCC [93] and 
regulated in CRC by LIM domain kinase 1 (LIMK1) [94]. 
Actin remodeling plays an important role in the develop-
ment of brain metastases. Tominaga et al. have shown that 
secretion of miR-181c via EVs promotes the destruction 
of the blood–brain barrier (BBB) through the downregu-
lation of 3-phosphoinositide-dependent protein kinase-1 
(PDKP1) and phosphorylated cofilin, causing the cofi-
lin-induced modulation of actin dynamics [95]. Cofi-
lin expression can also be altered by the small GTPase 
Rac2, a regulator of various proteins involved in actin 
remodeling and miR-608 has been found to be linked to 
Rac2 regulation in PC, where it is overexpressed [96]. 
Protein phosphorylation and dephosphorylation coordi-
nate cellular communications and signaling by leading 
to conformational changes which, in turn, allow specific 
protein–protein interactions, therefore any alteration of 
phosphatase or kinases can be detrimental for cells and 
can lead to malignancy [97]. Among these enzymes, the 
Focal Adhesion Kinase (FAK), downstream of integ-
rins, is tightly regulated by miR-7, miR-138, and miR-
135 [98]. Finally, several GEFs and GAPs regulate Rho 
GTPases, thus impacting cytoskeleton modulation [99]. 
Interestingly, various miRNAs modulate GTPases such as 
miR-31 in glioma tissues [100] and miR-21 in CRC [101].

Overall, these data suggest a role for miRNAs in modu-
lating tumor progression through the regulation of differ-
ent proteins linked to adhesome formation and cytoskel-
etal modulation.

Cellular protrusions and ECM degradation

Migration pathways are aberrantly regulated in cancer cells 
in which dissemination is favored by Epithelial to Mesen-
chymal Transition (EMT). Cells undergoing EMT lose their 
epithelial morphology to assume fibroblast-like structures 
and form protrusive and invasive structures that guide ECM 
remodeling, cell extravasation and organ colonization. The 
modulation of cell motility genes and miRNAs is a com-
mon trait of cancer dissemination [102]. Studies on HNSCC 
have revealed reduced levels of miR-198, able to target 
Daphnetin 1 (DAPH1), a protein that promotes directional 
migration by sequestering Arpin, a competitive inhibitor of 
the Actin-related proteins (Arp2/3) complex. Therefore, a 
reduction of miR-198 allows for an increase of actin filament 
branching and elongation, consequently enhancing migra-
tion and metastasis dissemination [103]. Similarly, miR-382 
downregulation was observed by analyzing 200 melanoma 
samples and its depletion in melanoma cells revealed its 
anti-metastatic function. In fact, reduced levels of miR-382 
in cells led to an increased expression of CTTN, Rac1 and 
ARPC2, all players of actin cytoskeleton remodeling. In 
particular, CTTN regulates lamellipodia and invadopodia 
formation and its depletion mimics the beneficial effects 
of miR-382 overexpression [104]. Another component of 
the Arp2/3 complex, ARPC5, is silenced by miR-133a and 
decreased in human patients with Head and neck sqaumous 
cell carcinoma (HNSCC) compared to controls [105]. miR-
141 has also been identified as an ARPC5 regulator. Analy-
sis of human xenograft prostate tumors in mice revealed a 
decrease in miR-141 related to higher amounts of the pro-
metastatic Cdc42, Rac1 and ARPC5 [106]. Overall, studies 
investigating transcriptional and protein levels of Arp2/3 
components in pancreatic, colorectal and breast carcino-
mas have shown contradictory results and in many cases 
an increase in gene expression has been reported which is 
directly related to tumor invasiveness. Other investigations 
however, revealed opposite results [107], suggesting that 
Arp2/3 upregulation occurs only in specific steps of tumor 
progression [108]. On the other hand, fascin overexpression 
is frequently accompanied by specific miRNA downregula-
tion in cancer cells. For instance, miR-145, which is able to 
target fascin is significantly reduced in CRC, where metasta-
ses inversely correlates with miR-145 [109]. Malignant cells 
also need to degrade ECM in order to metastatize and this 
comes about by the release of metalloproteinases (MMPs) 
that are also regulated by miRNAs. For instance, MMP2 
and MMP9 activity is enhanced by miR-590-5p overexpres-
sion in CRC xenografts, and its inhibition leads to decreased 
liver metastases. Moreover, miR-590-5p is upregulated in 
CRC patients and induced by the hypoxic TME [110]. By 
contrast, miR-584-3p inhibits gastric cancer (GC) progres-
sion by suppressing Yin Yang 1 (YY1), which binds to 
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MMP14 promoter to improve its expression [111]. In breast 
cancer, miR-361-5p directly targets MMP1, thus reducing 
cancer cell invasion and is downregulated in tumor samples 
[33]. Additionally, miR-182 exerts an anti-metastatic role 
in NSCLC by targeting CTTN, thus affecting invadopodia 
formation [112]. Overall miRNAs play an essential role in 
the regulation of cellular protrusions and ECM degradation.

The crosstalk between metabolism 
and adhesion in tumor progression

While the involvement of metabolism or adhesion compo-
nents in cancer progression has been widely studied, their 
crosstalk still needs better investigation. Here, we discuss 
how alterations in the adhesion process may influence meta-
bolic pathways and viceversa.

Changes in adhesion can alter metabolic pathways 
in cancer

FAK interacts with integrins and growth factor receptors, 
thus affecting motility, growth and, ultimately, cancer pro-
gression. Growing evidence supports the link between FAK 
hyperactivation and aberrant metabolism in tumorigenesis 
which may promote glucose consumption, lipogenesis, and 
glutamine dependency [113]. In addition, its activation can 
promote aerobic glycolysis and tumorigenesis in PDACs 
by increasing the glycolytic genes enolase, PKM2, LDHA 
and reducing the OXPHOS. Conversely, FAK inhibition 
resensitizes cancer cells to growth factors, decreases cell 
viability and reduces tumor growth [114]. In GC, FAK, 
together with ITGB4, SOX2 and HIF1α, is part of a signal-
ing pathway induced by the Extracellular Matrix Protein 1 
(ECM1), which controls metastases and glucose metabo-
lism [115]. In lung adenocarcinomas, FAK1 is negatively 
regulated by NeuroFibromin 1 (NF1), leading to metabolic 
rewiring. NF1 loss specifically causes FAK1 hyperactivation 
and accelerates murine Kras‐driven tumorigenesis. Tumors 
with NF1 mutations, addicted to glutamine, are suscepti-
ble to glutaminase and phosphoserine aminotransferase 1 
(Psat1) inhibitors. This strategy could also be applied to 
other tumors with alterations in the NF1-FAK1 pathway 
[116]. All this evidence demonstrates the therapeutic poten-
tial of FAK inhibition. On the other hand, Demircioglu et al. 
showed that FAK depletion in CAFs enhances malignant 
cell glycolysis and tumor growth, thus indicating that FAK 
modulation in stroma cells may also affect cancer metabo-
lism and progression [117].

The detachment of cancer cells from the ECM is also able 
to influence cell metabolism. In fact, Jeon et al. reported that 
matrix detachment of lung cancer cells induces a decrease 
in glucose uptake, activates LKB1 and AMPK, inhibits 

Ac-CoA carboxylases 1 and 2 which in turn, decreases 
NADPH consumption in fatty acid synthesis (FAS) while 
increasing NADPH generation through FAO fueling [118]. 
Similarly, also cell–cell adhesion, mediated by cadherins, 
is widely known to be critical for tissue homeostasis and 
maintenance of cell polarity. In particular, E-cadherin, which 
inhibits invasion, is lost during the EMT, in which a switch 
from E-Cadherin to N-Cadherin is observed. The presence 
of E-cadherin is typical of an epithelioid and well-differen-
tiated phenotype and functional cell–cell junctions [119]. 
While EMT is responsible for cancer metabolic reprogram-
ming towards an increase of glucose metabolism, the specific 
role of E-cadherin in cancer metabolism is not clear [120]. 
For instance, in breast cancer, E-cadherin has an unexpected 
regulatory ability in tumorigenicity and hypoxia responses: 
E-cadherin loss is associated with slower tumor growth and 
loss of hypoxia response genes, which lead to reduced glyco-
lytic capacity. Moreover, high levels of E-Cadherin in basal 
breast cancers are linked to a poor clinical outcome [121].

The papers presented so far described how adhesion mol-
ecule alterations affect metabolism in cancer cells.

Changes in metabolism can alter cell adhesion 
in cancer

Adhesion may not only alter metabolic pathways as 
described in the previous paragraph, but could itself be 
affected by tumor metabolism, which adds to the complex-
ity of the cancer scenario. An example is represented by 
Ac-CoA, which alters adhesion genes in glioblastoma. Its 
changes affect the epigenetic modification H3K27ac, result-
ing in cell adhesion modulation through the activation of 
 Ca2+–NFAT signaling, as demonstrated by Lee et al. Analy-
sis of xenografts have confirmed the modulation of a panel 
of adhesion and migration-related genes in the absence of 
ATP citrate lyase (ACLY) [122]. We previously discussed 
how FAK may coordinate tumor progression by promot-
ing glycolysis, but, in turn, glycolysis can modulate FAK 
via PEP which acts as a phospho-donor for histidine-58 in 
ESCC. Consequently, the PI3K-AKT signaling pathway is 
activated. Interestingly, ESCCs, but not esophageal adeno-
carcinoma cancer (EAC) cells, use the described pathway to 
induce growth factor-independent proliferation and, at the 
same time, to avoid growth factor signaling targeting thera-
peutics [123]. FAK may also be controlled by long-chain 
fatty acid CoA synthetase 4 (ACSL4), an enzyme involved 
in the conversion of fatty acids to fatty acid-Coenzyme 
A esters that may affect FAK protein stability. In GC, the 
expression of ACSL4 is downregulated in cancer tissues 
when compared to the adjacent mucosa and its decrease 
corresponds to FAK increase, while the levels of PTEN, 
vimentin, β-catenin remained unchanged [124]. Specific 
metabolic changes involving glucose, amino acid and lipid 
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metabolism may alter E-cadherin expression, thus inducing 
EMT in cancer cells [125]. As a matter of fact, in laryngeal 
squamous cell carcinoma tissues, EMT markers are con-
trolled by GLUT1, whose expression is positively correlated 
with vimentin and N-cadherin levels and negatively corre-
lated with E-cadherin. These modulations could also have a 
prognostic value: in fact, high GLUT1, Vimentin and N-cad-
herin expression lead to a shorter survival rate in patients 
and those which, on the contrary, display high E-cadherin 
levels have a longer survival rate [126]. In NSCLC, EMT-
associated genes, including E and N-cadherins, are regulated 
by alpha-enolase (ENO1), a key glycolytic enzyme, whose 
expression is increased in NSCLC tissues compared to nor-
mal ones, thus favoring glycolysis. Conversely, ENO1 down-
regulation increases E-cadherin expression [127]. Another 
pathway involved in the control of EMT is the TCA cycle. 
In nasopharyngeal carcinoma, TCA metabolites may cause 
IKKα recruitment to the promoter of EMT genes with the 
consequent decrease of E-cadherin and ZO-1 expression and 
an increase of vimentin, thus favoring EMT and metastases 
[128]. In PC, NAD, involved in glycolysis and TCA, con-
trols EMT by influencing SIRT1, a NAD-dependent histone 
deacetylase capable of controlling epithelial morphology, 
E-cadherin transcription and mesenchymal marker levels, 
thus influencing cell adhesion [129]. In recent years, met-
formin, a common anti-diabetic drug, has shown its poten-
tial as a tumor protective drug. To dissect the anti-cancer 
mechanism, Banerjee et al. studied its involvement in EMT 
modulation, revealing an induction of MET and an upregula-
tion of epithelial markers. In particular, metformin activates 
AMP-activated protein kinase (AMPK), leading to Snail and 
Slug suppression and E-cadherin upregulation. Interestingly, 
these results were also confirmed in the blood of diabetic 
patients undergoing metformin therapy, thus underlying the 
therapeutic relevance of a highly used metabolic drug useful 
in controlling tumor progression [130].

In conclusion, the papers presented so far show the exist-
ence of a crosstalk between metabolic pathways and the 
adhesion machinery in cancer. However, further in vivo 
investigations are necessary to better demonstrate these 
mutual regulations and their therapeutic value.

The interplay between miRNAs, 
metabolism and adhesion/migration/
invasion‑mechanistic approach

The alteration of energetic pathways are well-known hall-
marks of cancer regulated by miRNAs as described previ-
ously. Here, we discuss miRNAs affecting players impor-
tant both for metabolism and adhesion/invasion that impair 
tumor progression (Fig. 4).

miRNA modulation of glycolysis is able to influence 
dissemination in several ways. miR-455-3p, controlled by 
taurine upregulated gene 1 (TUG1), represses AMPKb2 
expression and contributes to increased levels of Snail and 
HK2, thus leading to enhanced motility and invasion and 
glycolysis of hepatoma cells [131]. Interestingly, breast can-
cer cells may impair the utilization of nutrients by other cell 
types to favor themselves. As a matter of fact, tumor cells at 
the primary site may suppress glucose uptake in non-tumor 
cells of the metastatic niche through the secretion of vesi-
cles with high miR-122 levels that target PK. Consequently, 
when miR-122 is inhibited, glucose uptake is restored in dis-
tant organs and the incidence of metastasis is reduced [132]. 
Also in breast cancer, miR-30a-5p acts through the inhibi-
tion of LDHA expression, leading to a decreased glucose 
uptake, lactate production, ATP generation, and ECAR as 
well as an increased OCR. Lung metastatization is strongly 
impaired following miR-30a-5p expression or LDHA knock-
down in mouse tumors. Moreover, in breast cancer patients, 

Fig. 4  miRNA involved in 
metabolism and in adhesion/
migration/invasion affecting 
tumor dissemination. This 
schematic drawing illustrates 
miRNAs relevant for metabo-
lism and adhesion/invasion 
linked to tumor progression and 
dissemination
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miR-30a-5p negatively correlates with LDHA expression 
and increases FDG uptake [133].

In HNSCC, miR-203 blocks post-extravasation events 
during lung dissemination without affecting carcinoma dif-
ferentiation in vivo. miR-203 controls metastasis through 
the regulation of 3 different players, including the metabolic 
gene NUAK1, a member of the AMPK catalytic subunit 
family involved in the maintenance of glycolysis [134]. 
miR-181d promotes aerobic glycolysis by protecting c-Myc 
from FBXL3 and CRY2-mediated degradation, which is 
responsible for CRC metastases. c-Myc, in turn, upregu-
lates miR-181d and inhibits the expression of FBXL3 and 
CRY2, giving rise to a feed-forward loop [135]. To survive 
in a harsh environment characterized by hypoxia, starva-
tion and reduced vascularization, PDAC cells increase their 
glycolysis and lactate production. Meanwhile these prohibi-
tive conditions could activate autophagy. miR-7 represses 
autophagy and reduces the source of intracellular glucose 
to feed aerobic glycolysis by upregulating LKB1-AMPK-
mTOR signaling, thus reducing proliferation and dissemina-
tion of cancer cells [136].

As previously said, miRNAs may act on TFs includ-
ing SIX1, directly targeted by miR-489-3p, which, in turn, 
impairs glycolysis, decreases glucose uptake, lactate produc-
tion, ATP generation, and ECAR, and increases OCR. This 
axis is relevant for melanoma dissemination in animal mod-
els as well as in patients who display an inverse correlation 
between miR-489-3p and SIX1, increased glucose uptake 
and metastases [137]. miR-155 activates STAT3, thus pro-
moting HK2 transcription in breast cancer cells. The activa-
tion of this axis leads to higher glycolysis and a subsequent 
increase in the ability of cancer cells to disseminate [138].

The TCA cycle occurs in the mitochondria and oxidates 
the Ac-CoA derived from carbohydrates, fats and proteins, 
thus combining several metabolic ways. In GC, the produc-
tion of Ac-CoA depends on the decarboxylation of pyruvate 
by the pyruvate dehydrogenase (PDH) whose levels may 
be restored after PDHK2 repression by miR-422a in GC. 
miR-422a overexpression in GC impairs malignancy and 
leads to a metabolic shift from aerobic glycolysis to oxida-
tive phosphorylation. In addition, the miR-422a–PDHK2 
axis promotes de novo lipogenesis and elevates the reactive 
oxygen species (ROS), arrests cell cycle in G1 phase and 
influences dissemination [139]. High miR-146b-5p levels 
promote cell growth, invasion and glycolysis. miR-146b-5p 
targets pyruvate dehydrogenase B (PDHB), whose overex-
pression leads to the termination of miR-146b-5p-mediated 
effects on growth, invasion and glycolysis [140].

Overall, miRNAs effect on both metabolism and adhe-
sion of tumors or tumor-associated cells has a deep impact 
on multiple aspects of cancer biology, including cancer 
dissemination.

Conclusions

Growing evidence supports the relationship between miR-
NAs and metabolism or metabolism and adhesion or miR-
NAs and adhesion. Here, we discussed the interconnections 
between the three different aspects, miRNAs/metabolism/
adhesion, and how the different players may affect tumor 
progression based on the in vitro and in vivo data. The 
numerous tumor and stroma cell modifications and their 
connections occurring during cancer progression were 
highlighted. In particular, we presented data relative to 
miR-455-3p, miR-122, miR-30a-5p, miR-203, miR-181d, 
miR-7, miR-489-3p, miR-155, miR-422a and miR-146b-5p. 
Interestingly, the main control of these non-coding RNAs 
focuses on the glycolytic pathways, thus emphasizing the 
strong involvement of glucose metabolism in cancer. Nev-
ertheless, further studies need to be performed to reinforce 
the connection between miRNAs, metabolism and adhesion/
metastases in patients. The analyzed papers have demon-
strated the relevance of miRNAs in this intricate network 
and these small non-coding RNAs consequently emerge as 
promising therapeutic candidates. In fact, miRNA expres-
sion and activity can be successfully modulated through 
miRNA mimics or inhibitors to replenish tumor suppressor 
miRNAs or inhibit oncomiRs, respectively. Moreover, con-
sidering the relevance of the discussed adhesion molecules 
and metabolic players, additional therapeutic interventions 
must be considered. Thus, from the content of this review 
new combinatorial therapies to reduce or eliminate cancer 
dissemination can be envisaged.
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