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Improved prediction of PARP inhibitor response and
identification of synergizing agents through use of a novel gene
expression signature generation algorithm
Daniel J. McGrail 1, Curtis Chun-Jen Lin1, Jeannine Garnett1, Qingxin Liu1, Wei Mo1, Hui Dai1, Yiling Lu1, Qinghua Yu1, Zhenlin Ju1,
Jun Yin1, Christopher P. Vellano1, Bryan Hennessy2, Gordon B. Mills1 and Shiaw-Yih Lin1

Despite rapid advancement in generation of large-scale microarray gene expression datasets, robust multigene expression
signatures that are capable of guiding the use of specific therapies have not been routinely implemented into clinical care. We have
developed an iterative resampling analysis to predict sensitivity algorithm to generate gene expression sensitivity profiles that
predict patient responses to specific therapies. The resultant signatures have a robust capacity to accurately predict drug sensitivity
as well as the identification of synergistic combinations. Here, we apply this approach to predict response to PARP inhibitors, and
show it can greatly outperforms current clinical biomarkers, including BRCA1/2 mutation status, accurately identifying PARP
inhibitor-sensitive cancer cell lines, primary patient-derived tumor cells, and patient-derived xenografts. These signatures were also
capable of predicting patient response, as shown by applying a cisplatin sensitivity signature to ovarian cancer patients. We
additionally demonstrate how these drug-sensitivity signatures can be applied to identify novel synergizing agents to improve drug
efficacy. Tailoring therapeutic interventions to improve patient prognosis is of utmost importance, and our drug sensitivity
prediction signatures may prove highly beneficial for patient management.
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INTRODUCTION
The personalized management of cancer relies on an exponential
understanding of various cancer types, and of their subtypes, at
both the genotypic and phenotypic levels.1 On a single molecule
level, pre-clinical pharmaceutical testing in cancer cell line panels
have guided early-stage clinical trials, such as with the use of
gefitinib for epidermal growth factor receptor mutant lung
cancers, imatinib mesylate for the fusion BCR-Abl oncogene in
leukemia,2 and trastuzumab or lapatinib in HER2/ERBB2 amplified
breast cancers.3, 4

Unfortunately, for the majority of therapeutic molecules, a
single gene assay is insufficient to accurately predict drug
response. Transcriptomic analysis represents one of the most
promising approaches to overcome this challenge, and relies on
robust gene expression signatures designed to capture the core
common features indicative of drug sensitivity, regardless of their
precise molecular origin.5 Rapid technological advances are
quickly making clinical implementation of these multi-gene
signatures feasible.6 For example, the 50-gene Prosigna based
on the PAM50 gene set has been FDA approved7 and a 70-gene
signature led to the development of MammaPrint, a commercially
available DNA microarray that aids in the prediction of low-grade
breast cancer prognosis, has recently completed phase III trials.8–10

Other signatures have shown promise to predict genomic
instability in cancers.11 Many studies have suggested that human
cancer cell lines model many “omic” aspects of tumors, thereby
making them representative proxies for the identification and

evaluation of effective therapeutic interventions.12–16 However, it
has been challenging to implement successful approaches that
leverage transcriptomic data from cells lines to predict patient
responses. Here, we present a novel algorithm termed iterative
resampling analysis to predict sensitivity (IRAPS) and demonstrate
its utility on two agents that lack ideal markers for therapeutic
response: cisplatin and poly (ADP-ribose) polymerase (PARP)
inhibitors.
In contrast to the above-mentioned targeted therapies that rely

on mutations/amplifications in a single gene for identification of
patients likely to benefit, PARP inhibitors work more indirectly by
synthetic lethality in patients with mutated BRCA1 or BRCA2.17, 18

Both BRCA1 and BRCA2 are key components of the homologous
recombination (HR) double-stranded break DNA repair pathway,
resulting in increased risk of developing breast, ovarian, lung,
bladder, and other cancers if they are mutated. It is proposed that
PARP inhibition (PARPi) selectively targets BRCA-mutant cells by
increasing DNA single-stranded breaks that result in irreparable
DNA double-strand breaks during replication, culminating in cell
death. Early trials in treating BRCA-mutant ovarian cancer patients
were so successful that olaparib from AstraZeneca was granted
accelerated approval for BRCA-mutant ovarian cancer and
rucabarib from Clovis Oncology was given breakthrough therapy
designation by the FDA.19

Despite this promise, stratification of patients for PARP inhibitor
therapy by BRCA status is proving suboptimal, with the majority of
BRCA-mutant patients failing to show objective responses,19

Received: 2 December 2016 Revised: 13 January 2017 Accepted: 3 February 2017

1Department of Systems Biology, MD Anderson Cancer Center, Houston, TX 77030, USA and 2Centre for Systems Medicine, Royal College of Surgeons in Ireland, 123 St. Stephen’s
Green, Dublin 2, Ireland
Correspondence: Shiaw-Yih Lin (sylin@mdanderson.org)

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

http://orcid.org/0000-0002-6669-6069
http://orcid.org/0000-0002-6669-6069
http://orcid.org/0000-0002-6669-6069
http://orcid.org/0000-0002-6669-6069
http://orcid.org/0000-0002-6669-6069
http://orcid.org/0000-0002-6669-6069
www.nature.com/npjsba


clearly necessitating approaches for better identification of patient
populations for PARPi treatment. Here, we demonstrate the power
of our novel IRAPS algorithm by developing gene expression
signatures to predict response to PARPi as well as to the
chemotherapy agent cisplatin. This algorithm integrates gene
expression data from hundreds of solid tumor cell lines with
known sensitivity to pharmaceutical agents. This broad panel of
cell lines was randomly sampled over 1000 iterations to determine
differentially expressed genes, before final optimization of the
signature on the desired cancer type. In addition to demonstrating
high accuracy in cell line panels, these signatures were capable of
predicting patient survival following cisplatin treatment and
response of both primary patient-derived tumor cells (PTDCs)
and patient-derived xenografts to PARPi. We also show how these
signatures can be used to identify novel synergizing agents to
improve therapeutic efficacy. Finally, we demonstrate how
documented gene expression signatures can be leveraged to
identify therapeutic targets for previously known molecular
phenotypes such as BRCAness. Taken together, this work provides
a method for development of robust actionable gene expression
signatures capable of improving clinical patient outcomes.

RESULTS
IRAPS of cancer cell lines to therapeutic agents
As gene expression data has proven to have a robust capacity for
predicting drug sensitivity,5 we developed a pipeline based on the
stochastic sampling of gene expression data from publically
available databases.12 The IRAPS (Fig. 1a) algorithm used gene
expression data from 857 solid tumor derived cancer cell lines
from the Cancer Cell Line Encyclopedia (CCLE),12 matched with
drug sensitivity data from the Genomics of Drug Sensitivity in
Cancer (GDSC).20 The reported sensitivity values were transformed
into z-scores, defining “responders” defined as having z-scores of
less than −1 and “non-responders” defined as having z-scores that
were greater than 0. If multiple drugs were available for a given
target, sensitivity values for both inhibitors were called and
averaged after converting to z-scores. After 1000 iterations using
the complete cell line set, the results were then transferred to a
grid-search optimization algorithm for maximization of drug
sensitivity prediction accuracy in the desired tumor type. This
algorithm tested each threshold value for fold changes, p-values,
and the fraction of times the gene was identified at each p-value/
fold change threshold to determine which combination produced
the optimal area under the curve (AUC) value for the receiver
operator characteristic (ROC) curve, resulting in a final therapeutic
target sensitivity.
For an initial training test of this pipeline, we sought to predict

the sensitivity of breast cancer cells to dual HER2/EGFR inhibitors
by using sensitivity data for neratinib and lapatinib. Optimization
resulted in a 32 gene expression signature for HER2 inhibitor
(HER2i, Table S1) sensitivity in breast cancer cell lines. The efficacy
of this signature was confirmed in an independent testing set of
cell lines treated with afatinib, yielding an AUC value of 0.96 with
94% accuracy (Fig. 1b). This signature identified ERBB3, which has
been previously implicated in lapatanib response.21 To investigate
if these cell line-derived signatures were relevant in patient
cohorts, we applied our signature to TCGA breast cancer gene
expression datasets22 to test the ability to identify patients within
the HER2/ERBB2 breast cancer subtype and would likely be
sensitive to HER2i. Though a population of the HER2/
ERBB2 subtype may harbor innate resistance to HER2 inhibitors,
or a subset of other subtypes may show response, the large
enrichment within the HER2/ERBB2 subtype suggests the accurate
prediction of responders to HER2 inhibition within breast cancer
patients. While this signature did include ERBB2 and ERBB3,
manually excluding these genes did not significantly alter

prediction accuracy (Fig. S1). This analysis showed that our
signature could identify the patients within the HER2/
ERBB2 subtype with 90% accuracy (Fig. 1c), indicating our IRAPS
approach could identify clinically relevant gene expression
signatures from cell line drug sensitivity data.

IRAPS accurately predicts patient survival following cisplatin
treatment
To test the ability of IRAPS to predict sensitivity for a
chemotherapeutic with a less-well defined profile, we generated
a sensitivity signature for cisplatin. In order to have a sufficient
sample size to allow for independent training and test groups, we
optimized the signature for both serous ovarian cancer cell lines
and triple-negative breast cancer cell lines. These cancers share
many molecular commonalities, suggesting that there may be
similar therapeutic vulnerabilities.22 The resulting 26 multigene
expression signature (Table S2) was highly predictive of cisplatin
sensitivity in the test data set, yielding an AUC of 0.81 (Fig. 2a).
Defects in the ability of cells to repair DNA double-stranded

breaks contributes significantly to cisplatin sensitivity as a result of
HR defects that are typically present in BRCA-mutant tumors or
other phenotypically similar BRCA-like tumors.23 Thus, to evaluate
the predictive ability of our IRAPS generated signature, we
compared it to an established clinically-derived BRCAness
signature.24 Our approach offered an improvement on BRCAness
predictability, as evidenced by an increased ROC AUC (Fig. 2b).
Next, to validate this signature in patient cohorts, we analyzed two
independent ovarian cancer patient cohorts that were treated
with cisplatin, with clinical-pathological characteristics of these
cohorts are given in Table S3. We report that our cisplatin
sensitivity signature predicted patient survival in both cohorts
(Fig. 2c, d). Since both of these cohorts had gene expression
profiled by microarray, we used TCGA samples profiled by both
RNAseq and microarray to determine if the signature was sensitive
to the technique used to profile samples. We found strong
correlation between the score calculated through microarray and
RNA sequencing suggesting the signature is rather insensitive to
the profiling technique (Fig. S2). Moreover, the use of a Cox
proportional hazards model suggested that this survival prediction
was independent of both tumor stage and grade (Fig. 2e, f). These
results compare favorably with previous signatures of platinum
sensitivity derived from patients, with our cell line-derived
signature yielding a multivariate hazard ratio of 0.33 (0.22–0.51)
compared to hazard ratios of 0.30 (0.11–0.83) and 0.59
(0.34–1.01).25 This suggests that our signature derivation method
can equal the accuracy of patient-derived signatures, enabling
personalization of new chemotherapeutics in absence of large
cohorts of patient data.
To understand what molecular changes the cisplatin sensitivity

signature was detecting, we used Ingenuity Pathway Analysis and
found that this signature predicted decrease in BRCA1 function,
which may contribute to its predictive power (Fig. 2g). However,
BRCA1 alone was not sufficient to predict responsive patients, as is
evidenced by the low true positive rates in the BRCAness
signature (Fig. 2b). Additional genes identified in our IRAPS
signature, including the overexpression of DUSP6,26 and low level
ERCC1 gene expression,27 have been previously identified as
indicators of cisplatin sensitivity, and may therefore contribute to
the accuracy of the signature.

A PARP sensitivity signature improves identification of PARP-
responsive tumors
PARP inhibitors have recently shown promise for the treatment of
BRCA-mutant ovarian and breast cancers.28 However, it is unclear
whether other patient populations may benefit from PARP
inhibitors, as well as why the majority of BRCA-mutant patient
tumors fail to respond to PARPi.19 We tested if a gene expression
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Fig. 1 Overview of IRAPS a 857 solid-tumor cancer cells were stochastically and iteratively sampled for pharmaceutical agent sensitivity or
insensitivity determination. Differential expression for the combination of two therapeutic agents per target was calculated. This process was
repeated 1000 times for the generation of 1000 different lists of differentially expressed genes. Optimization of the final signature included
maximization of accuracy on the tissue of interest by selecting optimal thresholds of P-values and fold changes that were represented in a
given fraction of the iterations. b Receiver-operating characteristic (ROC) curves for the prediction of training sets with the HER2 inhibitor
Afatinib in breast cancer cell lines with inset accuracy and inset with area under the curve (AUC) values. A ROC AUC value of 1 represents
perfect prediction and 0.5 represents random chance. c ROC curve for predicting HER2/Erbb2 patients based on the HER2i sensitivity score
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signature generated by IRAPS could improve patient selection for
PARP inhibitors. For this analysis, we again optimized the
algorithm for both ovarian and breast cancer cell lines by using
sensitivity data for the PARP inhibitors AZD2281 (olaparib) and

AG014699 (rucaparib) shown in Table S4. To generate an
independent test set, we screened a panel of breast and ovarian
cancer cell lines for sensitivity to the PARP inhibitor BMN-673
(Fig. 3a, b). Testing cell lines were excluded from the IRAPS

Fig. 2 The cisplatin sensitivity signature that was generated from IRAPS predicts cisplatin-treated ovarian cancer patient survival independent
of cancer stage and grade. a ROC curve based on the cisplatin sensitivity score using the cisplatin testing set that consisted of triple-negative
breast cancer and ovarian cancer cell lines. b ROC curve for the same cells as in 2a, but based on the BRCAness sensitivity signature score. c, d
Patient survival analyses in two independent cohorts of ovarian cancer patients that were treated with cisplatin were separated based on the
cisplatin sensitivity score. Log-rank p-value is displayed that shows statistical significance. e, f High cisplatin sensitivity scores predict improved
overall survival (e) and progression free survival (f) independent of stage and grade using a Cox proportional hazards model. g Ingenuity
pathway analysis of the cisplatin sensitivity signature indicates a predicted down-regulation of BRCA1
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pipeline. To determine an upper bound for signature accuracy, we
used the PARPi sensitivity values from COSMIC to predict
sensitivity in overlapping cell lines that were screened against
BMN-673, and found that our gene signature performed equally
well or better than this theoretical maximum attainable accuracy
(Fig. 3c, d). To compare to more clinically relevant predictors, we
compared our signature’s accuracy to either using the clinically-
derived BRCAness gene signature24 as well as BRCA1/2 mutation
status and found our signature significantly outperformed both
parameters (Fig. 3c, d). Of the evaluated breast cancer cell lines
with mutations in BRCA1 (MDA-MB-436 and HCC-1937) or BRCA2
(HCC-1569, BT-20, BT-474, MDA-MB-361), only one (HCC-1569) was
found to respond to BMN-673. Not only was this predicted by the
signature, but also of the remaining five non-responding cell lines
four were correctly identified as resistant, only misclassifying
MDA-MB-436. Additional testing MDA-MB-436 response for
olaparib (AZD2281) demonstrated sensitivity to this second agent,
indicating this could be a drug-specific mechanism of resistance.
We next investigated the ability of the signature to predict

response of a panel of primary PTDCs to BMN-673.29 The PARPi
sensitivity signature again outperformed BRCAness signature as
shown by the ROC curve (Fig. 3e), as well as accuracy relative to
BRCA1/2 mutation status (Fig. 3f). Notably, as observed with the
breast cancer cell lines, the PARPi sensitivity signature accurately
predicted the response of the two PARP-resistant BRCA1/2
mutants that had gained additional mutations (STG316 with
mutant TP53BP130 and VHI0179 with mutant REV7)31 reversing
their HR defective phenotype. Finally, to test the accuracy of the
signature to predict in vivo responses, we tested the response of
three breast cancer PDX models with varying PARPi sensitivity
scores (Fig. 3g–i). As expected, the low scoring PDX, HCI-006, did
not respond to the PARP inhibitor AZD2281, whereas the
moderate scoring PDX, HCI-001, gave a partial response, and the
highest scoring PDX, HCI-010, having near complete tumor growth
inhibition (Fig. 3i). Correlation of AZD2281 treated vs. control
tumor volumes at day 15 displayed a strong negative correlation
with the PARPi sensitivity score (Fig. 3j). This suggested that the
PARPi sensitivity signature is capable of accurately predicting
in vitro cell line responses and in vivo PDX responses to PARPi.
Taken together, these results demonstrate that the PARPi
sensitivity signature can accurately identify tumors responsive to
PARPi both in BRCA1/2-mutant cohorts as well as broad panels of
tumors.

PARP sensitivity signature identifies PKCβ inhibitor enzastaurin as
a novel PARPi synergizing agent
Despite the promise of PARP inhibitor efficacy for the treatment of
BRCA-mutated germline tumors, or in tumors that have a
BRCAness phenotype, clinical trial objective response rates rarely
exceed 50%.28 Thus, a clinical need remains for the improvement
of methods to enhance PARP inhibitor efficacy. We hypothesized
that if we were able to induce the PARPi sensitivity signature
through pharmacological intervention, combinatorial therapy with
PARP inhibitors may improve on PARPi efficacy. Therefore, we

analyzed the PARPi signature using a pipeline developed by the
Library of Integrated Network-based Cellular Signatures (LINCS)
program termed “lincscloud”.32 This program collects gene
expression data following numerous chemical and genetic
perturbations, allowing for the identification of possible inducers
of the PARPi sensitivity signature. A top hit amongst molecules
that were involved in clinical testing was an inhibitor of PKCβ.
Initial testing of PKCβ inhibition in combination with the PARP
inhibitor BMN673, revealed an enhanced PARP inhibitor response
for both the triple negative breast cancer cell line MDA-MB-231
(Fig. 4a), and the luminal breast cancer cell line MCF7 (Fig. 4b). Not
only did PKCβ inhibition synergize with PARPi in breast cancer cell
lines, the combinatorial efficacy was also evidenced for the BRCA
wildtype ES2 (Fig. 4c) and BRCA-mutant COV362 ovarian cancer
cell lines (Fig. 4d). This sensitization was greatly diminished in the
non-tumorigenic MCF10A human mammary epithelial cell line
(Fig. 4e). Isobolograms determined from IC50 values indicate that
PARP and PKCβ inhibition synergized in all tumorigenic cell lines
(Fig. 4f). Moreover, quantification of synergism using the Chou-
Talalay combination index method, where values that were less
than 1 represented synergistic combinatorial therapies (see ref.51),
demonstrated that this combination was synergistic in all
evaluated cell lines across a wide range of concentrations (Fig. 4g).
As this combination induced synergy in both BRCA-mutant and
wild type cell lines with no dependency on basal sensitivity, this
combination may be a viable treatment option to enhance
efficacy in BRCA-mutant patients or cohorts predicted by the
PARPi sensitivity signature. Conversely, we found that Cucurbita-
cin I was predicted to reverse the PARPi sensitivity signature and
thus tested to see if it would be antagonistic with PARP inhibitors
(Fig. S3). As expected, this combination was found to be
antagonistic in ES2 cells with less significant interaction between
the drugs in COV362 cells, possibly because their BRCA mutation is
too strongly sensitizing to PARP inhibitors to be reversed by
chemical modulation.
Since PARP inhibitors should preferentially target cells with

defective HR, we hypothesized that PKCβ blockade was impairing
HR. To test this, we used the direct repeat GFP (DR-GFP) reporter
assay in which cells with a functional HR machinery will recombine
the plasmid and express the GFP protein that is detectable by flow
cytometry.33 As expected, the BRCA-mutant COV362 cell line had
the lowest latent levels of HR. However regardless of the cell lines
tested, HR activity was nearly completely abrogated with PKCβ
inhibition (Fig. 5a). We verified this result by testing the ability of
these cells to form RAD51 foci following irradiation, and found
that RAD51 foci induction was reduced by over 50% (Fig. 5b, c).
Comparing effects on the DR-GFP reporter assay relative to RAD51
foci formation as an indication of the extent of HR blockade
suggested that PKCβ plays a role in the formation of RAD51 foci
and in the later stages of HR.34 Moreover, this inhibition of HR was
markedly reduced in non-tumorigenic MCF10A (Fig. S4). Taken
together, not only was the IRAPS pipeline capable of generating a
robust signature that accurately predicted PARPi sensitivity, but
this resulting signature was also capable of predicting clinically

Fig. 3 PARP sensitivity signature predicts response to PARP inhibitors in cell lines, patient-derived tumor cells (PDTCs), and patient-derived
xenografts (PDXs). a, b Screening results for sensitivity to PARP inhibitor BMN-673 in breast (a) and ovarian (b) cancer cell lines. c, d AUC values
from ROC curves (c) and overall accuracy (d) for prediction of sensitivity to the PARP inhibitor BMN-673 in ovarian and breast cancer cell lines
determined based on BRCAness score and PARP sensitivity score, as well as by directly using the COSMIC IC50 values for AZD2281 (olaparib)
and AG014699 (rucaparib) from which the PARP sensitivity signature was derived as an achievable upper bound. Overall accuracy was also
analyzed based on BRCA1/2 mutation status. e ROC curves for prediction of primary PDTCs29 response to BMN-673 shows PARPi sensitivity
signature outperforms BRCAness signature. f Accuracy of predicting PARPi sensitivity for PTDCs based on PARPi sensitivity score, BRCAness
score, and BRCA1/2 mutation status. g–i Growth curves for breast cancer PDXs with low (g), moderate (h), and high (i) PARPi sensitivity scores
following treatment with the PARP inhibitor AZD2281 QD at 50mg/kg. j Ratio of tumor volumes in AZD2281-treated vs. vehicle controls.
Ratios were calculated on day 15 and plotted as a function of the PARPi sensitivity score, demonstrating a strong negative correlation
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Fig. 4 Identification of the PKCβ inhibitor Enzastaurin/LY317615 as a PARPi synergizing agent in breast and ovarian cancer cells. a–e Viability
curves following BMN673 treatment with or without the PKCβ inhibitor LY317615 at a constant molar ratio of 1:3 BMN673:LY317615 for 5 days
in the breast cancer cells aMDA-MB-231, and bMCF7, and in the ovarian cancer cell lines c ES2 and d BRCA-mutant COV362, as well as in the e
non-transformed mammary epithelial cell line MCF10A. f Isobolograms calculated at IC50 values for cancer cell lines demonstrate synergism
for all analyzed lines. g Combination indices demonstrate synergism between PARPi and PKCβi in a panel of ovarian and breast cancer cell
lines across a range of inhibitor concentrations
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relevant molecules that block HR and synergize with PARP
inhibitors.

Prediction of BRCAness-targeting drugs
Since the BRCAness signature was not predictive for either
cisplatin or PARP inhibitors, we questioned what drugs may
potentially target BRCA-like cell lines. To investigate this, instead
of classification based on drug sensitivity to ascertain differentially
regulated genes, we applied the BRCAness signature to assign a
BRCAness phenotype to cell lines, and then used the CTRPv2
database to predict differential drug sensitivity. After excluding
drugs with area under the response curve values of larger than 10,
which is indicative of a general lack of cytotoxicity, we selected
three compounds for further testing (Fig. 6a). These compounds
were screened in four cell lines that were excluded from the initial
analysis: BRCA mutant COV362 cells, BRCA-like CAOV4 cells, non-
BRCA-like ES2 cells, and non-BRCA-like OVCAR8 cells. All three of
the predicted BRCAness targeting drugs showed preferential
toxicity in the BRCA-like cells (Fig. 6b). As expected, drugs that
BRCA-like cells were predicted to be resistant to displayed
diminished efficacies (Fig. 6c). While all predicted drugs showed
some preferential inhibition of cells with a high BRCAness score,
the survivin inhibitor YM-155 exquisitely targeted BRCA-like cells
at nanomolar IC50 amounts. Combination of YM-155 with the
standard of care chemotherapeutics, cisplatin and paclitaxel, in
BRCA-like ovarian cancer may be a promising treatment approach

since early clinical trials in advanced non-small cell lung cancer
have shown a favorable safety profile for YM-155 when combined
with cisplatin and paclitaxel.35

DISCUSSION
Identification of predictive and prognostic biomarkers has had a
profound effect on the treatment and prognoses of various
cancers and of their sub-types. For example, estrogen receptor
and HER2 immunoreactivity of breast cancers are used to guide
their treatment, and ultimately improve on their outcomes.
However, response to many therapeutics with more complex
mechanisms of action cannot be predicted from a single
molecular marker and thus require development of systems-
level signatures for optimal prediction of patient response. The
capacity for improving cancer management through the use of
drug sensitivity gene expression profiles, beyond the standard
clinicopathologic variables, is necessary to advance the era of
individualized cancer care. The rapidly decreasing price of gene
expression microarrays and RNAseq makes it plausible to integrate
this technology as a companion diagnostic into clinical trials for
the eventual individualization of patient care. While results from
gene expression profiling studies are changing how patients are
being managed in the clinic,8–10 and guiding which therapies
individuals should receive,36–38 optimal approaches to generate
relevant signatures are unknown.

Fig. 5 PKCβ inhibition induces deficiencies in homologous recombination. a DR-GFP homologous recombination (HR) reporter assay, where
GFP induction is induced in cells with active HR following dual transfection with the DR-GFP and the pCBA-SceI. The day after transfection,
cells were treated with either 5 μM LY317615 or DMSO vehicle control for 48 h. The percentage of cells with active HR was calculated as the
percentage of DR-GFP positive cells normalized to percentage GFP positive cells transfected with an equimolar amount of pEGFP-C1.
b Reduction in radiation-induced Rad51 foci formation shows inhibited HR. Cells were pre-treated with 5 μM LY317615 for 4 h, irradiated at 5
Gy, and then allowed to recover for 4 h before immunostaining for Rad51 (red) and nuclei (blue). Scale bar= 10 μm. c Quantification of images
in 5b, when considering that cells with more than 10 Rad51 foci are deemed as being positive
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Here, we demonstrate the utility of our novel IRAPS algorithm
for the generation of tissue-specific drug sensitivity gene
expression signatures from cancer cell line gene expression and
drug screening data. After demonstrating the efficacy of this
algorithm on HER2i, we verified its potential with two therapeu-
tics: cisplatin and PARP inhibitors. Both of these therapeutics are
thought to best target tumor cells with deficiencies in HR DNA
repair, such as those with BRCA1/2 mutations. There has been
particular excitement with the development of PARP inhibitors for
treatment of BRCA-mutant patients, as the specific targeting of
HR-defective cancer cells not only offers a powerful treatment
option, but also mitigates side-effects by primarily targeting the
cancerous cells with HR deficiencies as opposed to normal cells.39

Initial trials in treating BRCA-mutant patients were so successful
that two PARP inhibitors were given breakthrough therapy
designation by the FDA for accelerated approval.

Despite this promise, analysis of recent clinical trials demon-
strates a clear need for improved identification of patient
populations to treat with PARP inhibitors. Across five independent
clinical trials, the majority of BRCA-mutant patients still fail to
respond to PARP inhibitor treatment, with an average objective
response rate of 47%, compared to 20% in wild-type BRCA
patients.19 The non-responding BRCA-mutant patients may be
explained by phenomena including concurrent mutations such as
loss of either TP53BP130 or PTEN40 that can lead to restoration of
HR-mediated DNA repair. The PARPi sensitivity signature correctly
identified the only BRCA1/2 mutant cell line found to respond to
BMN-673, as well as 4/5 BMN-673 resistant cell lines with BRCA1/2
mutations. Similarly, both BRCA1/2 mutant PDTCs were correctly
predicted by the signature to not respond to BMN-673. This ability
to accurately predict response within BRCA1/2 mutant tumor cells
indicates future that trials implementing the signature could be

Fig. 6 Use of the BRCAness signature to predict for targeted therapies reveals that the survivin inhibitor YM-155 specifically targets BRCA-like
cells. a Volcano plot of compounds predicted to target BRCA-like cells based on the BRCAness signature score. b Viability curves following
72 h of treatment with identified BRCAness-targeting molecules for BRCA1 mutant COV362, BRCA-like A2780, and non-BRCA-like ES2 and
OVCAR8. c Viability curves following 72 h of treatment with drugs that BRCA-like cells are predicted to be resistant to
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performed on BRCA1/2 cohorts already being treated with PARP
inhibitors before expanding to larger cohorts.
Conversely, it is also known that a wide variety of mutations

outside of BRCA1/2 can lead to HR defects, such as RAD51 or BLM,
which may partially explain the 20% of responders without
mutations in BRCA1/2.41 Tumors with HR deficiencies arising from
sporadic mutations or silencing of genes that are essential for HR
have been termed BRCA-like.42 Not only are BRCA-like tumors
associated with PARP inhibitor sensitivity, but they have also been
shown to have better response to platinum therapeutics such as
cisplatin.24 Importantly, with nearly a quarter of a million new
cases of breast cancer in the United States annually,43 this 20% of
responding patients with wild-type BRCA1/2 represents nearly
50,000 patients, four-fold more than the sum of all BRCA1/2-
mutation carriers. The PARPi sensitivity signature could serve as an
important tool to identify these patients. Within the breast cancer
cell lines we screened lacking BRCA1/2 mutations, the PARPi
sensitivity signature predicted to five to be sensitive (HCC-1806,
CAMA1, MCF7, MDA-MB-231, and BT-549). Of these five predicted
responders, four were found to be sensitive to BMN-673, with the
5th (BT-549) showing a moderate response. Thus, this PARPi
sensitivity signature fulfills an urgent clinical need for improved
prediction of PARP inhibitor sensitivity to not only prevent
treatment of BRCA1/2-mutant non-responding patients, but also
to identify the substantial number of patients without BRCA
mutations who could potentially benefit from treatment.
To further illustrate the power of these predictive signatures, we

demonstrate their utility for prediction of potential synergizing
agents using the lincscloud database. By comparing our signature
with the gene expression changes induced by thousands of
chemical perturbations, we were able to identify potential
synergistic agents that could induce our PARPi sensitivity
signature. Several of these molecules blocked PKCβ, and ensuing
experiments demonstrated that PKCβ inhibition with Enzastaurin/
LY317615 strongly synergizes with PARP inhibitors (Fig. 4). Follow-
up studies demonstrated that treatment with Enzastaurin/
LY317615 was sufficient to block HR in a wide variety of cancer
cell lines, but had minimal effect on non-tumorigenic MCF10A
cells (Fig. 5, Fig. S4), suggesting that elevated PKCβ activity may be
required for the maintenance of HR activity in cancer but not
normal cells. To our knowledge, this is the first reported evidence
of PKCβ being associated with HR in human cell lines.
Since sensitivity to both PARP inhibitors and cisplatin are

thought to correlate with the BRCAness phenotype, we addition-
ally compared our IRAPS-derived signature to a clinically-derived
signature of BRCAness.24 Notably, both our signatures out-
performed this clinical BRCAness signature, which led us to
question what molecules may best target the BRCAness tumor
phenotype. The most effective of these was the survivin inhibitor
YM-155 (Fig. 6). This molecule offers an attractive therapeutic
option in BRCA-like ovarian cancer as combination of YM-155 with
the standard of care chemotherapeutics, cisplatin and paclitaxel,
has shown a favorable efficacy and safety profile in early advanced
non-small cell lung cancer clinical trials.35 Previous studies have
demonstrated not only that loss of BRCA1 can lead to an up-
regulation of survivin,44 but also that survivin is a key activator of
the HR-mediated DNA repair pathway.45 Taken together, these
findings could suggest that survivin up-regulation is compensa-
tory mechanism following loss of BRCA function, resulting in the
observed high sensitivity of BRCA-mutant and BRCA-like cell lines.
Collectively, by summarizing large-scale genomic data, this

work has allowed for complex datasets to be placed in a biological
context that may be used to provide molecularly tailored
treatment recommendations, and also provide a foundation for
the discovery of synergistic therapies that could be further tested
or used for individualized care. The predictive algorithm that we
have generated, may not only prove useful in the clinical setting
for guiding treatment decisions, but may also be generalized to

answer additional questions from other human diseases that
require similar interrogation.

MATERIALS AND METHODS
Iterative resampling analysis to predict sensitivity
Gene expression data for 857 solid-tumor derived cancer cell lines was
downloaded from the CCLE database.12 Data were log2 transformed,
quantile-normalized, and median polished on a per-tissue type basis. This
data was then combined with drug sensitivity data from either the GDSC
dataset (PARP inhibitors, cisplatin),20 or from the Cancer Therapeutic
Response Portal v2 (HER2 inhibitors).46 To determine a list of differentially
expressed genes, a random selection of 50% of available cell lines were
sampled and sensitivity values (the half maximal inhibitor concentration
(IC50) for GDSC and AUC for the drug dose response curve for CTRPv2)
converted into z-scores, which were used to define a class of “responders”
(z-score < −1) and “non-responders” (z-score > 0). To improve predicative
capacity, the average z-score of two inhibitors was used to define
sensitivity for PARP (rucaparib and olaparib) and HER2 inhibitors (lapatanib
and neratanib) enforcing that responders both had a minimal z-score of
−0.5 and both non-responders had z-scores greater than zero. This resulted
in approximately 20% of cells being classified as responders, 50% as non-
responders, and 30% falling into neither category. Specifically, approxi-
mately 30 responders/110 non-responders were identified for HER2
inhibitors per iteration, 25 responders/70 non-responders for cisplatin,
and 15 responders/50 non-responders PARP inhibitors. For each panel a
sub set of samples was excluded for testing the signatures: for testing the
HER2 signature two samples were excluded for HER2 inhibitors plus 16
additional that were tested for afatinib but not lapatanib and neratanib, for
testing the cisplatin signature half of basal breast cancer cell lines were
excluded, and for testing the PARP inhibitor signature all cell lines
screened against BMN-673 were excluded from training. This process was
repeated 1000 times by selecting a different random population each time
to generate 1000 lists of differentially expressed genes. To refine these
gene expression datasets that were generated across all solid tumors, we
used a grid-search optimization algorithm to maximize the accuracy of
prediction in the desired tumor types across all combinations of gene fold
changes, p-values, and conservation across the multiple iterations—that is
the frequency a gene was found to be altered at a given p-value and fold
change threshold. At each threshold, the average gene fold change for
each gene meeting the specified criteria was used as the gene weight. For
example, for p = 1e − 4, fold change = 1.25, and conservation value of 0.8
the signature would consist of all genes that had p-values < 1e − 4 and fold
changes >1.25 in at least 800/1000 iterations, with weights consisting of
the average fold changes across all runs for these genes. Signature scores
were determined by calculating the correlation coefficient between gene
weights within the signature and gene expression levels for that gene
within a given sample.47 For the HER2 inhibitor signature this was breast
cancer, for cisplatin a combination of endometrial and basal breast cancer
was used to preserve the ovarian cancer lines for testing, and for the PARP
inhibitors ovarian and breast cancers were used. The derived signatures
were tested against afatanib-treated breast cancer for the HER2 signature,
ovarian cancer and the remaining half of basal breast cancer cell lines for
cisplatin, and BMN-673-treated breast and ovarian cancer cell lines for
the PARPi signature. All sensitivity signatures are included in Tables S1, S2,
and S4.

Patient survival analysis
The cisplatin sensitivity signature was used to predict patient prognosis for
ovarian cancer patients that were treated with cisplatin in two
independent cohorts, Hennessy40 and Bowtell.48 Signature scores were
calculated following quantile normalization. To generate Kaplan–Meier
curves, patients were divided based on the maximization of statistical
difference in signature scores between the two groups. To account for
stage and grade as covariates, a Cox proportional hazards model was used.

Cell line screening of BMN-673 sensitivity
Drugs were three-fold serial diluted for seven dilutions in DMSO at 1000×
concentration stocks. Aliquots of the diluted stocks were stored in deep-
well “master plates” in −20 °C. Cancer cell lines involved in this assay were
verified by short tandem repeat analysis (CCSG Characterized Cell Line
Core in MD Anderson Cancer Center). Cell lines were maintained in their
optimal growth medium (with 5% FBS) and seeded in 96-well plates at
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2500 cells/100 μL/well for 24-h incubation prior to be changed into the
medium containing 2% FBS for overnight incubation. Serial diluted drug
stocks were added to each well to make 1/1000 final concentration for
additional 7-day incubation. DMSO at 0.1% without any drugs was used as
controls. Triplicates were performed for testing each concentration. Cell
viability was determined by using the Cell Titer Blue Cell Viability Assay (5
μL of the reagent/well) and measured at 530Ex/604Em. Cell viability was
defined by GI50 concentration, defined as the concentration required to
slow cell growth by 50%, calculated according to a cell viability curve.

Patient-derived tumor cells
The sensitivity of PTDCs to BMN-673, along with relevant gene expression
and mutation data, was acquired from the work of Bruna and colleagues.29

Data for the PDX models HCI-001, HCI-006, and HCI-010 were excluded
from analysis as they were used for in vivo testing. For models that had
multiple replicates, the earliest passage explant matched with the nearest
passage of gene expression data was analyzed.

Patient-derived xenografts
Patient-derived breast cancer xenografts (HCI-001, HCI-006, and HCI-010)
with matching RNAseq data (GSE32532) were acquired from the University
of Utah Patient-Derived Xenograft Repository and implanted as described
into athymic nu/nu mice.49 After reaching a volume of 100mm3 treatment
was initiated via intraperitoneal injection with 50mg/kg AZD2281 or with
40% PEG400 as the vehicle control. Treatments were given QD for 28
consecutive days as previously described.50 The study made use of ten
mice per treatment arm, and tumor volumes were tracked with calipers in
order to calculate tumor volumes as (length × width2)/2. End-point mice
were sacrificed by carbon dioxide inhalation. The treatment of animals
were done in accordance with Institutional Animal Care and Use
Committee protocols at MD Anderson Cancer Center. Tumor volumes
were reported as their mean ± SEM.

PARP inhibitor synergizing agents
In order to predict drugs that may sensitize cells using our PARP sensitivity
signature, we used the lincscloud (http://www.lincscloud.org) database
that compares our signature with thousands of chemical perturbations. We
obtained a ranked list of candidate molecules, and then verified the top
hits in breast cancer and ovarian cell lines that were available to us. Based
on this analysis, we identified PKCβ inhibition as a top hit, and tested the
PKCβ Enzastaurin (LY317615) in combination with the PARP inhibitor BMN-
673 using a molar ratio of 3:1, respectively. Cells were treated for 5 days
with either LY317615, BMN-673, or in combination before we analyzed cell
viability with PrestoBlue (Invitrogen) per the manufacturer’s instructions.
Each independent replicate was performed with two technical replicates.
Combination indices were calculated using CompuSyn software,51 where
values under one represented synergism and values over one represented
antagonism.

HR assays
HR activity was assessed by two separate approaches. First, we utilized the
DR-GFP reporter assay as previously described.33, 40 Briefly, cells were
transfected with equimolar amounts of either a combination of DR-GFP
and pCBASceI (gifts from Dr. Maria Jasin; Memorial Sloan-Kettering Cancer
Center, New York, NY) using Lipofectamine 3000 (Invitrogen), which
induces green fluorescence in cells with an active HR machinery, or by
using a GFP-expressing plasmid (pEGFP-C1) as a transfection efficiency
control. The day following transfection, cells were treated with 5 μM
LY317615 and then harvested 48 h later for flow cytometry analysis. GFP
positive cells were gated based on SSC-FITC scatter plots. Percentages of
cells with active HR were calculated as 100× (% DR-GFP+ cells)/(% pEGFP+

cells), with at least 50,000 cells having been analyzed per condition. We
additionally analyzed the ability of cells to form RAD51 foci following
gamma irradiation. Cells were pre-treated with 5 μM LY317615 for 4 h
before treatment with 5 Gy radiation. After recovering for 4 h, cells were
stained for RAD51 foci as previously described52 with an anti-RAD51
antibody (sc8349, Santa Cruz Biotechnology). Cells were imaged and
analyzed by fluorescence microscopy (Eclipse TE2000E, Nikon) and
automatically quantified in a custom-written MATLAB algorithm (Math-
Works). Cells with more than ten foci were counted as positive, with a
minimum of 50 cells scored across three independent experiments for at
least 150 cells in total per condition.

Prediction of drugs targeting the BRCAness signature
Prediction of BRCAness-targeting drugs was carried out using drug
sensitivity data from the CTRPv2 database.46 For this analysis, expression
data of ovarian cancer cell lines (excluding those that were used for testing)
was extracted and quantile normalized before calculating a BRCAness score
based on a previously established BRCAness signature.24 Cells with
BRCAness scores that were greater than 1 standard deviation above the
average were considered positive, and cells with a below average score
were considered negative. The drug sensitivity data for these cell lines were
extracted and used to identify drugs that specifically targeted cells with
high levels of BRCAness. Drugs were selected that were both selective and
had high toxicities in the BRCA-like group, which were defined as area
under response curve values of 9 or less, and tested in COV362 (BRCA1
mutant), A2780 (BRCA-like), ES2 (non-BRCA-like), and OVCAR8 (non-BRCA-
like) cells. Additionally, molecules that BRCA-like cells were predicted to be
resistant to were also tested. For these studies, cells were plated at 5000
cells/well in a 96-well plate and treated with serial dilutions of specified
drugs for 72 h before viability quantification with PrestoBlue.

Statistical analysis
Unless otherwise noted, statistical significance was determined by either
using a student t-test or a two-way ANOVA with post-hoc analysis from
triplicate independent experiments. All data are reported as the mean ±
standard error of the mean (SEM).
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