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A B S T R A C T

Recent advances in the availability and applicability of genetic tools for non-conventional yeasts have raised
high hopes regarding the industrial applications of such yeasts; however, quantitative physiological data on
these yeasts, including intracellular flux distributions, are scarce and have rarely aided in the development of
novel yeast applications. The compartmentation of eukaryotic cells adds to model complexity. Model constraints
are ideally based on biochemical evidence, which is rarely available for non-conventional yeast and eukaryotic
cells. A small-scale model for 13C-based metabolic flux analysis of central yeast carbon metabolism was devel-
oped that is universally valid and does not depend on localization information regarding amino acid anabolism.
The variable compartmental origin of traced metabolites is a feature that allows application of the model to
yeasts with uncertain genomic and transcriptional backgrounds. The presented test case includes the baker's
yeast Saccharomyces cerevisiae and the methylotrophic yeast Hansenula polymorpha. Highly similar flux solutions
were computed using either a model with undefined pathway localization or a model with constraints based on
curated (S. cerevisiae) or computationally predicted (H. polymorpha) localization information, while false solu-
tions were found with incorrect localization constraints. These results indicate a potentially adverse effect of
universally assuming Saccharomyces-like constraints on amino acid biosynthesis for non-conventional yeasts and
verify the validity of neglecting compartmentation constraints using a small-scale metabolic model. The model
was specifically designed to investigate the intracellular metabolism of wild-type yeasts under various growth
conditions but is also expected to be useful for computing fluxes of other eukaryotic cells.

1. Introduction

Knowledge of intracellular reaction rates (fluxes) is crucial to un-
derstand how cells metabolize nutrients and how they adapt the fluxes
in response to environmental or genetic perturbations. The investiga-
tion of intracellular reaction rates has become accessible to a wide
range of scientists, rather than exclusively experts, and has been applied
to expand detailed knowledge on cellular physiology (Blank et al.,
2005; Long and Antoniewicz, 2014; Petersen et al., 2000) as well to
guide metabolic engineering (Bartek et al., 2011; Stephanopoulos,
1999; Toya and Shimizu, 2013) and biomedical research (Boghigian
et al., 2010). The field of fluxomics has not only diversified but has also
matured extensively since its inception, and a wide range of biological
questions can be addressed through flux balance analysis (Orth et al.,
2010), metabolic flux analysis (MFA) (Bonarius et al., 1996; Vallino and
Stephanopoulos, 1990), 13C-based MFA (Quek et al., 2009; Weitzel

et al., 2013; Wiechert, 2001; Zamboni et al., 2005) or non-stationary
MFA (Wiechert and Nöh, 2013). Furthermore, novel methods, such as
two-scale (2S)-13C-MFA (Martin et al., 2015), are still emerging. Com-
prehensive frameworks and guidelines are available to simplify and
optimize every step of the analysis, including model generation, ex-
perimental design, analytical methods, visualization, and statistical
evaluation of simulated results (Crown and Antoniewicz, 2013; Droste
et al., 2013; Ebert et al., 2012; Nöh et al., 2014; Wiechert et al., 2001).

MFA computes intracellular fluxes by solving a set of metabolite
mass balances for an organism in a metabolic steady state. 13C-MFA is
an extension of this type of analysis based on the use of isotopically
enriched carbon substrates. As the incorporation of 13C-isotopes into
metabolites depends on the flux distribution, tracking the distribution
of the 13C-isotopes in metabolic intermediates or end products, e.g.,
proteinogenic amino acids, allows the generation of additional con-
straints to the metabolite mass balance equations, either as metabolic
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flux ratios (Sauer et al., 1999) or in the form of isotopomer (isotope
isomer) balances (Wiechert and de Graaf, 1996). These additional
constraints enhance the potential to identify intracellular fluxes, espe-
cially for parallel pathways that result in distinct distributions of the
tracer in the metabolites. 13C-MFA has therefore become a standard
tool, especially in the context of research on bacterial metabolism, with
isotopomer modeling being the most commonly used method at pre-
sent. More specifically, the metabolite and isotopomer balances are
constrained with the experimentally determined substrate uptake,
product formation, and biomass production rates as well as labeling
information of metabolites in the form of mass distribution vectors
(MDVs). An MDV describes the relative abundance of mass isotopomers
differing in the number of included 13C-isotopes of a single metabolite
or a fragment thereof and are determined by mass spectrometric ana-
lyses. The equation system is solved, i.e., the fluxes are computed, by
least squares parameter estimation, in which an initial random flux
distribution is iteratively adapted to minimize the sum of the squared
residuals (SSR) between experimentally and simulated MDVs. A χ2-cut-
off defines the maximum SSR value for a statistically acceptable flux
solution. The solution with the smallest SSR in a sufficient number of
minimizations is then assumed to be the optimal flux solution. Flux
confidence intervals as a result of a sensitivity analysis indicate the
resolvability and thus the robustness of the flux solutions (Antoniewicz
et al., 2006).

A review of publications on 13C-MFA reveals that few published
studies have focused on eukaryotes, with S. cerevisiae being the most
prominent organism among the investigated eukaryotes. This is par-
tially due to the high scientific and industrial interest in baker's yeast
but also to some other extent to the additional modeling challenges
arising from the complexity of compartmented organisms. Specifically,
the duplication of metabolite pools in distinct compartments and the
corresponding parallelization of metabolic pathways increases the so-
lution space and the extent of necessary calculations while decreasing
the available constraining information by lumping isotopic labeling
data of metabolites from separate compartments in one measurable
pool. The issue of modeling compartmentation is usually mentioned in
eukaryotic MFA studies but is rarely addressed and resolved in detail
(Blank et al., 2005; dos Santos et al., 2003; Förster et al., 2014;
Gopalakrishnan and Maranas, 2015). At the core of the pathway par-
allelization problem is the biosynthesis of proteinogenic amino acids
(Förster et al., 2014), whose labeling patterns are usually measured and
used as proxy for the labeling of free intracellular metabolites
(Szyperski, 1995). The crux in eukaryotic cells is the incomplete
knowledge regarding the compartmental origin of precursor metabo-
lites. Even in well-described organisms such as S. cerevisiae, these
knowledge gaps exist, with alanine biosynthesis being one example
(Blank et al., 2005; Buescher et al., 2015). Although defined as cata-
lytically inactive in S. cerevisiae, the cytosolic equivalent to the mi-
tochondrial alanine transaminase is genetically available and only
transcriptionally regulated. In non-conventional yeasts or other poorly
characterized organisms, this problem expands to full uncertainty re-
garding the existence and activity of enzymes and pathways in any
modeled compartment and does not only concern alanine, but theore-
tically any amino acid that originates from a central metabolite present
in more than one compartment. In a modeling context, this indicates
that metabolic pathways cannot always be confined to one of multiple
compartments, nor is sufficient information available to define a spe-
cific ratio between parallel pathways. Thus, we address here the ne-
cessity of creating a model with an option of undefined compartmental
origin of biosynthetic precursors, especially for eukaryotic systems that
are not as well characterized as S. cerevisiae. For model validation, we
chose the model organism S. cerevisiae CEN.PK and the less well-char-
acterized yeast Hansenula polymorpha, for which an annotated genome
sequence and physiological data were available.

2. Materials and methods

2.1. Strains and culture conditions

S. cerevisiae CEN.PK 113 7D (European S. cerevisiae Archive for
Functional Analysis, http://www.uni-frankfurt.de/fb15/mikro/
euroscarf/) and H. polymorpha (Pichia angusta) CLIB 421 (Collection
de levures d′intérêrt biotechnologique, http://www.inra.fr/Internet/
Produits/clib/) were used in all experiments. Growth experiments were
conducted in 1.3 L shake flasks filled with 50 mL Verduyn medium
containing per liter, 5 g (NH4)2SO4, 3 g KH2PO4, 0.5 g MgSO4·7H2O,
4.5 mg ZnSO4·7H2O, 0.3 mg CoCl2·6H2O, 1.0 mg MnCl2·4H2O, 0.3 mg
CuSO4·5H2O, 4.5 mg CaCl2·2H2O, 3.0 mg FeSO4·7H2O, 0.4 mg
NaMoO4·2H2O, 1.0 mg H3BO3, 0.1 g KI, 15 mg EDTA, 0.05 mg biotin,
1.0 mg calcium pantothenate, 1.0 mg nicotinic acid, 25 mg inositol,
1.0 mg pyridoxine, 0.2 mg p-aminobenzoic acid, and 1.0 mg thiamine
(Verduyn et al., 1992). The medium was supplemented with 5 g/L
glucose and buffered with 100 mM potassium hydrogen phthalate. The
pH of the medium was adjusted to 5. The shake flasks provided a closed
system equipped with O2- and CO2-sensors (BlueSens gas sensor GmbH,
Herten, Germany) and an air-tight sample port, and were shaken at
130 rpm with an amplitude of 30 mm. 13C-tracer experiments were
performed with a mixture of 80% 1-13C-glucose and 20% U-13C-glucose
(both purchased from Sigma-Aldrich, Steinheim, Germany, with 99
atom-% purity), reported to have a high potential for resolving the
network of central carbon metabolism at a reasonable prize per ex-
periment (Zamboni et al., 2009). The main cultures were inoculated to
a starting optical density (OD600) of 0.05 from precultures grown in the
same minimal medium, but supplemented with naturally labeled glu-
cose after cells were harvested and washed with 0.9% NaCl solution.
Precultures were grown in 100 mL shake flasks at a shaking frequency
of 200 rpm at 30 °C and 40 °C for S. cerevisiae and H. polymorpha, re-
spectively. Samples of the main culture were taken by connecting a
syringe to the sample port, opening the sealing clamp, and flushing the
sampling line with air before creating a vacuum with the syringe and
allowing approximately 1 mL to flow into the sample tube. The sam-
pling line was flushed with air before the sealing clamp was closed to
minimize disturbances of the closed headspace and corresponding gas
analysis. After the cultures reached stationary phase, the headspace
analysis was continued for several hours to verify the tightness of the
system by stable gas analysis signals.

2.2. Physiological data acquisition and processing

Immediately after sampling, the OD600 was measured, and the
samples were centrifuged at 13,000 rpm for 5 min in a tabletop cen-
trifuge. The biomass pellet was separated from the supernatant, and
both fractions were stored at −20 °C until further analysis. The su-
pernatant was used to determine the concentrations of glucose and the
excreted metabolites ethanol, glycerol, and acetate. The metabolites
were separated on an Aminex HPX-87H column (Bio-Rad, Hercules, CA,
USA) at 60 °C with a flow rate of 0.8 mL/min of 5 mM H2SO4. Glucose,
ethanol, and glycerol were detected on a Shodex RI-101 detector, and
acetate was detected at a wavelength of 210 nm in a variable wave-
length detector of an UltiMate 3000 HPLC system (Dionex, Sunnyvale,
CA, USA).

The cell dry weight (CDW) of samples was calculated from the
measured OD600 and a calibration curve, which was recorded for both
yeasts under corresponding experimental conditions. The correlation
curves were generated by weighing the biomass from duplicates of
10 mL culture samples with five different OD600 values ranging from
0.5 to 6. The samples were cooled on ice before centrifugation in glass
tubes at 3500 rpm for 20 min in a Heraeus Megafuge 16 R (Thermo
Scientific, Waltham, MA, USA). The supernatant was discarded, and
biomass pellets were washed with water and centrifuged again. Finally,
the supernatant was discarded again and biomass pellets were dried at
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60 °C for 48 h before weighing.
The off-gas was measured using BCP-O2 and BCP-CO2 sensors con-

nected to a BACCom12 communication box using the FermVis software
(BlueSens gas sensor GmbH, Herten, Germany). The signals were ob-
tained in units vol% (H) and transformed into molar concentrations as
described by Heyland et al. (2009) using Eqs. (1), (2), in which VR is the
real molar volume, and Vm is the volume of one mole of ideal gas.
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Exponential growth rate (µ), uptake rates, and production rates (r)
were calculated by a simultaneous nonlinear fit of the time-dependent
concentration (c) changes using Eqs. (3)–(7), in which x0, s0, and p0 are
the biomass, substrate, and product concentrations, respectively, at the
beginning of the experiment; xt is the biomass at time point t, and YSX

and YPX are the substrate and product yields on biomass, respectively.
The equations were solved with SigmaPlot Version 12.5 (Systat Soft-
ware, Inc., San Jose, CA, USA). For experiments in which the formation
of glycerol, acetate or ethanol was not observed, the corresponding
equations were excluded from the fit.
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The calculated CO2 production rate was not used as an input con-
straint for 13C-MFA because the CO2 sensor was calibrated for unlabeled
carbon and was therefore insensitive to 13C-labeled CO2. Specifically,
due to the calibration of the sensors, only 6% of 13CO2 was detected. A
pre-simulation correction of this rate was not feasible because the la-
beling of CO2 is not necessarily equal to the total labeling of substrate
carbon, but rather depends on the actual flux distribution. Once a flux
distribution was found, the simulated CO2 labeling was used to correct
the original CO2 rate, and this rate was used as a quality indicator for
the obtained flux solution. The corrected CO2 production rates (rCO2,cor)
were calculated from the measured rates (rCO2) and the simulated
fraction of unlabeled and labeled CO2 (fm+0 and fm+1, respectively)
derived from the best flux solution using Eq. (8).
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2.3. 13C-labeling analysis

Biomass that was sampled during the mid-exponential growth phase
was used to determine the MDVs of proteinogenic amino acids.
Approximately 0.3 mg of biomass was resuspended in 150 µL of a 6 M
HCl solution, then hydrolyzed at 105 °C for 6 h and dried overnight.
The dried hydrolysate was resuspended in 30 µL of acetonitrile and
30 µL of N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide (MBDS-
TFA; CS-Chromatographie Service GmbH, Langerwehe, Germany), fol-
lowed by incubation at 85 °C for 1 h to allow derivatization. The deri-
vatized samples were analyzed on a gas chromatography-mass spec-
trometry (GC-MS) single quadrupole system consisting of a TRACE™ GC
Ultra and an ISQ single quadrupole MS with electron impact ionization
(Thermo Fisher Scientific, Waltham, MA, USA) equipped with a
TraceGOLD TG-5SilMS fused silica column (length, 15 m; inner dia-
meter, 0.25 mm; film thickness, 0.25 µm). The GC-MS was operated as
described by Schmitz et al. (2017) with a constant gas flow rate of

1 mL/min of helium and a split ratio of 1/15. The injector temperature
was set to 270 °C, and the column oven program comprised an initial
temperature of 140 °C for 1 min and a temperature ramp with a rate of
10 °C/min to a final temperature of 310 °C with a hold time of 1 min.

The raw GC-MS data were transformed into MDVs and corrected for
the influence of unlabeled biomass from the inoculum and the natural
abundance of heavy isotopes using iMS2Flux (Poskar et al., 2012), as
described by Schmitz et al. (2017).

2.4. 13C-MFA method

OpenFLUX was used to compute the intracellular fluxes (Quek and
Nielsen, 2014; Quek et al., 2009). The software generated mass and
isotopomer balances from a model in text format, which defined the
reaction stoichiometry and carbon atom transitions of central carbon
metabolism, precursor drains for biomass synthesis, and lumped reac-
tions of amino acid biosynthesis, which were used to infer amino acid
labeling from the modeled central metabolites. All metabolic reactions
were defined as unidirectional (F), and physiologically reversible re-
actions were split into a forward (FR) and reverse (R) reactions. Bio-
mass formation was approximated by a set of equations that break
down all biomass-building reactions (B), such as fatty acid, protein, and
nucleic acid production, into several reactions that drained the re-
spective precursors from the modeled network. The demand of pre-
cursors for biomass synthesis was derived from published yeast biomass
composition data (Christen and Sauer, 2011), but instead of individual
drains of cytosolic and mitochondrial acetyl-CoA, pyruvate, and ox-
aloacetate, only one overall drain was used for each metabolite. De-
tailed pathways for proteinogenic amino acid synthesis were excluded
from the network of mass balances. Instead, pathways of amino acid
synthesis starting at the central precursors were summarized in one or
two reactions per amino acid with the corresponding atom transitions
(S/SF), which allowed the computation of amino acid labeling from the
labeling of the metabolite precursors. For amino acids that originate
from precursors present in both the cytosol and mitochondria, parallel
reactions were defined that drained either the cytosolic or mitochon-
drial pool for their synthesis. In this way, localization constraints could
easily be set in the model when conclusive localization information was
available. Otherwise, the ratio of the fluxes through these parallel
pathways was left unconstrained and was simulated during parameter
estimation. More specifically, this was achieved by defining the parallel
pathways as SF reactions in the OpenFLUX model. This reaction type
indicates that the imaginary fluxes through the parallel reactions add
up to unity. In cases of a known location of this segment, the activity
(termed basis in OpenFLUX) of the correctly located reaction was set to
one and the other to zero. Otherwise, one of the two complementary
reactions was defined as a so-called free flux (see the OpenFLUX manual
for a detailed definition of flux basis and free fluxes), meaning that the
ratio can vary freely during the simulation.

To simulate the label distribution in the metabolic network, meta-
bolites, proteinogenic amino acids, and the carbon atom transitions of
the reactions were defined as described by Wiechert and de Graaf
(1997). Information regarding the atom transitions was obtained from
the BioCyc knowledgebase for S. cerevisiae ATCC 18824 (Caspi et al.,
2012). The first and second positions of the carbon atom strings of all
amino acids were assigned to the carboxyl and amino carbons.

To determine the experimental error of MDVs, the uncertainty of the
GC-MS measurements of each amino acid fragment was used as the
basis and corrected for variations between measurements from samples
taken in short time intervals during the mid-exponential phase of the
same culture. For every mass whose relative abundance showed a
higher deviation between two consecutive samples than the measure-
ment error of the GC-MS, this absolute deviation was used as error
measure.

The model was constrained with glucose and oxygen uptake, by-
product secretion rates, and precursor drains into biomass. The glucose
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uptake rate was normalized to 1000, while all other constraining rates
were scaled accordingly. These rates were defined in a separate
MATLAB file (‘preSolverScript.m’) that contained a matrix with the
lower and upper boundaries of the respective rates. In the presented
model, one uptake reaction for each of the glucose isotopomers (1-13C-
glucose and U-13C-glucose) was included with an undefined ratio. In
this manner, the model could compensate for possible small deviations
from the intended ratio of the two isotopomers, which may occur due to
weighing errors or inaccurate declaration of 13C-enrichment. As
OpenFLUX requires a flux basis for starting the parameter estimation,
the biomass-building drain of glycine was fixed in every model. The
complete models, including MDVs, measurement errors, and flux ranges
of extracellular reaction rates defined in the preSolverScript files, are
included in the supplement.

All computations were performed in MATLAB 2010b (The
MathWorks, Inc., MA, USA). Java 7 (Sun Microsystems, Santa Clara,
CA, USA) was used to convert the model in text file format into the
respective MATLAB files. The resulting flux distributions were visua-
lized on metabolic pathway maps created with Omix® (Droste et al.,
2013).

2.5. Methods for pathway localization analysis

The Saccharomyces Genome Database (www.yeastgenome.org)
(Cherry et al., 2012) was used to obtain curated information regarding
the compartmental localization of gene products in S. cerevisiae. The
focus was specifically concentrated on the very reactions in any
pathway segment that introduce carbon atoms from one of the central
network intermediates with separate pools in both compartments. To
investigate pathway localization in H. polymorpha, the protein se-
quences from S. cerevisiae, which correspond to essential enzymes in
amino acid biosynthesis pathways were subjected to BLAST searches
against the protein sequences derived from the H. polymorpha genome
sequence available from the homepage of the Joint Genome Institute
(JGI) (http://genome.jgi.doe.gov/Hanpo2/Hanpo2.home.html, ac-
cessed in April 2016). Hits from the BLASTP analysis and annotation
information from the JGI database were compared. Resulting BLASTP
hits were computationally analyzed with TARGETP 1.1 (TP)
(Emanuelsson et al., 2007) and WoLF PSORT (WP) (Horton et al.,
2007). Furthermore, the JGI database links the protein sequences with
enzyme activities and pathway affiliation. These results were further
used to generate the best guess regarding pathway localization in both
investigated datasets.

3. Results and discussion

3.1. Model development considering uncertainties in compartmental origin
of amino acids

For metabolic flux analysis, a model was developed that described
the central carbon metabolism, including glycolysis, the pentose phos-
phate pathway (PPP), and the tricarboxylic acid (TCA) cycle, with ap-
proximately 50 reactions and linked biomass production to twelve in-
termediates of this central network. A CO2 exchange reaction according
to Leighty and Antoniewicz (2012) was used to compensate for dilution
of the 13C label by naturally labeled CO2 contained in the headspace of
the shake flask at the beginning of the experiment. A similar compen-
sation was applied for methyltetrahydrofuran (MTHF), allowing label
adjustment. A simplified respiratory chain reaction was used to allow
reoxidation of NADH and balancing of O2. The model was compart-
mented into cytosol and mitochondrion and featured transport reac-
tions between the compartments for isocitrate, malate, acetyl-CoA (A-
CCOA), pyruvate (PYR), and oxaloacetate (OAA). The amino acids
serine (SER), glycine (GLY), and threonine (THR) were exceptions in
the model, as they contributed measured MDVs and were featured as
mass-balanced intermediates of the modeled network. These exceptions

were made because of the complex interactions among the three amino
acids and with the rest of the network. Furthermore, the model defi-
nition allowed to simulate the origin of each amino acid independently
and uncoupled from other amino acids stemming from the same pre-
cursor, e.g., alanine and leucine, which share the common precursor
pyruvate.

The model reactions for valine (VAL), leucine (LEU), and isoleucine
(ILE) biosynthesis shown in Table 1 will be used as an example of the
model structure.

To independently simulate the labeling patterns of leucine and va-
line, which share the common precursor 2-oxoisovalerate (ISV), the
synthesis pathways of these two amino acids had to be uncoupled. To
this end, leucine synthesis was defined by two reactions, pyruvate
condensation (r128) and acetylation (r129), to account for a possible
exchange of the intermediate 2-oxoisovalerate between compartments.
In contrast, valine synthesis was aggregated into one reaction, thereby
skipping the intermediate 2-oxoisovalerate (Table 1) and, hence,
avoiding interference of the labeling simulation of valine and leucine. A
similar simplification was not feasible in the cases of threonine and
isoleucine because threonine could not be directly substituted by a
single central carbon metabolite, as it is derived from two alternative
pathways, i.e., the amination of oxaloacetate and the condensation of
glycine and acetaldehyde. Consequently, to uncouple threonine and
isoleucine biosynthesis, an additional shortcut pathway that directly
synthesized isoleucine from oxaloacetate (r120 and r121 in Table 1)
was introduced, while the original pathway (r122 and r123) was
maintained to allow partial isoleucine synthesis from threonine derived
from glycine. As only the average labeling of both amino acid pools
could be measured, reactions r124 and r125 combined all isoleucine
synthesis pathways into this average pool. Defining the subspecies ILEo
and ILEt was necessary because OpenFLUX did not allow free variation
of the four possible isoleucine synthesis reactions (see the Materials and
methods section for details).

3.2. Computational predictions of amino acid biosynthesis
compartmentation

Curated information on the localization of amino acid biosynthesis
for S. cerevisiae was obtained from the Saccharomyces Genome
Database. Eleven genes that contribute to nine anabolic pathways or
pathway segments that link amino acids to precursors with separate
cytosolic and mitochondrial pools were identified. The localization in
the non-conventional yeast H. polymorpha was not reported and was
inferred with the computational localization analysis tool WoLF PSORT
and TargetP based on the protein sequences of the eleven identified
genes. The comparison with protein annotations from the JGI database

Table 1
Modeling of amino acid biosynthesis. Shown is an excerpt of the metabolic
model (Supplementary Table S1) with a consecutive number of reaction IDs and
abbreviated reaction equations. The indices ‘mit’ and ‘cyt’ indicate mitochon-
drial or cytosolic compartmentation, respectively. In the case of isoleucine, the
indices ‘o′ and ‘t′ indicate ILE originating from the pathways incorporating OAA
and THR, respectively.

Reaction ID Reaction Equation

r118 PYRmit + PYRmit = VAL + CO2

r119 PYRcyt + PYRcyt = VAL + CO2

r120 PYRcyt + OAAcyt = ILEo + CO2

r121 PYRmit + OAAmit = ILEo + CO2

r122 PYRcyt + THR = ILEt + CO2

r123 PYRmit + THR = ILEt + CO2

r124 ILEo = ILE
r125 ILEt = ILE
r126 PYRcyt + PYRcyt = ISV + CO2

r127 PYRmit + PYRmit = ISV + CO2

r128 ISV + ACCOAmit = LEU + CO2

r129 ISV + ACCOAcyt = LEU + CO2
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confirmed the BLASTP results and yielded no further protein entities
suitable for analysis. The computational prediction of the most likely
compartmental pathway localization was used to generate a pathway
localization pattern for H. polymorpha. A summary of genes and pro-
teins with the results of the computational analysis of compartmental
localization is provided in Table 2.

Based on the curated localization information provided in Table 2,
valine, leucine, isoleucine, and alanine biosynthesis in the S. cerevisiae
model was constrained to the mitochondria, while lysine biosynthesis
was constrained to the cytosol. For lysine biosynthesis, this concerned
only the carbon atoms stemming from acetyl-CoA, as the second pre-
cursor α-ketoglutarate (OGA) was exclusively located in the mi-
tochondria. The uncertainties in the localization of leucine and lysine
biosynthesis were neglected, as it is has been shown by Gombert et al.
(2001) that acetyl-CoA involved in leucine biosynthesis is of mi-
tochondrial origin, while the acetyl-CoA involved in lysine biosynthesis
is of cytosolic origin. Furthermore, there were several instances where
prediction was not possible, indicated by a question mark (?) in Table 2.
The prediction results for H. polymorpha BLASTP hits were consistently
mitochondrial for valine and alanine biosynthesis and consistently cy-
tosolic for lysine biosynthesis. In the cases of leucine and isoleucine
biosynthesis, inconsistent results were neglected, as such incon-
sistencies were neglected for S. cerevisiae as well, and localizations were
assumed to be mitochondrial. The localization of aspartate, threonine,
and methionine biosynthesis was left variable based on parallel cyto-
solic and mitochondrial prediction results. This resulted in an overall
pathway map of H. polymorpha that was identical to that of S. cerevisiae.
The final compartmentation constraints are indicated in the corre-
sponding models in the supplement.

3.3. Quantitative physiology of S. cerevisiae and H. polymorpha

13C-MFA is applicable to cultures grown in a (pseudo-)metabolic
and isotopic steady state. This was ensured here by growing S. cerevisiae
and H. polymorpha in glucose minimal media in batch shake flask ex-
periments and sampling for proteinogenic amino acid labeling analysis
during the mid-exponential phase, approximately five generations after
inoculation. Physiological data were monitored throughout the entire
growth period (Figs. 1 and 2) to ensure well-founded selection of data
exclusively derived from the exponential phase during growth on glu-
cose for the calculation of uptake and production rates as well as OD600

to CDW correlations. The overlay with simulated data for the chosen
exponential phases in the graphs indicate the quality of reaction rate
estimates. As the accuracy of extracellular uptake and secretion rates
considerably impacts the quality of the computed flux distribution
(Nissen et al., 1997), the quality of acquired physiological data was
revisited by determining the carbon balance (Table 3).

The experimental data for H. polymorpha showed an accumulation
of glycerol, acetate, and ethanol only after the considered exponential
growth phase on glucose (Fig. 2), which is why the corresponding
production rates were irrelevant for the flux analysis and are not re-
presented with simulated data. The absence of the accumulation of
byproducts is the central characteristic of H. polymorpha, corresponding
to a higher growth rate. Growth rate and absent byproduct formation
also result in significantly lower specific rates of glucose uptake and
CO2 formation and a much higher rate of oxygen uptake.

3.4. Impact of constraints regarding amino acid biosynthesis localization on
accuracy and resolvability of the flux distribution in S. cerevisiae

Intracellular flux distributions were computed by applying the cal-
culated extracellular rates and amino acid labeling data as constraints
and using the metabolic model either with the specified localization of
amino acid biosynthesis (Sd) or without these additional constraints
(Sf). Additionally, one solution was generated using a minimal set of
localization constraints (Sdmin); specifically, the acetolactate synthase
involved in the biosynthesis of valine and leucine was defined as un-
iquely mitochondrial because of the unambiguous enzyme localization
prediction results. The acquired physiological data (Table 3) and si-
mulated flux distributions of S. cerevisiae (Fig. 3) corresponded well to
previously published data with low TCA cycle and PPP activity of ca.
10%, high glycolytic flux, no activity of the glyoxylate shunt, and re-
ductive activity of the malate dehydrogenase (Christen and Sauer,
2011; Wasylenko and Stephanopoulos, 2015), validating the experi-
mental data as well as the applied computational methods.

The largest differences between the solutions Sf and Sd were found
in the fluxes around the mitochondrial pyruvate and cytosolic ox-
aloacetate nodes as well as through the TCA cycle. Both flux solutions Sf
and Sd displayed a reductive activity of the malate dehydrogenase,
which indicates the high level of glucose repression on the TCA cycle.
While the net and exchange reactions of acetyl-CoA transport were very
small or zero in Sf, a net efflux of mitochondrial acetyl-CoA and an
extensive exchange flux were computed for Sd. The flux through the
phosphoenolpyruvate-pyruvate-oxaloacetate-phosphoenolpyruvate
cycle was not resolvable and was therefore set to a PEP carboxykinase
flux of 0.25 mol/molGlucose in the visualization, although simulated
fluxes were very high in all three solutions. The origin of biomass
precursors from the compartmental pools was not specified in the
model, which resulted in the unlikely case that the vast majority of
biomass was generated from mitochondrial precursors in all computed
flux solutions. To avoid such likely artifacts, high-quality specifications
of the biomass composition should be used when available. Here, it did
not influence the relative distributions at branching points further
downstream in the flux solutions. Notably, the differences in computed

Table 2
Results of the computational analysis regarding the mitochondrial (mit) or cytosolic (cyt) localization of key enzymes involved in amino acid synthesis. In cases of multiple BLASTP hits,
the computed localizations of individual hits are separated by a ‘+’ symbol, and results from the prediction tools WolfPsort (WP) and TargetP (TP) are separated by a slash (/). Instances
where localization could not be predicted with certainty are indicated by a question mark (?).

Biosynthesis Pathway Gene Protein Curated S. cerevisiae
localization

Predicted S. cerevisiae
localization (WP)/ (TP)

Predicted localization of H.
polymorpha BLASTP hits (WP)/ (TP)

Valine/Leucine/ Isoleucine ILV2 Acetolactate synthase mit mit/mit mit/mit
Isoleucine ILV1 Threonine deaminase mit mit/? ?+?/mit+mit
Leucine LEU4 α-Isopropylmalate synthase ? cyt/cyt ?+cyt/mit+cyt

LEU9 LEU4p isoenzyme mit cyt/mit ?+cyt/mit+cyt
Aspartate/Threonine/

Methionine
AAT1 Aspartate aminotransferase mit mit/mit mit+cyt/mit+cyt

AAT2 AAT1p isoenzyme cyt cyt/cyt mit+cyt/mit+cyt
Threonine/Methionine HOM3 Aspartate kinase cyt cyt/? no hit
Lysine LYS21 Homocitrate synthase ? cyt/cyt cyt+cyt/cyt+cyt

LYS20 LYS21p isoenzyme cyt cyt/cyt cyt+cyt/cyt+cyt
Alanine ALT1 Alanine transaminase mit mit/mit ?/mit

ALT2 ALT1p isoenzyme (inactive) cyt cyt/cyt ?/mit
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fluxes between Sdmin, specifying only the localization of acetolactate
synthase, and Sd were marginal compared with differences to Sf.

To assess the significance of the divergent fluxes, flux confidence
intervals were determined (Fig. 4). Remarkably, the confidence inter-
vals of Sf for each flux included the flux values of Sd and, even for
poorly resolved fluxes such as pyruvate decarboxylase flux, the solu-
tions were highly similar. Overall, most of the Sf fluxes suffered a de-
crease in resolvability compared to Sd.

Furthermore, the solution based on a minimal set of compartmen-
tation constraints, Sdmin, showed a highly increased similarity to Sd
compared to Sf and no significant increase of the flux intervals com-
pared to Sd.

To further investigate the differences between the differently

constrained models, the labeling patterns of compartmental pools of the
amino acid precursors pyruvate, oxaloacetate, and acetyl-CoA were
calculated by a forward isotopomer simulation in OpenFLUX (task 8)
based on the computed flux distributions (Fig. 3). The results revealed
that Sf differed from Sd only in its effect on mitochondrial acetyl-CoA
and pyruvate labeling, while Sd and Sdmin were indistinguishable in the
three MDVs. Furthermore, the deviations between mitochondrial and
cytosolic labeling patterns of all metabolites in Sd were on the same
scale or below the error of the mass distribution measurements of
0.005 Da. Accordingly, for the chosen 13C-labeling strategy and the flux
distribution for respiro-fermentative growth of S. cerevisiae on glucose,
none of the possible definitions of compartmental origin of amino acids
would influence the labeling pattern of proteinogenic amino acids and,

Fig. 1. Physiology of S. cerevisiae CEN.PK 113-7D in minimal medium batch culture. A
closed 1.3 L shake flask with a liquid volume of 50 mL Verduyn medium containing 5 g/L
glucose was used at 30 °C. CDW, glucose, ethanol, acetate, and glycerol concentrations
are indicated with symbols, while fitted values are represented by corresponding lines.
The measured O2 and CO2 values are represented as lines because of the continuous
nature of the measurements, and fitted data are represented with symbols.

Fig. 2. Physiology of H. polymorpha CLIB 421 in minimal medium batch culture. A closed
1.3 L shake flask with a liquid volume of 50 mL of Verduyn medium containing 5 g/L
glucose was used at 40 °C. CDW, glucose, ethanol, acetate, and glycerol concentrations
are indicated with symbols, while fitted values are represented by corresponding lines.
The measured O2 and CO2 values are represented with lines because of the continuous
nature of the measurements and fitted data are represented with symbols.
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accordingly, the SSR. Thus, a flux solution based on any set of possible
compartmentation constraints can be identical to Sd or at least within
the confidence intervals of this solution. This is further confirmed by
the fact that a forward simulation of amino acid labeling patterns based
on the flux solution Sd with superimposed random compartmentation

constraints resulted in no significant changes in the overall SSR (data
not shown).

The differences between Sf and Sd were ascribed to a vast switch in
the simulated compartmental origin of amino acids produced from
pyruvate as a precursor (LEU, ILE, and VAL). With the unconstrained
model, these amino acids were simulated to be synthesized, to a great
extent, from cytosolic pyruvate, in contrast to the curated mitochon-
drial origin. This discrepancy can be attributed to the additional
freedom of the unconstrained model, Sf, but does not result in devia-
tions between flux solutions Sf and Sd beyond the confidence of the
properly constrained solution, Sd.

The complete flux solutions for each model, the results of the si-
mulated labeling of acetyl-CoA, pyruvate, and oxaloacetate, and the
sensitivity analyses are included in the supplement (Fig. 5).

3.5. Impact of constraints regarding amino acid biosynthesis localization on
accuracy and resolvability of the flux distribution in H. polymorpha

The flux solutions of H. polymorpha (Fig. 6) differed significantly
from those of S. cerevisiae. The absence of the accumulation of by-
products resulted in high TCA cycle activity and higher fluxes feeding
into biomass synthesis. Additionally, very high activity of the PPP of
(ca. 75%) was simulated. A high PPP activity of ca. 50% was previously
reported for this H. polymorpha strain during growth at 30 °C (Blank
et al., 2005; Christen and Sauer, 2011). One possible explanation for the
additional increase of PPP activity observed herein may be a higher

Table 3
Summary of experimentally acquired physiological data for S. cerevisiae at 30 °C and H.
polymorpha at 40 °C. Both experiments were performed in 1.3 L shake flasks with 50 mL of
Verduyn medium complemented with 5 g/L glucose.

S. cerevisiae H. polymorpha

µ [h−1] 0.4±0.0 0.6± 0.0
rglucose 10.9± 1.12 5.9± 0.7
[mmol gCDW−1 h−1]
rglycerol 1.1±0.1 0
[mmol gCDW−1 h−1]
rethanol 17.6± 1.4 0
[mmol gCDW−1 h−1]
racetate 0.9±0.1 0
[mmol gCDW−1 h−1]
rO2 4.6±0.0 12.1± 0.7
[mmol gCDW−1 h−1]
measured rCO2 12.8± 0.5 9.0± 0.5
[mmol gCDW−1 h−1]
corrected rCO2 15.9 12.6
[mmol gCDW−1 h−1]
carbon recovery [%] 109.5 94.8

Fig. 3. Simulated flux distributions of S. cerevisiae. The
numbers in the boxes for each flux indicate the flux values of
Sf in the upper line, the flux values of Sd in the middle line,
and the flux values of Sdmin in the bottom line. All flux values
were normalized to the glucose uptake rate. Reversible re-
actions are shown as net fluxes, with exchange reactions of
the relevant fluxes shown in parentheses. The arrow thickness
is scaled to Sf flux values respective to the arrow size of the
glucose uptake flux. For relevant reversible reactions, the flux
values of the exchange reaction are shown in parentheses,
with x indicating unresolvable fluxes.
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NADPH demand for glutathione reductase-mediated protection against
increased oxidative stress during aerobic growth at the elevated tem-
perature of 40 °C (Grant, 2001; Sugiyama et al., 2000). High PPP

activity may also be a general characteristic of this methylotrophic
strain, as several PPP associated enzymes are involved in the pathway
for methanol assimilation (Yurimoto et al., 2011).

As in the case of the S. cerevisiae dataset, the majority of differences
between the H. polymorpha flux solutions Sf and Sd were found down-
stream of the pyruvate kinase reaction. In contrast to the unconstrained
solution, Sf, the constrained solution, Sd, showed pyruvate decarbox-
ylase activity and import of the cytosolic acetyl-CoA produced via this
pathway into the mitochondria. With the free model, minimal activity
of the malic enzyme and the glyoxylate shunt was computed, while no
activity was simulated with the constrained model. The significance of
all differences between Sf and Sd was evaluated by a sensitivity analysis
of the fluxes, which revealed that the confidence intervals of all fluxes
computed for Sf included the optimal solution of Sd, with the re-
spiratory chain reactions being the sole exceptions (Fig. 7). There were
no fluxes for which the confidence intervals of Sf and Sd did not broadly
overlap. Additionally, similar to the S. cerevisiae flux solutions, the
majority of biomass precursors were simulated to originate from the
mitochondrial pools. This simulation result is questionable and is cer-
tainly a subject to be addressed for further improvement of the con-
straints, but it was not a determinant of flux ratios in the present study.
In contrast to the S. cerevisiae dataset, the Sdmin solution of H. poly-
morpha was not explicitly more similar to Sd compared with Sf; rather,
the Sdmin solution showed flux values that were often in between the
values of Sf and Sd, which in some instances were closer to Sf and in
others closer to Sd.

The labeling patterns of acetyl-CoA, pyruvate, and oxaloacetate
differed only marginally between the three solutions, with the excep-
tion of cytosolic acetyl-CoA computed for the solution Sdmin. The absent
exchange flux of acetyl-CoA between the mitochondria and cytosol
prevented an equilibration of these two pools. However, as cytosolic
acetyl-CoA was not used as an amino acid precursor in the flux solution,
this difference had no further impact on the flux estimates. The simu-
lated extensive exchange of acetyl-CoA across the mitochondrial
membrane in Sd was reflected in equivalent labeling patterns of the
respective parallel pools (Fig. 8). In contrast to S. cerevisiae flux solu-
tions, the absent exchange of oxaloacetate resulted in significant

Fig. 4. Excerpt of the sensitivity analyses for
Sf, Sd, and Sdmin of the S. cerevisiae dataset
comprising the major fluxes. Because abso-
lute flux values differed substantially, the
fluxes of solution Sf were normalized to the
glucose uptake rate and were projected on
the y-axis. The normalized fluxes of alter-
native flux solutions were scaled accord-
ingly, i.e., plotted as the absolute deviation
to the original Sf value. Black and green
crosses represent the absolute deviations of
the constrained solutions Sd and Sdmin, re-
spectively, from the unconstrained solution,
Sf; gray bars and black and green lines re-
present the 95% confidence intervals of Sf,
Sd, and Sdmin, respectively. The reactions
are specified by the reaction equations,
shown on the right-hand side of the graph
alongside the resolvability of each flux. The
resolvability is defined as the ratio of the
confidence interval and the stoichiome-
trically feasible flux range (Resolvability =
(1 - confidence interval/stoichiometric
range) x 100%) and indicates how well the
flux parameter could be resolved from the
13C-labeling data.

Fig. 5. Simulated MDVs of OAA, ACCOA, and PYR based on the S. cerevisiae flux dis-
tributions Sf, Sd, and Sdmin shown in Fig. 3. M indicates the fraction of naturally labeled
metabolites, and M+n indicates the fraction of metabolites with n labeled carbons.
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differences in the compartmental labeling of oxaloacetate for all three
solutions. The activity of the malic enzyme was reflected in a slightly
different pyruvate labeling in Sf. The ratios of simulated compartmental
origins of amino acids in Sf were reversed in comparison to Sd for all
amino acids stemming from pyruvate; however, the rather poor resol-
vability of malic enzyme activity (Fig. 7), which is the sole determinant
of pyruvate labeling, rendered these ratios unresolvable as well.

The differences between labeling patterns of mitochondrial and
cytosolic acetyl-CoA, pyruvate, and, especially, oxaloacetate in all three
solutions showed the potential for a higher influence of compartmen-
tation constraints on the flux solutions compared with that seen in the
S. cerevisiae dataset. To further strengthen this indication, four flux
solutions were simulated, each with a different set of randomly assigned
constraints regarding the compartmental origin of amino acids. Due to a
lack of experimental data from a strain with definitive differences in the
compartmentation of amino acid biosynthesis from the assumed com-
partmentation in S. cerevisiae, these simulations were meant to re-
present scenarios of improper use of compartmentation assumptions.
These simulations resulted in a large number of fluxes outside of the
flux confidence intervals of Sd or Sf (Fig. 7).

In contrast to the differences between Sf and Sd, the deviations of
the flux values found in these additional solutions were often more
significant. Most remarkably, there were fluxes with confidence inter-
vals that did not overlap at all with those of Sf or Sd. Likewise, the SSRs
of these additional solutions were significantly increased compared

with those of Sf or Sd, with all but Sdr3 exceeding the χ2-cut-off values
(Table 4). A solution with an SSR exceeding this cut-off value has to be
disregarded, as this shows that the experimental error does not explain
the differences between simulated and experimental labeling data and
therefore points to errors in the metabolic model or an underestimation
of the experimental error. Applying this criterion, most of the solutions
derived from models with erroneous constraints would correctly be
excluded, while solution Sdr3 would be rated as statistically acceptable,
although it resulted in significant inaccuracy of the flux estimates.

These analyses indicate that improper use of constraining com-
partmentation assumptions can yield inaccurate results that may not
always be revealed as false solutions by statistical measures.

The complete flux solutions for each model, the results of simulated
labeling of acetyl-CoA, pyruvate, and oxaloacetate, and the sensitivity
analyses are included in the supplement.

4. Conclusion

The presented analysis highlights the potential disadvantage of ex-
trapolating established constraints, which were verified for cognate
organisms or under different experimental conditions without re-
confirmation for the application case. The comparison of flux solutions
computed with and without compartmental localization constraints
revealed that the retraction of these constraints did not significantly
alter the simulated flux distributions, as the computed flux solutions

Fig. 6. Simulated flux solution for H. polymorpha. Boxed
numbers represent the flux values of Sf (upper value), Sd
(middle value), and Sdmin (bottom value) for the respective
reactions. The arrow thickness corresponds to Sf flux values.
For relevant reversible reactions, the exchange flux is shown
in parentheses, with x indicating unresolvable fluxes.
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showed extensive consistency. In contrast, an alarmingly adverse effect
of randomly chosen constraints was shown, which represents the po-
tentially equivalent negative consequence extrapolated curated or
computationally predicted constraints would have when they are

improperly assumed. These results do not allow a recommendation of
total dismissal of compartmentation constraints but strongly support
the demand for a more rigorous evaluation of such constraints and a
rejection of constraints where there are no good reasons to extrapolate
assumptions from other organisms or only vague computational in-
dications.

Acknowledgements

Funding: This work was supported by the Biotechnology Research
and Information Network AG (BRAIN AG) and by the German Federal
Ministry of Education and Research (BMBF) as part of the Strategic
Alliance Zero Carbon Footprint (Grant No. FKZ 031A217F). Holger
Müller from BlueSens is acknowledged for his support with off-gas
analysis.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.meteno.2017.07.001.

References

Antoniewicz, M.R., Kelleher, J.K., Stephanopoulos, G., 2006. Determination of confidence
intervals of metabolic fluxes estimated from stable isotope measurements. Metab.
Eng. 8, 324–337.

Bartek, T., Blombach, B., Lang, S., Eikmanns, B.J., Wiechert, W., Oldiges, M., Nöh, K.,
Noack, S., 2011. Comparative 13C metabolic flux analysis of pyruvate dehydrogenase
complex-deficient, L-valine-producing Corynebacterium glutamicum. Appl. Environ.
Microbiol. 77, 6644–6652.

Blank, L.M., Lehmbeck, F., Sauer, U., 2005. Metabolic flux and network analysis in

Fig. 7. Excerpt of the sensitivity analyses of
the H. polymorpha dataset comprising the
major fluxes. A black x represents the ab-
solute deviation of the constrained solution,
Sd, from the undefined solution, Sf, thus
assigning a value of zero to each respective
flux of Sf. The gray bars display the 95%
confidence intervals of Sf, and the black
lines display the 95% confidence intervals of
Sd. The resolvability of each flux is shown
on the right-hand side. Results from flux
solutions based on randomly assigned com-
partmentation constraints are shown for the
selected fluxes in red (Sdr1), cyan (Sdr2),
blue (Sdr3), and pink (Sdr4); Sdmin is shown
in green. The lines indicating the confidence
intervals are slightly shifted vertically to
avoid a loss of information by overlapping
of the lines.

Fig. 8. Simulated MDVs of OAA, ACCOA, and PYR based on the H. polymorpha flux dis-
tributions Sf, Sd, and Sdmin shown in Fig. 6.

Table 4
SSRs and χ2-cut-off values of flux solutions generated with randomly assigned constraints
regarding compartmentation of amino acid biosynthesis.

Sdr1 Sdr2 Sdr3 Sdr4

χ2-cut-off 119 119 120 120
SSR 223 159 72 172

M. Lehnen et al. Metabolic Engineering Communications 5 (2017) 34–44

43

http://dx.doi.org/10.1016/j.meteno.2017.07.001
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref1
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref1
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref1
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref2
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref2
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref2
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref2
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref3


fourteen hemiascomycetous yeasts. FEMS Yeast Res. 5, 545–558.
Boghigian, B.A., Seth, G., Kiss, R., Pfeifer, B.A., 2010. Metabolic flux analysis and phar-

maceutical production. Metab. Eng. 12, 81–95.
Bonarius, H.P., Hatzimanikatis, V., Meesters, K.P., de Gooijer, C.D., Schmid, G., Tramper,

J., 1996. Metabolic flux analysis of hybridoma cells in different culture media using
mass balances. Biotechnol. Bioeng. 50, 299–318.

Buescher, J.M., Antoniewicz, M.R., Boros, L.G., Burgess, S.C., Brunengraber, H., Clish,
C.B., DeBerardinis, R.J., Feron, O., Frezza, C., Ghesquiere, B., Gottlieb, E., Hiller, K.,
Jones, R.G., Kamphorst, J.J., Kibbey, R.G., Kimmelman, A.C., Locasale, J.W., Lunt,
S.Y., Maddocks, O.D.K., Malloy, C., Metallo, C.M., Meuillet, E.J., Munger, J., Nöh, K.,
Rabinowitz, J.D., Ralser, M., Sauer, U., Stephanopoulos, G., St-Pierre, J., Tennant,
D.A., Wittmann, C., Vander Heiden, M.G., Vazquez, A., Vousden, K., Young, J.D.,
Zamboni, N., Fendt, S.-M., 2015. A roadmap for interpreting 13C metabolite labeling
patterns from cells. Curr. Opin. Biotechnol. 34, 189–201.

Caspi, R., Altman, T., Dreher, K., Fulcher, C.A., Subhraveti, P., Keseler, I.M., Kothari, A.,
Krummenacker, M., Latendresse, M., Mueller, L.A., Ong, Q., Paley, S., Pujar, A.,
Shearer, A.G., Travers, M., Weerasinghe, D., Zhang, P., Karp, P.D., 2012. The
MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of
pathway/genome databases. Nucleic Acids Res. 40, D742–D753.

Cherry, J.M., Hong, E.L., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E.T.,
Christie, K.R., Costanzo, M.C., Dwight, S.S., Engel, S.R., Fisk, D.G., Hirschman, J.E.,
Hitz, B.C., Karra, K., Krieger, C.J., Miyasato, S.R., Nash, R.S., Park, J., Skrzypek, M.S.,
Simison, M., Weng, S., Wong, E.D., 2012. Saccharomyces Genome database: the
genomics resource of budding yeast. Nucleic Acids Res. 40, D700–D705.

Christen, S., Sauer, U., 2011. Intracellular characterization of aerobic glucose metabolism
in seven yeast species by 13C flux analysis and metabolomics. FEMS Yeast Res. 11,
263–272.

Crown, S.B., Antoniewicz, M.R., 2013. Publishing 13C metabolic flux analysis studies: a
review and future perspectives. Metab. Eng. 20, 42–48.

Droste, P., Nöh, K., Wiechert, W., 2013. Omix – A visualization tool for metabolic net-
works with highest usability and customizability in focus. Chem. Ing. Tech. 85,
849–862.

Ebert, B.E., Lamprecht, A.-L., Steffen, B., Blank, L.M., 2012. Flux-P: automating metabolic
flux analysis. Metabolites 2, 872–890.

Emanuelsson, O., Brunak, S., von Heijne, G., Nielsen, H., 2007. Locating proteins in the
cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971.

Förster, J., Halbfeld, C., Zimmermann, M., Blank, L.M., 2014. A blueprint of the amino
acid biosynthesis network of hemiascomycetes. FEMS Yeast Res. 14, 1090–1100.

Gombert, A.K., Moreira dos Santos, M., Christensen, B., Nielsen, J., 2001. Network
identification and flux quantification in the central metabolism of Saccharomyces
cerevisiae under different conditions of glucose repression. J. Bacteriol. 183,
1441–1451.

Gopalakrishnan, S., Maranas, C.D., 2015. Achieving metabolic flux analysis for S. cere-
visiae at a genome-scale: challenges, requirements, and considerations. Metabolites 5,
521–535.

Grant, C.M., 2001. Role of the glutathione/glutaredoxin and thioredoxin systems in yeast
growth and response to stress conditions. Mol. Microbiol. 39, 533–541.

Heyland, J., Fu, J., Blank, L.M., 2009. Correlation between TCA cycle flux and glucose
uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae.
Microbiology 155, 3827–3837.

Horton, P., Park, K.-J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., Nakai, K.,
2007. WoLF PSORT: protein localization predictor. Nucl. Acids Res. 35, W585–W587.

Leighty, R.W., Antoniewicz, M.R., 2012. Parallel labeling experiments with [U-13C]glu-
cose validate E. coli metabolic network model for 13C metabolic flux analysis. Metab.
Eng. 14, 533–541.

Long, C.P., Antoniewicz, M.R., 2014. Metabolic flux analysis of Escherichia coli knockouts:
lessons from the Keio collection and future outlook. Curr. Opin. Biotechnol. 28,
127–133.

Martin, H.G., Kumar, V.S., Weaver, D., Ghosh, A., Chubukov, V., Mukhopadhyay, A.,
Arkin, A., Keasling, J.D., 2015. A method to constrain genome-scale models with 13C
labeling data. PLoS Comput. Biol. 11, e1004363.

Nissen, T.L., Schulze, U., Nielsen, J., Villadsen, J., 1997. Flux distributions in anaerobic,
glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143,
203–218.

Nöh, K., Droste, P., Wiechert, W., 2014. Visual workflows for 13C-metabolic flux analysis.

Bioinformatics 31, 346–354.
Orth, J.D., Thiele, I., Palsson, B.Ø., 2010. What is flux balance analysis? Nat. Biotechnol.

28, 245–248.
Petersen, S., de Graaf, A.A., Eggeling, L., Möllney, M., Wiechert, W., Sahm, H., 2000. In

vivo quantification of parallel and bidirectional fluxes in the anaplerosis of
Corynebacterium glutamicum. J. Biol. Chem. 275, 35932–35941.

Poskar, C.H., Huege, J., Krach, C., Franke, M., Shachar-Hill, Y., Junker, B.H., 2012.
iMS2Flux - a high-throughput processing tool for stable isotope labeled mass spec-
trometric data used for metabolic flux analysis. BMC Bioinforma. 13, 295.

Quek, L.-E., Nielsen, L.K., 2014. Steady-state 13C fluxomics using OpenFLUX. In: Krömer,
O.J., Nielsen, K.L., Blank, M.L. (Eds.), Metabolic Flux Analysis: Methods and
Protocols. Springer, New York, New York, NY, pp. 209–224.

Quek, L.-E., Wittmann, C., Nielsen, L.K., Krömer, J.O., 2009. OpenFLUX: efficient mod-
elling software for 13C-based metabolic flux analysis. Microb. Cell Factor. 8, 1–15.

dos Santos, M.M., Gombert, A.K., Christensen, B., Olsson, L., Nielsen, J., 2003.
Identification of in vivo enzyme activities in the cometabolism of glucose and acetate
by Saccharomyces cerevisiae by using 13C-labeled substrates. Eukaryot. Cell. 2,
599–608.

Sauer, U., Lasko, D.R., Fiaux, J., Hochuli, M., Glaser, R., Szyperski, T., Wüthrich, K.,
Bailey, J.E., 1999. Metabolic flux ratio analysis of genetic and environmental mod-
ulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181, 6679–6688.

Schmitz, A., Ebert, B.E., Blank, L.M., 2017. GC-MS-based determination of mass iso-
topomer distributions for 13C-based metabolic flux analysis. In: McGenity, T.J.,
Timmis, K.N., Nogales, B. (Eds.), Hydrocarbon and Lipid Microbiology Protocols:
Genetic, Genomic and System Analyses of Pure Cultures. Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 223–243.

Stephanopoulos, G., 1999. Metabolic fluxes and metabolic engineering. Metab. Eng. 1,
1–11.

Sugiyama, K.-i., Izawa, S., Inoue, Y., 2000. The Yap1p-dependent induction of glutathione
synthesis in heat shock response of Saccharomyces cerevisiae. J. Biol. Chem. 275,
15535–15540.

Szyperski, T., 1995. Biosynthetically directed fractional 13C-labeling of proteinogenic
amino acids. Eur. J. Biochem. 232, 433–448.

Toya, Y., Shimizu, H., 2013. Flux analysis and metabolomics for systematic metabolic
engineering of microorganisms. Biotechnol. Adv. 31, 818–826.

Vallino, J.J., Stephanopoulos, G., 1990. Flux determination in cellular bioreaction net-
works: applications to lysine fermentations. In: S.K., S., M., B., Todd, P. (Eds.),
Frontiers in Bioprocessing. CRC Press, Boca Raton, pp. 205–2019.

Verduyn, C., Postma, E., Scheffers, W.A., Van Dijken, J.P., 1992. Effect of benzoic acid on
metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration
and alcoholic fermentation. Yeast 8, 501–517.

Wasylenko, T.M., Stephanopoulos, G., 2015. Metabolomic and 13C-metabolic flux analysis
of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.
Biotechnol. Bioeng. 112, 470–483.

Weitzel, M., Nöh, K., Dalman, T., Niedenführ, S., Stute, B., Wiechert, W., 2013. 13CFLUX2
- high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29,
143–145.

Wiechert, W., 2001. 13C metabolic flux analysis. Metab. Eng. 3, 195–206.
Wiechert, W., deGraaf, A.A., 1997. Bidirectional reaction steps in metabolic networks .1.

Modeling and simulation of carbon isotope labeling experiments. Biotechnol. Bioeng.
55, 101–117.

Wiechert, W., de Graaf, A.A., 1996. In vivo stationary flux analysis by 13C labeling ex-
periments. In: Sahm, H., Wandrey, C. (Eds.), Metabolic Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 109–154.

Wiechert, W., Nöh, K., 2013. Isotopically non-stationary metabolic flux analysis: complex
yet highly informative. Curr. Opin. Biotechnol. 24, 979–986.

Wiechert, W., Mollney, M., Petersen, S., de Graaf, A.A., 2001. A universal framework for
13C metabolic flux analysis. Metab. Eng. 3, 265–283.

Yurimoto, H., Oku, M., Sakai, Y., 2011. Yeast methylotrophy: metabolism, gene regula-
tion and peroxisome homeostasis. Int. J. Microbiol. 2011.

Zamboni, N., Fischer, E., Sauer, U., 2005. FiatFlux – a software for metabolic flux analysis
from 13C-glucose experiments. BMC Bioinforma. 6, 209–216.

Zamboni, N., Fendt, S.-M., Ruhl, M., Sauer, U., 2009. 13C-based metabolic flux analysis.
Nat. Protoc. 4, 878–892.

M. Lehnen et al. Metabolic Engineering Communications 5 (2017) 34–44

44

http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref3
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref4
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref4
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref5
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref5
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref5
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref6
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref6
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref6
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref6
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref6
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref6
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref6
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref6
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref7
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref7
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref7
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref7
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref7
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref8
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref8
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref8
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref8
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref8
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref9
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref9
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref9
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref10
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref10
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref11
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref11
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref11
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref12
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref12
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref13
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref13
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref14
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref14
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref15
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref15
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref15
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref15
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref16
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref16
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref16
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref17
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref17
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref18
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref18
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref18
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref19
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref19
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref20
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref20
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref20
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref21
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref21
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref21
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref22
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref22
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref22
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref23
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref23
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref23
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref24
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref24
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref25
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref25
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref26
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref26
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref26
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref27
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref27
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref27
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref28
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref28
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref28
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref29
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref29
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref30
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref30
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref30
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref30
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref31
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref31
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref31
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref32
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref32
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref32
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref32
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref32
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref33
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref33
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref34
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref34
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref34
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref35
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref35
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref36
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref36
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref37
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref37
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref37
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref38
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref38
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref38
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref39
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref39
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref39
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref40
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref40
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref40
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref41
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref42
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref42
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref42
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref43
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref43
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref43
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref44
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref44
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref45
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref45
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref46
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref46
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref47
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref47
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref48
http://refhub.elsevier.com/S2214-0301(17)30006-8/sbref48

	A comprehensive evaluation of constraining amino acid biosynthesis in compartmented models for metabolic flux analysis
	Introduction
	Materials and methods
	Strains and culture conditions
	Physiological data acquisition and processing
	13C-labeling analysis
	13C-MFA method
	Methods for pathway localization analysis

	Results and discussion
	Model development considering uncertainties in compartmental origin of amino acids
	Computational predictions of amino acid biosynthesis compartmentation
	Quantitative physiology of S. cerevisiae and H. polymorpha
	Impact of constraints regarding amino acid biosynthesis localization on accuracy and resolvability of the flux distribution in S. cerevisiae
	Impact of constraints regarding amino acid biosynthesis localization on accuracy and resolvability of the flux distribution in H. polymorpha

	Conclusion
	Acknowledgements
	Supporting information
	References




