
BRIEF COMMUNICATION OPEN

Hypoxia promotes an inflammatory phenotype of fibroblasts
in pancreatic cancer
Ashley M. Mello 1,13, Tenzin Ngodup2,13, Yusoo Lee2, Katelyn L. Donahue3, Jinju Li4, Arvind Rao4,5,6,7, Eileen S. Carpenter8,
Howard C. Crawford4,9,12, Marina Pasca di Magliano4,10,11 and Kyoung Eun Lee 2,4✉

© The Author(s) 2022

Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extensive fibroinflammatory stroma and often experiences
conditions of insufficient oxygen availability or hypoxia. Cancer-associated fibroblasts (CAF) are a predominant and heterogeneous
population of stromal cells within the pancreatic tumor microenvironment. Here, we uncover a previously unrecognized role for
hypoxia in driving an inflammatory phenotype in PDAC CAFs. We identify hypoxia as a strong inducer of tumor IL1ɑ expression,
which is required for inflammatory CAF (iCAF) formation. Notably, iCAFs preferentially reside in hypoxic regions of PDAC. Our data
implicate hypoxia as a critical regulator of CAF heterogeneity in PDAC.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) remains a deadly
disease, with a 5-year survival rate of 11% [1]. A notable feature
of PDAC is the presence of an abundant fibroinflammatory stroma
that includes extracellular matrix (ECM), cancer-associated fibro-
blasts (CAF), and immune cells [2]. Recently, single-cell RNA
sequencing (scRNA-seq) and other approaches have revealed
transcriptionally and functionally distinct CAF subpopulations,
myofibroblastic CAFs (myCAF), inflammatory CAFs (iCAF), and
antigen-presenting CAFs (apCAF) [3–7]. The myCAF subset is
involved in the production of ECM, whereas the iCAF subtype
produces high levels of inflammatory cytokines and chemokines
[7, 8]. The apCAF population is characterized by MHC class II
expression [3]. Previous studies suggested a tumor-restrictive role
for myCAFs and a tumor-promoting role for iCAFs and demon-
strated that these subpopulations have the potential to inter-
convert [3, 6–10]. Mechanisms underlying CAF heterogeneity and
plasticity as well as different roles of individual CAF subsets in
pancreatic tumorigenesis are only beginning to be understood.
Hypoxia, or oxygen (O2) deprivation, occurs in solid tumors,

including PDAC, because of their high oxygen/nutrient demand
and aberrant vascularization [11–13]. Tumor hypoxia induces
adaptive changes in cancer cells and surrounding stromal cells,
and is associated with cancer progression and therapy resistance
[14, 15]. Although hypoxia has been shown to promote fibrosis
and angiogenesis by stimulating fibroblasts [16–18], the relation-
ship between hypoxia and the recently defined CAF subsets in
PDAC is unknown.

Here, we show that iCAFs are preferentially located in hypoxic
regions of mouse PDAC in vivo and that the hypoxia-related gene
signature is positively enriched in iCAFs in human PDAC samples.
Using three-dimensional (3D) cocultures of pancreatic cancer cells
and fibroblasts, we demonstrate that hypoxia promotes an iCAF
state. Our study identifies hypoxia as a key environmental cue for
inducing an iCAF phenotype, thus highlighting an instructive role
of hypoxia in shaping the stromal microenvironment.

RESULTS
CAF subtype proportions differ between normoxic and
hypoxic tumor microenvironments
We and others have shown that there is considerable intratumoral
heterogeneity of hypoxia in human and mouse PDAC tumors
[19, 20]. To identify cells residing in hypoxic tumor areas in vivo,
we injected Hypoxyprobe, an indicator of pO2 levels ≤ 1% [21],
intraperitoneally into mice bearing orthotopic PDAC. In this model,
pancreatic cancer cells derived from the KrasLSL-G12D/+;Trp53LSL-
R172H/+;Pdx1-Cre (KPC) mouse model of PDAC [22] were injected
into the pancreas of syngeneic C57/BL6 mice. Immunofluores-
cence staining for Hypoxyprobe in orthotopic PDAC showed
patchy patterns of hypoxia (Fig. 1A), similar to those observed in
human PDAC samples [19]. As expected, Hypoxyprobe was barely
detectable in the normal pancreas (Fig. S1A). The average
percentage of hypoxic cells in pancreatic tumors (defined as %
Hypoxyprobe+ cells of total live cells) was 28% (Fig. 1B). One-third
of total PDPN+ CAFs stained positively for Hypoxyprobe (Fig. 1C,
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D). Using a previously validated flow cytometry strategy for CAF
subtypes [3, 6], we evaluated myCAFs (PDPN+Ly6C−MHCII−),
iCAFs (PDPN+Ly6C+MHCII−), and apCAFs (PDPN+Ly6C−MHCII+)
located within either hypoxic (Hypoxyprobe+) or normoxic
(Hypoxyprobe−) tumor regions (Fig. 1E). Importantly, the

distributions of CAF subpopulations from normoxic and hypoxic
tumor microenvironments significantly differed (Fig. 1E–J).
Although myCAFs were the prevalent CAF subset in both
normoxic and hypoxic tumor regions (Fig. 1F, J), hypoxic areas
contained a significantly higher fraction of iCAFs compared with
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normoxic areas (Fig. 1G, J) and exhibited pronounced increases in
the iCAF/myCAF ratio (Fig. 1H). We further confirmed the
preferential localization of iCAFs in hypoxic regions in orthotopic
tumors using a different KPC PDAC cell line, 4662 (Fig. S1B).
To address the relevance of the correlation between hypoxia

and an iCAF phenotype in human PDAC, we interrogated the
expression profiles of iCAFs and myCAFs from a scRNA-seq dataset
[23] that includes 16 PDAC patient tumor samples. Populations of
myCAFs and iCAFs were both present in this dataset, with the
majority of fibroblasts falling into the myCAF group (Fig. 1K, as
annotated in ref. [24]). The expression profiles of each cell were
then scored using the Hallmark Hypoxia gene set (MSigDB) as a
readout of exposure to hypoxia. We found that most iCAFs exhibit
a robust hypoxia profile (76%, 177 of 234 total cells scored above
the median of signature expression), while only a subset of
myCAFs met this threshold (45%, 565 of 1250 total cells scored
above the median of signature expression) (Fig. 1L, Fig. S1C).
Compared with myCAFs, iCAFs were also enriched for the hypoxia-
inducible factor 1 (HIF1) signaling pathway, a key hypoxic
adaptation pathway (Fig. S1D). These observations suggest that
the iCAF phenotype is linked with the hypoxic tumor microenvir-
onment of PDAC.

Hypoxia promotes the induction of an inflammatory
phenotype in CAFs by modulating their interactions with
tumor cells
Based on the correlation between PDAC hypoxia and iCAF
enrichment, we set out to determine whether hypoxia regulates
an iCAF phenotype. When pancreatic stellate cells (PSCs), a
precursor population of CAFs, are seeded in Matrigel in a transwell
insert and cultured with PDAC tumor organoids in the lower
compartment of the plate, they acquire the inflammatory features
characteristic of iCAFs [7, 8]. On the other hand, PSCs cultured
alone in Matrigel maintain a quiescent state [7, 8]. To examine the
effects of hypoxia on an iCAF phenotype, we exposed the
cocultures of mouse PDAC tumor organoids and PSCs to either
normoxia (21% O2) or hypoxia (1% O2) (Fig. 2A) and measured the
expression of CAF subset markers in PSCs. To model hypoxia
in vitro, 1% O2 was used as the level of O2 in human pancreatic
cancers measured by a polarographic electrode is ~1% [11].
Expression of the iCAF markers Il6, Cxcl1, and Lif was markedly
elevated in hypoxic PSCs cocultured with tumor organoids relative
to their normoxic counterparts (Fig. 2B, C). On the other hand,
expression of the myCAF markers Acta2 (α-SMA gene) and
Transgelin (Tagln) in PSCs cocultured with tumor organoids was
not affected by hypoxia (Fig. 2D). Importantly, hypoxic induction
of the iCAF markers in PSCs only occurred when cocultured with
tumor organoids but not when cultured alone (Fig. 2B). These
observations were reproduced in the cocultures of tumor cells and
a CAF line derived from mouse PDAC (Fig. S2A, B). In addition,

hypoxia increased the expression of iCAF marker genes in PSCs
cocultured with another PDAC cell line, 4662 (Fig. S2C), suggesting
that hypoxic induction of the iCAF phenotype is not limited to a
specific cell line. Of note, in the context of 2D cocultures, hypoxia
elevated the expression of Il6 and Cxcl1 in PSCs (P= 0.08 for Cxcl1
between normoxia and hypoxia) but not of Lif (Fig. S2D),
implicating partial induction of the iCAF phenotype by hypoxia
in 2D culture.
To assess the effects of hypoxia on fibroblast phenotype in an

unbiased fashion, we performed RNA-seq profiling of the hypoxic
and normoxic PSCs cocultured with PDAC organoids. When using
gene set enrichment analysis (GSEA), we found that “inflammatory
response” and “IL6/JAK/STAT3”, in addition to the “hypoxia
signature”, are top-ranked in association with the hypoxic PSCs
(Fig. 2E, Fig. S2E). Altogether, these results indicate that hypoxia
promotes an iCAF state and that the induction of an inflammatory
fibroblast phenotype by hypoxia requires factors secreted by
tumor cells.

Hypoxic regulation of the iCAF phenotype is independent of
tumor HIF1ɑ or HIF2ɑ
Cellular adaptation to hypoxia is largely coordinated by
hypoxia-inducible factors (HIFs) [25]. It has been shown that
the major HIF isoforms, HIF1ɑ and HIF2ɑ, are expressed in
human and mouse PDAC and play distinct roles in pancreatic
tumorigenesis [20, 26–28]. Because hypoxic tumor cells are
needed to establish the iCAF phenotype (Fig. 2B), we
postulated that HIF1ɑ or HIF2ɑ in tumor cells may contribute
to iCAF formation under hypoxia. To test this hypothesis, we
knocked down HIF1ɑ, HIF2ɑ, or both in PDAC tumor cells using
shRNAs (Fig. S3A, B) and cultured these tumor cells with PSCs
under normoxia (21% O2) or hypoxia (1% O2). Unexpectedly,
neither HIF1ɑ knockdown nor HIF2ɑ knockdown impaired
induction of iCAF marker genes Il6, Cxcl1, and Lif in PSCs by
hypoxia (Fig. 3A, B). Double knockdown of HIF1ɑ and HIF2ɑ
abrogated the induction of Cxcl1 expression in PSCs exposed to
hypoxia, but was not sufficient to fully prevent hypoxic
induction of Il6 and Lif expression in PSCs (Fig. 3C). Moreover,
knockdown of HIF1ɑ, HIF2ɑ, or in combination in another PDAC
cell line 4662 failed to inhibit expression of Il6, Cxcl1, and Lif in
PSCs under hypoxia (Fig. S3C–E). These data suggest that tumor
HIF1ɑ and HIF2ɑ are largely dispensable for hypoxia-mediated
iCAF formation.

IL1ɑ in tumor cells mediates hypoxic induction of the iCAF
phenotype
IL1ɑ secreted by pancreatic tumor cells and subsequent IL6/JAK/
STAT3 activation in CAFs have been shown to trigger iCAF
formation [7]. However, the mechanism underlying IL1ɑ induction
in cancer cells has remained obscure. Because iCAF induction by

Fig. 1 iCAFs preferentially reside in hypoxic regions of PDAC in vivo. A–J Mice bearing 4-week orthotopic PDAC of mT3 tumor cells
received an intraperitoneal injection with 60mg/kg of Hypoxyprobe and were sacrificed 1.5–2 h later. A Immunofluorescence staining for
Hypoxyprobe (green) and DAPI (blue) in orthotopic PDAC. Scale bar, 100 µm. B Percentage of Hypoxyprobe+ cells among total live cells from
orthotopic PDAC, as analyzed by flow cytometry (n= 6). C Co-immunofluorescence staining for Hypoxyprobe (green), PDPN (red), and DAPI
(blue) in orthotopic PDAC. Scale bar, 25 µm. D Percentage of Hypoxyprobe+ CAFs among total CAFs from orthotopic PDAC, as analyzed by
flow cytometry (n= 6). E Schematic of flow cytometry strategy to identify CAF subsets residing in normoxic and hypoxic tumor regions.
Representative flow plots showing the gating strategy for the analysis of normoxic (Hypoxyprobe−) and hypoxic (Hypoxyprobe+) CAF subsets
from orthotopic PDAC. F–I Percentage of myCAFs (F), percentage of iCAFs (G), iCAF/myCAF ratio (H), and percentage of apCAFs (I) among
normoxic and hypoxic CAFs from orthotopic PDAC, as analyzed by flow cytometry (n= 6). J Pie charts showing mean frequencies of the
indicated subsets among normoxic and hypoxic CAFs from orthotopic PDAC, as analyzed by flow cytometry (n= 6). K Uniform manifold
approximation and projection (UMAP) visualization of fibroblast clusters from human PDAC scRNA-seq (n= 16 patients merged). Different
CAF subtype clusters are color-coded. Data are from Steele and colleagues [23], and annotations are from Kemp and colleagues [24]. L UMAP
visualization of human PDAC fibroblasts from K colored by hypoxia gene set expression score. The hypoxia signature for analysis was
obtained from MSigDB’s Hallmark collection. Red, highest score of hypoxia signature; blue, lowest score of hypoxia signature. The symbols in
B, D, F–I represent individual mice, and horizontal lines represent the means. P-values were determined by student’s t-test. *p < 0.05;
**p < 0.01; ***p < 0.001.

A.M. Mello et al.

3

Oncogenesis           (2022) 11:56 



hypoxia requires tumor cells, we measured IL1ɑ expression from
tumor organoids exposed to either normoxia (21% O2) or hypoxia
(1% O2). Hypoxia increased Il1ɑ mRNA levels in pancreatic cancer
cells (Fig. 4A). IL1ɑ protein levels were also elevated in conditioned
media from hypoxic cocultures relative to conditioned media from
normoxic cocultures (Fig. 4B). Of note, although hypoxia
significantly upregulated Il1ɑ expression in cancer cells cultured
alone, an increase in Il1ɑ expression in cancer cells by hypoxia was
even greater in the presence of PSCs (Fig. 4A), implicating bi-

directional interactions between tumor cells and PSCs. Moreover,
targeting IL1ɑ with a neutralizing antibody substantially reduced
induction of iCAF marker genes Il6, Cxcl1, and Lif in PSCs but not
myCAF marker gene Acta2 under hypoxia (Fig. 4C, Fig. S4A). To
confirm the importance of IL1 signaling in iCAF formation, we
treated cancer cell-PSC cocultures with an IL1 receptor (IL1R1)-
neutralizing antibody, which resulted in the impaired acquisition
of the iCAF phenotype under hypoxia (Fig. 4D). Consistent with a
tumor HIF-independent mechanism for the hypoxic induction of

Fig. 2 Hypoxia promotes an inflammatory fibroblast phenotype. A Schematic illustration of the 3D coculture platform to model tumor cell-
PSC interactions under normoxia and hypoxia. B Quantitative RT-PCR analysis of iCAF markers in PSCs cultured alone or with mT3 tumor
organoids under 21% O2 or 1% O2 for 48 h (n= 6). Expression levels were normalized by 18S rRNA. C Enzyme-linked immunosorbent assay
(ELISA) of iCAF markers in conditioned media from 3D cocultures of PSCs and mT3 tumor cells under 21% O2 or 1% O2 for 72 h (n= 3).
D Quantitative RT-PCR analysis of myCAF markers in PSCs cultured alone or with mT3 tumor organoids under 21% O2 or 1% O2 for 48 h (n= 6).
Expression levels were normalized by 18S rRNA. E Gene set enrichment analysis (GSEA) showing significantly upregulated pathways in PSCs
cultured with mT3 tumor organoids at 1% O2 compared with PSCs cultured with mT3 tumor organoids at 21% O2 for 48 h. NES normalized
enrichment score, FDR false discovery rate. Each data point in B–D represents individual primary PSC lines. Data in B–D, mean ± SEM. P-values
were determined by two-way ANOVA with Bonferroni post-test (B, D) and student’s t-test (C). NS not significant. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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Fig. 3 Hypoxia induces inflammatory fibroblasts in a tumor HIF-independent manner. Quantitative RT-PCR analysis of iCAF markers in PSCs
cultured with mT3 tumor organoids expressing scrambled shRNA (shSCR) control, HIF1ɑ shRNA (shHIF1ɑ) (A), HIF2ɑ shRNA (shHIF2ɑ) (B), or
both shHIF1ɑ and shHIF2ɑ (C) under 21% O2 or 1% O2 for 48 h (n= 4 shHIF1ɑ, n= 3 shHIF2ɑ, n= 5 shHIF1ɑ/shHIF2ɑ). Expression levels were
normalized by 18S rRNA. Each data point represents individual primary PSC lines. Results show mean ± SEM. P-values were determined by two-
way ANOVA with Bonferroni post-test. NS not significant. *p < 0.05; **p < 0.01; ***p < 0.001.
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iCAF formation, knockdown of HIF1ɑ, HIF2ɑ, or both did not affect
upregulation of Il1ɑ in cancer cells in response to hypoxia (Fig.
S4B–D). Collectively, our findings suggest that hypoxia induces
IL1ɑ expression in tumor cells and that IL1ɑ is crucial for hypoxia-
mediated iCAF formation.

DISCUSSION
Hypoxia is a critical feature of the tumor microenvironment and
predicts poor clinical outcomes [14, 15]. The impact of hypoxia on
cancer cells has been well-characterized, yet much remains to be
understood as to how hypoxia regulates stromal components and
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the tumor-stroma crosstalk. In this study, we demonstrate that
intratumoral normoxic and hypoxic microenvironments differ in
CAF composition in mouse PDAC and that iCAFs are linked to
tumor hypoxia in human and mouse PDAC. By exposing 3D
cocultures of pancreatic cancer cells and fibroblasts to either
hypoxia or normoxia, we found that hypoxia promotes an
inflammatory phenotype of fibroblasts. In addition, we showed
that hypoxic induction of the iCAF phenotype requires IL1ɑ
emanating from tumor cells, and the presence of hypoxic
fibroblasts further elevates IL1ɑ levels in tumor cells, implicating
hypoxia as a modulator of reciprocal interactions between cancer
cells and fibroblasts.
HIFs are major mediators of adaptations to hypoxia; however,

hypoxic responses can be HIF-independent [25, 29]. For instance,
hypoxia regulates the NFκB pathway, which plays a central role in
the control of immune responses, through HIF-dependent and
HIF-independent mechanisms [30–32]. While our data suggest
that upregulation of tumor IL1ɑ and iCAF induction by hypoxia are
largely independent of HIF activation in tumor cells, the precise
mechanism for tumor IL1ɑ regulation by hypoxia remains to be
determined.
PSCs have been thought to give rise to the majority of PDAC

CAFs. However, recent reports suggest that besides PSCs, PDAC
CAFs can arise from multiple cell types [33, 34]. We observed that
hypoxia propels an inflammatory phenotype in a PDAC CAF line as
well as primary PSCs. It is unclear whether CAF populations of
different developmental origins have a differential capacity to gain
iCAF features.
A key finding in our current study is that iCAFs are enriched in

hypoxic zones of PDAC compared with normoxic tumor regions.
This spatial link between hypoxia and iCAF enrichment in vivo,
together with our in vitro finding that hypoxia promotes iCAF
induction, raises the possibility that hypoxia plays an active role in
driving regional stromal heterogeneity. Notably, recent studies
have observed a correlation between iCAF enrichment and
immunosuppression [6, 10, 35], which warrants the investigation
of the effects of hypoxia on CAF-immune crosstalk.
In summary, our study reveals that the normoxic and hypoxic

microenvironments of PDAC exhibit distinct CAF compositions.
We also show that hypoxia induces an inflammatory fibroblast
phenotype through upregulation of tumor IL1ɑ, thus highlighting
the significance of hypoxia in shaping the tumor stroma. A better
understanding of the impact of hypoxia on CAF heterogeneity and
function is needed to make stroma-targeting therapies clinically
viable.

MATERIALS AND METHODS
Mice
All animal protocols were reviewed and approved by the Institutional
Animal Care and Use Committee of the University of Michigan. Wild-type
(WT) C57/BL6 mice (stock # 000664) from Jackson Laboratory were used for
PSC isolation and orthotopic transplantation experiments at 8–12 weeks of
age, including male and female mice. For orthotopic transplantation,
7.5 × 104 mT3 (provided by Dr. David A. Tuveson) [36] or 7.5 × 104 4662
cells (provided by Robert H. Vonderheide) [37] derived from primary PDAC
in KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx1-Cre (KPC) mice of a C57/BL6 genetic

background, were resuspended as a 30 µl suspension of 50% Matrigel
(#356231, Corning) in PBS and injected into the pancreas. At 4 weeks post-
transplantation, mice received an intraperitoneal injection with 60mg/kg
of Hypoxyprobe (pimonidazole hydrochloride, Hypoxyprobe, Inc) and were
sacrificed 1.5–2 h later for flow cytometry analysis.

Cell lines and cell culture
PSCs were isolated from WT mice by enzymatic digestion of pancreatic
tissue and subsequent density gradient centrifugation as previously
described [8, 38]. Primary PSC lines between passages 2 and 4 were used
for all experiments. The FB1 CAF line was generated from an iKras* p53*
mouse [39] by fluorescence-activated cell sorting of PDGFRα+;EPCAM−

cells. The mT3 (provided by Dr. David A. Tuveson) [36] and 4662
(provided by Robert H. Vonderheide) [37] PDAC cell lines were derived
from primary murine KPC PDAC. FB1, mT3, and 4662 cell lines were
cultured no more than 20–25 passages. All cells were passaged in DMEM
with 10% FBS and 1% penicillin/streptomycin (Thermo Fisher). For 3D
cocultures, PSCs were seeded in Matrigel (#356231, Corning) in a
transwell insert (#662610, Greiner Bio-One) and cultured with PDAC
tumor organoids in the lower compartment of the 24-well plate in
DMEM containing 5% FBS and 1% penicillin/streptomycin (Thermo
Fisher). For IL1ɑ neutralization experiments, cocultures were treated
with 3 µg/ml IL1ɑ-neutralizing antibody (#MAB4001, R&D Systems) or
isotype control antibody (#400902, BioLegend) for 72 h. For IL1R1
neutralization experiments, cocultures were treated with 0.5 µg/ml
IL1R1-neutralizing antibody (#PA5-47937, Invitrogen) or isotype control
antibody (#AB108C, R&D Systems) for 72 h. Cell line authentication for
FB1 and mT3 was not performed. The 4662 cells were authenticated by
the Research Animal Diagnostic Laboratory (RADIL) at the University of
Missouri. Mycoplasma testing (MycoAlert Detection Kit, Lonza) was
performed monthly.

Lentiviral-mediated shRNA transduction
PDAC cell lines were transduced with lentivirus containing shRNA plasmids
at optimized viral titers. Stable cell lines were established post-puromycin
selection. The following shRNA plasmids were used: pGIPZ Scrambled
shRNA (#RH4346, Horizon), pGIPZ HIF1α shRNA (#RMM4431-200404026,
Horizon), pLKO.1 Scrambled shRNA (#1864, Addgene), pLKO.1 HIF2α shRNA
(#TRCN0000082307, Sigma).

Quantitative RT-PCR
Total RNA was isolated from cells using the RNeasy mini kit (#74104,
Qiagen). cDNA was synthesized using a High-Capacity cDNA Reverse
Transcription Kit (#4368814, Applied Biosystems). PCR reactions were
performed using SYBR Green PCR reagents (#A25742, Applied Biosystems)
mixed with indicated cDNAs and primers (primer sequences are listed in
Table S1) in a QuantStudio Real-Time PCR system (Applied Biosystems).
Expression levels were normalized by 18S rRNA.

Immunofluorescence
Tissues were fixed in 4% paraformaldehyde/PBS (4 °C, overnight) and
processed for paraffin embedding. For immunofluorescence, slides were
boiled for 20min in 10mM sodium citrate (pH 6.0) for antigen retrieval and
blocked with 5% serum/0.3% Triton X-100 for 1 h. Sections were incubated
with FITC-conjugated Hypoxyprobe-1-MAb1 (4.3.11.3, #FITC-Mab, 1:500,
Hypoxyprobe, Inc) and Alexa Fluor 594-conjugated PDPN antibody (8.1.1,
#127414, 1:250) diluted in 1% BSA/0.3% Triton X-100 overnight at 4 °C.
Slides were counterstained with DAPI (Invitrogen) and mounted in Prolong
Gold antifade reagent (Invitrogen). Fluorescence images were acquired
using an Olympus IX73 microscope.

Fig. 4 IL1ɑ in tumor cells mediates the induction of the iCAF phenotype under hypoxia. A Quantitative RT-PCR analysis of Il1ɑ in mT3
tumor organoids cultured alone or with PSCs under 21% O2 or 1% O2 for 48 h (n= 6). Expression levels were normalized by 18S rRNA. B ELISA
of IL1ɑ in conditioned media from 3D cocultures of mT3 tumor cells and PSCs under 21% O2 or 1% O2 for 72 h (n= 4). C Quantitative RT-PCR
analysis of iCAF markers in PSCs cultured with mT3 tumor organoids in the presence of IL1ɑ-neutralizing antibody or isotype control antibody
under 21% O2 or 1% O2 for 72 h (n= 5). Expression levels were normalized by 18S rRNA. D Quantitative RT-PCR analysis of iCAF markers in PSCs
cultured with mT3 tumor organoids in the presence of IL1R1-neutralizing antibody or isotype control antibody under 21% O2 or 1% O2 for
72 h (n= 3). Expression levels were normalized by 18S rRNA. Each data point represents individual primary PSC lines. Results show
mean ± SEM. P-values were determined by Mann–Whitney test with Bonferroni post-test (A), Mann–Whitney test (B), and two-way ANOVA with
Bonferroni post-test (C, D). NS not significant. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Flow cytometry
Single-cell suspensions from mouse tissues were prepared as previously
described [20]. Tumor tissues were cut in half, and one half was minced
and processed for flow cytometry analysis. Cells were stained in PBS/
0.5% FBS/2 mM EDTA with the following fluorochrome-conjugated
antibodies: BV421-conjugated anti-Ly6C (HK1.4, #128031, 1:100), PerCP-
Cy5.5-conjugated anti-CD45 (30-F11, #103132, 1:200), PE-conjugated
anti-EPCAM (G8.8, #118205, 1:200), PE-conjugated anti-CD31 (390,
#102407, 1:200), PE-Cy7-conjugated anti-PDPN (8.1.1, #127411, 1:100),
APC-Cy7-conjugated anti-MHCII (M5/114.15.2, #107628, 1:300) (from
BioLegend); FITC-conjugated Hypoxyprobe-1-MAb1 (4.3.11.3, #FITC-Mab,
1:200) (from Hypoxyprobe, Inc). The viability marker Zombie Aqua was
purchased from BioLegend (#423102). Flow cytometry was performed on
a ZE5 Cell Analyzer (Bio-Rad), and data were analyzed using FlowJo
software.

ELISA
For ELISA of media, 3D cocultures were grown under 21% O2 or 1% O2 for
72 h. Media were collected, spun down, and assayed using the
manufacturer’s protocol. ELISA assays used were IL1ɑ (#433404, BioLe-
gend), CXCL1 (#EMCXCL1, Invitrogen), IL6 (#DY406-05, R&D Systems), and
LIF (#445104, BioLegend).

RNA-seq and data analysis
Total RNA was isolated from cells using the RNeasy mini kit (#74104,
Qiagen). Libraries were constructed using NEB polyA RNA ultra II and
subsequently subjected to 150 cycles of sequencing on NovaSeq-6000
(Illumina). Adapters were trimmed using Cutadapt (v2.3). FastQC (v0.11.8)
was used to ensure the quality of data. Reads were mapped to the mouse
genome (GRCm38) using STAR (v2.6.1b) and assigned count estimates to
genes with RSEM (v1.3.1). Alignment options followed ENCODE standards
for RNA-seq. FastQC was used in an additional post-alignment step to
ensure that only high-quality data were used for expression quantitation
and differential expression. Differential gene expression analysis was
performed using DESeq2, using a negative binomial generalized linear
model (thresholds: linear fold change >1.5 or <−1.5, Benjamini–Hochberg
FDR (Padj) < 0.05). GSEA was performed using GSEA 4.1.0.

Single-cell RNA-seq analysis
Human single-cell RNA-seq (scRNA-seq) data were previously published in
[23], and fibroblasts were annotated in ref. [24]. Both raw and processed
data are available at the NIH dbGaP database (accession #phs002071.v1.p1;
[23]), with full clinical annotation. Downstream analysis was performed
using Seurat V4.0.3 [40]. Hypoxia signature scoring was performed using
Seurat’s “AddModuleScore” function.

Western blot analysis
Cells were lysed with 10 mmol/L Tris at pH 7.5, 150 mmol/L NaCl,
5 mmol/L EDTA, 0.1% SDS, and protease/phosphatase inhibitor cocktail
(#78440, Thermo Fisher). Cell lysates were separated by SDS-PAGE,
transferred to nitrocellulose membranes, blotted with primary anti-
bodies overnight at 4 °C, and detected using horseradish peroxidase-
conjugated secondary antibodies followed by exposure to chemilumi-
nescence reagents (#PI34580, Thermo Fisher). The following antibodies
were used: rabbit anti-HIF1α (#10006421, 1:500, Cayman), goat anti-
HIF2α (#AF2997, 1 µg/ml, R&D Systems), mouse anti-beta actin (#MA1-
91399, 1:50,000, Invitrogen), HRP-linked anti-rabbit IgG (#7074, 1:10,000,
Cell Signaling), HRP-linked anti-mouse IgG (#7076, 1:60,000, Cell
Signaling), and HRP-linked anti-goat IgG (#705035147, 1:20,000, Jackson
ImmunoResearch).

Statistical analysis
Data were analyzed using GraphPad Prism 7 software. Statistical tests with
normally distributed variables included two-tailed student’s t-test and two-
way ANOVA. D’Agostino and Pearson test and/or Shapiro–Wilk test was
used to test the normality of sample distribution. When variables were not
normally distributed, we performed nonparametric Mann–Whitney test.
Bonferroni correction was applied for multiple comparisons. P-value < 0.05
was considered statistically significant. No statistical method was used to
predetermine sample sizes, experiments were not randomized, and the
investigators were not blinded to allocation during experiments and
outcome assessment.

DATA AVAILABILITY
The RNA-seq data from this study are available at the Gene Expression Omnibus
under the accession number GSE199012.
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