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Melanoma is themost aggressive malignant skin tumor and arises frommelanocytes. The

resistance of melanoma cells to various treatments results in rapid tumor growth and high

mortality. As a local therapeutic modality, photodynamic therapy has been successfully

applied for clinical treatment of skin diseases. Photodynamic therapy is a relatively new

treatment method for various types of malignant tumors in humans and, compared

to conventional treatment methods, has fewer side effects, and is more accurate and

non-invasive. Although several in vivo and in vitro studies have shown encouraging results

regarding the potential benefits of photodynamic therapy as an adjuvant treatment for

melanoma, its clinical application remains limited owing to its relative inefficiency. This

review article discusses the use of photodynamic therapy in melanoma treatment as well

as the latest progress made in deciphering the mechanism of tolerance. Lastly, potential

targets are identified that may improve photodynamic therapy against melanoma cells.
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INTRODUCTION

Melanoma is a highly aggressive malignant tumor that originates from melanocytes, and its
progression is difficult to predict. Treatment of melanoma continues to face serious challenges,
resulting in an increased annual global incidence of 3% (1). Melanoma typically occurs in the
skin, but can also develop in other tissues that originate from pigmented neural crest (NC) cells,
including the eyes, nasal cavity, anal canal, digestive tract, and genitourinary tract (2, 3). Although
melanoma accounts for only 2% of all skin cancer cases, it is responsible for 80% of deaths from
dermatologic cancers (4). Hence, the recent increase in morbidity and mortality due to melanoma
is a matter of concern for global human health.

Current guideline-based therapies for patients with melanoma include surgery, radiotherapy,
chemotherapy, immunotherapy, and targeted therapy (5). Although the treatment of patients with
early stage melanoma is effective, the 5-year survival rate for advanced melanoma is only 16%,
which is related to the low sensitivity to conventional treatment procedures (6). Photodynamic
therapy (PDT) has been successfully used to treat patients with non-melanoma skin cancer (7),
esophageal cancer (8), head and neck cancer (9), breast cancer (10), and lung cancer (11). In recent
years, several in vitro and in vivo studies have been conducted to examine the efficacy of PDT for
melanoma treatment; the results for which indicate that PDTmay prove to be a promising adjuvant
treatment for melanoma patients.
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FIGURE 1 | Effector mechanisms during photodynamic therapy of melanoma. The ground state photosensitizer (PS) is activated by irradiation with appropriate

wavelength light to produce singlet state. Reactive oxygen species (ROS), the main cytotoxic components, can cause death of tumor cells by apoptosis (①) and

induce the damage of the tumor vascular system (②). In addition, photodynamic therapy may also activate immune responses against tumors by affecting the

secretion of inflammatory factor (IL-6, IL-1, and TNF-α), HSPs (heat shock proteins) and DAMPs (damage associated molecular patterns) (③), and exosomes (④).

Moreover, exosomes induced by photodynamic therapy (PDT) might play an important role in inhibitory regulation of EMT (epithelial-mesenchymal transition) in

melanoma cells (⑤).

Although PDT has been successfully used in the treatment of
cancer and non-neoplastic diseases, its use in the treatment of
patients with melanoma has been limited owing to low response
rates and unsatisfactory efficiency (12, 13). This article reviews
the studies on PDT treatment of melanoma and other tumors
and summarizes the effects (Figures 1, 2) as well as the potential
mechanisms for tolerance (Figure 3) of PDT for the treatment of
melanoma patients.

PDT
PDT is a novel non-invasive therapeutic technique for malignant
tumors. The clinical results of PDT for cancer treatment show
that it is efficacious in the treatment of early stage cancer
that of head and neck tumors and basal cell carcinomas, for
which complete remission may be achieved, which subsequently
prolongs the survival time of patients with inoperable carcinoma
(14, 15). The use of photosensitizers (PSs) can selectively target

diseased tissues and improve the efficiency of photoinitiation.
These PSs are activated by specific wavelength lasers and
can trigger photochemical reactions that precisely target the
tumor while reducing damage to the surrounding normal
tissue. Therefore, PDT is considered to induce minimal
toxicity to normal tissues and negligible systemic side effects,
while significantly reducing long-term morbidity, offering
positive cosmetic/esthetic outcomes, and protecting organ
function (16, 17).

PDT combines photosensitizers, oxygen molecules, and
light stimulation to treat tumors. Excited state singlet
oxygen (1O2) serves as the primary cytotoxic material
in PDT. Molecular oxygen in this state functions as a
highly active reactive oxygen species (ROS) that oxidizes
biological substrates (18, 19). The singlet oxygen or
ROS produced within the cell membrane can cause
photo-oxidative damage to proteins and lipids within
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FIGURE 2 | Effector mechanisms leading to necrosis after photodynamic therapy of melanoma. PDT may induce DNA damage and swelling of organelles, leading to

necrosis of melanoma cells. PDT may also activate the RIPK1 pathway to promote the phosphorylation of downstream RIPK3, make the phosphorylation of RIPK3

merge with MLKL, and form RIPK1-RIPK3-MLKL complex, namely necrotizing corpuscles.

FIGURE 3 | Resistance mechanisms during photodynamic therapy of melanoma. Photosensitizers cannot be effectively excited by near-infrared (NIR) in PDT for

melanoma, melanin granules and autophagy could be the main contributors to this resistance. First, visible light can be absorbed by melanin in melanoma cell (①),

leading to diminishment of photothermal effect induced by PS and decrease in production of ROS and singlet oxygen, then resulting in the inhibition of immune

response in tumor microenvironment (②) and apoptosis blocking (③) of melanoma cell. Only in the near-infrared conditions, PS can play an even greater role in PDT

treatment of melanoma. Second, subcellular organelle damage induced by ROS in PDT treatment can enhance autophagy to maintain cell homeostasis against

apoptosis, which ultimately leads to the resistance to PDT treatment in melanoma (④).

the photosensitive binding site, and induce oxidative
damage in the target cells, ultimately causing apoptosis,
necrosis, and tumor vasculature damage. Furthermore,
ROS can induce an inflammatory response to stimulate

antitumor immune responses. These mechanisms,
summarized in Figure 1, may lead to long-term tumor
control through antitumor effects on primary/metastatic
tumors (20, 21).

Frontiers in Oncology | www.frontiersin.org 3 May 2020 | Volume 10 | Article 597

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Li et al. Photodynamic Therapy for Melanoma Treatment

PDT MECHANISMS OF ACTION

Apoptosis and Necrosis
PDT plays an important role in cellular necrosis or apoptosis
induced by light damage. The treatment method varies according
to the PS aggregation site. Apoptosis is a form of programmed
cell death, and apoptosis-induced tumor cell death has become
one of the primary targets in tumor therapy. Alternatively,
dysregulated cellular apoptosis may result in uncontrolled
proliferation of melanoma cells (22). During treatment, the
accumulation of PSs in the mitochondria and endoplasmic
reticulum can cause oxidative stress-induced apoptosis (23).
Therefore, PDT can induce apoptosis in melanoma cells,
which might play a key role in inhibiting their proliferation
and metastasis.

Studies have confirmed that PDT promotes apoptosis in
the melanoma cell lines, A375 and UCT mel-1, by both the
intrinsic and extrinsic apoptotic pathways (24, 25). PDT-induced
apoptosis in melanoma cells occurs via three key signaling
pathways. (1) In the intrinsic pathway, cellular death occurs
through mitochondria-mediated signaling pathways involving
DNA damage, p53 activation, p53-mediated inhibition of
antiapoptotic proteins such as Bcl-2 (26–28), and kinases
involved in cell proliferation and survival, such as B-Raf (29,
30). PSs can also induce damage in the mitochondria and
lysosomes (31) by inhibiting production of MMP-9, Bcl-2, and
Bcl-xL, while upregulating the expression of apoptotic related
proteins Bax and PARP, and promoting activation of death
receptor pathways. Moreover, PDT has been shown to induce
intrinsic apoptosis by inducing increased levels of ER stress
and activation of caspase cascade pathways (32). When PDT
doses are increased beyond sublethal damage, stress response
pathways become activated, including the ER stress pathway,
with disruption of Ca2+ homeostasis and unfolding of protein.
These responses lead to either apoptosis or autophagic cell death,
dependent on the availability of Bax/Bak (33); (2) The extrinsic
pathway is initiated by oligomeric death ligands, including
tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL) or CD95L (34); (3) Cytotoxic T lymphocytes (CTL)
and natural killer (NK) cells release granzyme B, a serine
protease, into the target cell to induce apoptosis (35). These
cellular apoptosis pathways converge at a common terminal
stage and rely on the disintegration of the cellular matrix by
cysteine protease caspases. Specifically, caspase 9 is involved in
the intrinsic pathway and caspase 8 in the extrinsic, both of
which ultimately lead to activation of downstream caspase 3 in
the execution pathway (36–38). Caspase−3,−8,−9 are released
in PDT-treated melanoma cells (24, 25, 39), resulting in initiation
of a series of cascades that induce irreversible apoptosis (40, 41).

PDT can also induce cellular necrosis upon accumulation
of PSs in the cell membrane and lysosomes (see Figure 2).
Necrosis is a caspase-8-independent cell death pathway that
requires synergistic activation of receptor-interacting protein
1 (RIP1) and receptor-interacting protein 3 (RIP3) kinases
(42). Unlike protein-driven cell apoptosis, necrotic apoptosis
is mediated by a cascade of kinase signaling that activates
(automatic) phosphorylation of RIPK1, RIPK3, and MLKL,

which then form solubilized pores in the plasma membrane,
leading to rapid plasma membrane rupture and inflammatory
responses through the release of damage-associated molecular
patterns and cytokines (43, 44). The necrosis pathway has
been shown to be related to a variety of tumor types,
including melanoma, pancreatic adenocarcinoma, and certain
hematological malignancies (45). Mohammadalipour et al.
demonstrated that a low dose of nitrogen-doped titanium
dioxide (N-TiO2) nanoparticles (NPs) (1–100µg/ml) stimulated
autophagy flow response of non-toxic A375 cells. However, their
light-activation can impede autophagosome-lysosome fusion and
resulting in an increase at the basal ROS level. Therefore,
PDT with N-TiO2 NPs leads to the blockade of autophagy
flux and ultimately the occurrence of necroptosis in melanoma
A375 cells (46). Additional factors that contribute to PDT-
induced cellular necrosis include PS localization, exposure to
light, and hypoxia-induced glucose deprivation. Furthermore,
Thibaut et al. (47) demonstrated that PDT can induce necrosis in
a murine melanoma B16-A45 cells signal pathway that involves
activated caspase. Moreover, apoptosis and necrosis often use the
same initiation signal pathway that involves activated caspase.
Therefore, these are the major pathways that lead to melanoma
cell death. Learning how to decrease apoptotic resistance of
melanoma cells to improve PDT efficacy could be an important
research goal for the future.

Tumor Vasculature Damage
Tumor vasculature provides oxygen and nutrition to support
the continuous growth of tumors and is a major pathway for
metastasis (48). Therefore, antiangiogenesis treatment strategies
are expected to have a strong therapeutic effect on various
tumors. Antiangiogenic PDT can induce endothelial cell
injury, vasoconstriction, release of coagulation factors, platelet
aggregation, vascular rupture, vascular occlusion, blood flow
stagnation, and hemorrhaging (49).

Lisnjak et al. (50) have demonstrated that PDT can
significantly reduce the serum concentration of vascular
endothelial growth factor (VEGF) as well as the metastatic
transmission rate, while inducing changes to the vasculature of
tumor tissues in lung carcinoma-bearing C57BL/6 mice. These
results suggest that inhibition of tumor vasculature formation
is an antitumor effect of PDT. In particular, the increased
proliferation of vascular endothelial cells in the process of
intravascular angiogenesis may lead to excessive accumulation
of protoporphyrin-IX (PpIX), a potent photosensitizer, and
selective enhancement of the photodynamic action on angiogenic
endothelial cells in tumor tissues (51, 52). Schuitmaker et al.
investigated the efficiency of the new PSs bacteriochlorin a
(BCA) mediated PDT on Greene hamster melanoma implanted
in the anterior eye. Following BCA-PDT, blood vessels and
intracellular spaces were enlarged and clotting was immediately
observed with swollen erythrocytes. Fused inner and outer
membranes of mitochondria resulted in mitochondria damage
that was confirmed by electron microscopy. With the passage
of time, the degree of tissue and cell damage increased. At
24 h, nearly complete necrosis was observed at the treatment
site. It was postulated that direct mitochondrial and vascular
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injury induced by BCA-PDT may account for the immediate
cause of tumor necrosis (53). Similarly, Zilberstein et al.
tested the effects of bacteriochlorophyll-serine (Bchl-Ser)-
PDT in Nude CD1 mice bearing malignant M2R melanotic
melanoma xenografts (76–212 mm3). Primary vascular damage
with occlusive thrombi, hemorrhage, and tumor necrosis were
confirmed by histopathology. Moreover, the treatment protocol
was short and effective with a cure rate of over 80% (54).

Furthermore, studies have demonstrated that PDT induced
vascular damage in other tumors, the mechanisms for which
may translate to similar effects in melanoma. For example,
ALA-PDT in a coculture of human umbilical vein endothelial
cells (HUVECs) and human bladder carcinoma cell line had
an antiangiogenic and antitumor effect, most notably when in
combination with deferoxamine, which increased accumulation
of PpIX (55). Karwicka demonstrated that treatment focused
on vascular destruction (V-PDT) can lead to highly effective
long-term antitumor responses mediated by strong blood supply
deprivation in vivo. Further, 67% of Lewis lung carcinoma (LLC)
bearing mice treated with V-PDT exhibited complete regression
without relapse for over 1 year (56). Similarly, an in vivo study
performed by Inoue et al. (55) showed that antiangiogenic
PDT is effective for tumor tissues and does not significantly
affect angiogenesis in normal tissue surrounding tumors in lung
carcinoma-bearing C57BL/6 mice.

Although there is limited direct evidence demonstrating that
PDT damages blood vessels in melanoma tumors, specifically,
the results of the aforementioned studies do offer a theoretical
basis for this hypothesis. Antiangiogenic PDT may function to
disrupt or damage the tumor vasculature of melanoma; therefore,
the combination of antiangiogenic PDT with radiochemotherapy
may be clinically effective in relieving symptoms and improving
the survival rate of patients with melanoma. The optimal
approach to tumor and vascular targeting of PDT can disrupt
melanoma and endothelial tumor cells and activate the immune
response, thereby improving overall efficacy (16, 57).

Antitumor Immune Response
Immune tolerance in the tumor microenvironment reduces the
tumor killing capacity of immune cells and promotes tumor
cell growth (58). Hence, reversion of immunosuppression in
the tumor microenvironment is currently an exciting area
in tumor immunotherapy research. Preclinical studies have
demonstrated that PDT enhances host antitumor immune
responses in lung cancer and non-melanoma skin cancer, at
the treatment site by inducing oxidative stress, which can
trigger the release of proinflammatory factors such as TNF,
interleukin (IL)-6, IL-1, heat shock proteins (HSPs), complement
proteins, and metabolites (17, 59). Innate immune cells
including monocytes/macrophages, neutrophils, and dendritic
cells may then be recruited to the treatment site by these
inflammatory cytokines, which then function to kill tumor
cells. Tumor vasculature also changes significantly upon
PDT-induced inflammation. Adhesion molecules (intracellular
adhesion molecules-1, vascular cell adhesion molecules-1, and
selectins), which were found to be overexpressed following
PDT, can recruit neutrophils and other inflammatory cells to

tumor sites and convert the tumor vascular endothelium from
a non-thrombotic, non-adhesive barrier between blood and
tumor tissue to a pro-adhesive surface permitting infiltration of
blood constituents (60). As a result of increased permeability,
inflammatory cells have been shown to readily enter the
vasculature after which the innate immune cells infiltrate the
subcutaneous FsaR fibrosarcoma tumors in syngeneic C3H/HeN
mice (61).

Acute inflammatory responses are associated with the
development of adaptive antitumor immunity and thus, can
protect the host organism in an antigen-specific manner.
Previous studies have confirmed that PDT primarily activates
dendritic cells (DCs) to enhance adaptive antitumor immunity
(62, 63); and damage-associated molecular-pattern molecules
(DAMPs)/cell death-associated molecular-pattern molecules
(CDAMPs) that become released from dying tumor cells may
be involved in this process. HSP70, a key member of the HSP
complex, is released after PDT and binds to tumor cytoplasmic
antigens in a stable concomitant complex (64). Thereafter, HSP-
tumor antigen complexes bind to risk signal receptors and are
recognized by Toll-like receptors 2 and 4 on the surface of the
DCs (65). In turn, these induce activation of DCs and the release
of proinflammatory cytokines.

Previous studies have demonstrated that the expression and
secretion of high mobility group box 1 (HMGB1) in mouse colon
cancer cells (66), cutaneous squamous cell carcinoma (SCC)
cells (67), LLC cells (68), and cervical cancer cells (69) are
significantly elevated following PDT. Extracellular HMGB1 can
activate macrophages and DCs, and recruit neutrophils, using
various receptors. Korbelik et al. (68) suggested that PDT-treated
LLC cells release signals to induce production of HMGB1 by
macrophages and other immune cells. These signals may then
promote an antitumor immune response. Furthermore, a clinical
study has suggested that the percentages of mature DCs increases
in the blood of patients treated with 5-aminolevulinic acid-
mediated PDT (ALA-PDT). Moreover, ALA-PDT significantly
downregulated miR-34a and upregulated HMGB1 expression
levels in cervical cancer tissues (69). PDT was also reported
to induce a further increase in the number of regulatory T
cells and NK cells and upregulate HMGB1 expression in the
peripheral blood of patients with head and neck squamous cell
carcinoma (HNSCC) (70). Cumulatively, these results suggest
that PDT induces HMGB1 expression and is a crucial pathway
for activating antitumor immunity.

Several proinflammation cytokines and DAMPS induced
by PDT in the tumor microenvironment play a critical
role in activating DCs. Mature DCs migrate to lymph
nodes in large numbers and upregulate the expression of
major histocompatibility complex (MHC)-I, MHC-II, and
costimulatory molecules CD80 and CD86 (71). These changes
enable DCs to express the antigen peptide-MHC complex on
their cell surface and enhance activation of CD4+ T helper cells
and CD8+ CTLs, thus triggering an adaptive immune response
against tumor antigens (72).

Recent studies have shown that immune checkpoint
inhibitors against programmed death 1 (PD-1) and
programmed death ligand 1 (PD-L1) are well-established
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leading immunomodulatory agents that act in specific pathways
involved in the adaptive immune suppression of tumor tissues.
The focus of these studies was initially placed on targeting
cancers that were considered to be immunogenic, including
melanoma, renal, and lung cancers; however, subsequently
the application was expanded to include other cancers such
as Hodgkin lymphoma, urothelial, as well as head and neck
cancer (73). Wang et al. (74) demonstrated a multifunctional
acid-activated micro-micelle that enhances a PDT-driven tumor
immune response by inhibiting the expression of PD-L1 in
melanoma cells. This micelle not only enhances ROS-induced
and PD-L1 knockout antitumor immune characteristics but
also stimulates the immune response by promoting cytokine
secretion and lymphocyte proliferation, and effectively inhibits
B16-F10 melanoma tumor growth. Due to the immune response
and immunologic memory induced by PDT, pulmonary
metastasis of transplanted B16-F10 melanoma xenograft tumors
was also inhibited in the in vivo study. These studies have
comprehensively demonstrated that PDT-induced antitumor
immunity plays an important role in the treatment of melanoma.

Additional studies have shown that PDT combined
immunotherapy induces potent systemic antitumor immunity
in mice and should be evaluated for the treatment of human
cancer. Saji et al. showed that although PDT and (intratumorally
injection of naïve dendritic cells) IT-DC were not effective on
their own, PDT combined with IT-DC eradicated both CT26
and B16 tumors in a significant proportion of animals, and
prolonged the survival of mice with tumors that were not cured.
Most importantly, PDT combined with IT-DC treatment at a
single tumor site resulted in tumor regression at distant sites,
including multiple lung metastases (75).

In situ photoimmunotherapy (ISPI), which combines
photodynamic therapy with immunological stimulation
induction, is a promising modality for the treatment of
metastatic melanoma (76). A continued local application
of topical imiquimod (a Toll-like receptor 7 agonist) in
combination with indocyanine green-PDT has been used to
treat late stage melanoma patients. In one study, 11 patients
received ISPI in one or multiple 6-week treatment cycles applied
to a 200-cm2 site, which often contained multiple cutaneous
metastases. The treatment included local application of topical
imiquimod, injection of indocyanine green (ICG), and a 805 nm
laser for local irradiation. All patients completed at least one
treatment cycle. The result shows that complete response was
observed in six patients, five patients were alive at the time of
last follow-up and the probability of 12-month overall survival
was 70% (77). Therefore, ISPI not only produces a complete
local response but also demonstrates an effective immune
response against metastatic nodules. Furthermore, injecting
dendritic cells (DCs) into a tumor can stimulate an immune
response, which, combined with local PDT, induces a striking
antitumor effect with potent systemic antitumor immunity. In
fact, PDT + IT-DC eradicated both CT26 and B16 tumors in
a significant proportion of animals and prolonged the survival
of mice in which the tumors were not cured (75). PDT creates
a favorable microenvironment for the acquisition of tumor
antigen and the activation of DC, which reduces the need for

tumor antigen loading in vitro by DCs (78). These studies show
that these combined treatments can sometimes induce strong
and durable tumor specific immunity that results in destruction
of targeted tumors as well as initiation of systemic antitumor
immune response.

Therefore, PDT combined with immunostimulatory agents
seems to show great promise and could change the current
therapeutic strategy for melanoma treatment. However, to
improve its efficacy, further investigations on the precise
antitumor immune mechanism elicited by PDT in melanoma
treatment must be completed.

Exosomes
Exosomes are a type of extracellular particle that can mediate the
communication between cells. They contain cellular components
such as microRNAs, mRNAs, proteins, and DNA. Exosomes
have been a subject of recent investigation to study the
mechanisms of tumorigenesis and tumor progression, including
tumor metastasis, angiogenesis, antitumor immunity, and tumor
immunological escape (79–81). Two studies have demonstrated
that PDT can regulate exosome secretion by tumor cells. ALA-
PDT induced the production of exosomes with high levels
of HMGB1, which in turn promoted DC maturation in the
peripheral blood of ALA-PDT-treated patients with cervical
cancer (69).Moreover, exosomes induced by PDT treatment were
involved in the regulation of epithelial-mesenchymal transition
(EMT) of tumor cells. Analysis of the exosomes obtained
from the plasma of nine HNSCC patients (three in stage
pT1, one in stage pT3, and five in stage pT4), all of whom
benefited from positive clinical outcomes following treatment,
on day 7 or 4–6 weeks after PDT treatment confirmed that
the PDT-mediated secretion of exosomes contained E-cadherin,
and restored epithelial morphology and epithelial cell adhesion
molecule (EpCAM) expression in tumor cells. Further, the
exosomes of these patients exhibited downregulated expression
of mesenchymal genes and inhibited proliferation, migration,
and invasion of the recipient tumor cells in vitro (82). These
studies suggest that PDT can potentially induce antitumor
immune responses and inhibit tumor migration by regulating
exosome secretion. However, the key components of exosomes
involved in PDT-mediated tumor suppression are currently
unknown, which may be a hot topic of future studies.

RESISTANCE MECHANISMS FOR PDT

Melanin Pigment
Melanin can absorb ultraviolet (UV) and visible light, which can
prevent ultraviolet radiation (UVR) to protect the skin (83). The
melanin pigment is synthesized in melanocytes by tyrosinase
that is integrated into an organelle named melanosome (84, 85).
After synthesis, melanin is transported into the surrounding
keratinocytes of the epidermis (86).

Tyrosinase (TYR) is a key enzyme that produces melanin
from melanocytes. Tyrosinase-related proteins (TRP-1, TRP-2)
convert tyrosine to dopamine and dopamine to dopamine
quinone in a two-step enzymatic reaction catalyzed by
tyrosine hydroxylase and dopamine oxidase, respectively.
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The resulting quinone is used to synthesize pheomelanin and
eumelanin (87). Melanogenesis can be induced by a variety
of paracrine cytokines, including α-melanocyte-stimulating
hormone (α-MSH), endothelin 1 (ET-1), nitric oxide, adreno-
cortico-tropic-hormone (ACTH), prostaglandins, thymidine
dinucleotides, and histamines, upon exposure to ultraviolet B
(UVB) (88). These factors activate pigment-related proteins
such as microphthalmia-associated transcription factor (MITF),
tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and
tyrosinase-related protein-2 (TRP-2) (89). MITF, in particular,
plays a key role in melanogenesis by regulating melanocyte
differentiation, pigmentation, proliferation, and survival. In the
absence of radiation, melanocytes are exposed to eumelanin
that causes DNA damage by inducing DNA strand breakage. In
addition, melanin may damage DNA through a Fenton reaction
(90), and can prevent the access of DNA repair enzymes to
the DNA damaged sites. Furthermore, DNA damage can cause
melanocytic mutation and increase melanin production (91).
Moderate to high levels of pigmentation have been observed
in melanoma tumors, and the melanin content in cells may be
directly proportional to the degree of cell differentiation and
inversely proportional to cell growth (92).

The singlet oxygen produced by PDT can reduce natural
oxidation of melanin and DNA damage caused by melanin (93).
PDT has been suggested to reduce the melanin content and
tyrosinase activity in melanocytes, but not to affect cell survival
(94). Studies have shown that melanin can scavenge ROS, such
as singlet oxygen, hydroxyl radicals, and superoxide anions (95).
These studies indicate that melanin protects pigmented cells
from oxidative stress, changes cell metabolism, induces immune
suppression and mutagenesis of tumor microenvironment, thus
protecting malignant melanocytes from various treatments.
Currently, it is believed that the inhibition of melanogenesis
by immunotherapy, radiotherapy, chemotherapy, and PDT can
reduce the incidence of melanoma deterioration (96).

In order to avoid an adverse reduction in PDT efficacy
due to the absorption of light by melanin, combination with
depigmentation may be necessary. In vivo studies demonstrated
that combining hypericin-mediated PDT with depigmentation
agents, such as tyrosinase inhibitors (kojic acid) or phenyl
thiourea, significantly increases ROS production and decreases
viability of MEL-1 cells to a similar extent as that of A375
cells, suggesting that this treatment increases susceptibility of
melanoma cells (97, 98). Further, melanoma cells were treated
by photobleaching in combination with PDT and 420-nm
violet light (99), and the results showed that the bleaching
effect of violet light on melanoma cells significantly increased
their sensitivity to PDT. Therefore, a drug with the ability to
inhibit melanin production or induce depigmentation would
be an important component in the therapeutic arsenal to treat
melanoma more effectively.

Autophagy
Autophagy is a basic physiological process that relies on
lysosomal pathways to degrade cytoplasmic proteins and
organelles to maintain cellular homeostasis. Interestingly,
autophagy elicits opposing effects depending on the needs of

the cells. For instance, it can serve as a type II programmed
cell death pathway if necessary, while eliciting cytoprotective
effects in other instances. In the advanced stage of melanoma
and many other types of tumors, autophagy serves as a resistance
mechanism and occurs as a tumor cell pro-survival mechanism
(100, 101). Several studies have shown that chemotherapy,
radiotherapy, immunotherapy, and PDT can upregulate the
expression of autophagy-related proteins such as ATG4, ATG5,
ATG12, and Beclin-1, thereby increasing tumor resistance (102–
106). Marino et al. demonstrated that melanoma cells can survive
in an acidic environment by upregulating autophagy; meanwhile,
inhibition of ATG5 can reduce survival of melanoma cells (107).
Similarly, Mehnert et al. established a mouse melanoma model
by deleting ATG7 and PTEN gene in melanoma cells (108),
which significantly inhibited tumor growth and prolonged the
survival of mice. In this model, dabrafenib combined with
ATG7 antagonistic therapy significantly inhibited the growth
of melanoma (109). Martin et al. (110) also demonstrated
that the combination of chemotherapy with autophagy and
mitogen extracellular signal-regulated kinase (MEK) inhibition
can enhance the melanoma cell killing effect of chemotherapeutic
drugs. Based on these studies, the induction of autophagy may
serve as a resistancemechanism to PDT for melanoma treatment.

After PDT treatment of tumor cells, autophagy is activated
through the cell-related pressure sensor, and the intracellular
components or organelles are transported to lysosomes
for decomposition and reuse to offset the alarms of their
environment and to respond to the cytotoxic effect. Tumor cells
need to control and adapt to the redox imbalance caused by
ROS produced following PDT. The redox homeostasis is closely
related to the occurrence, progression, and metastasis of tumors
(111). PDT-induced autophagy provides a protective mechanism
for breast cancer cells, osteosarcoma cells, HeLa cells, and colon
and rectum cancer stem cells. Inhibition of autophagy can
enhance the photodynamic tumor cell killing effect (112–114).
On the other hand, PDT-induced autophagy can also lead to the
dissociation of Bcl-2 and Beclin-1, reduce Bax/Bak protein levels,
and inhibit caspase-8 through induction of apoptosis. However,
these results suggest that autophagy-induced cell death can only
occur in tumor cells with defective apoptosis (115).

In addition to directly destroying cancer cells, PDT seems
to influence other indirect killing mechanisms by, for instance,
regulating innate antitumor immune activity and damaging
tumor vasculature (116). Autophagy is fundamental for cell
survival and for the proper function of immune cells and
endothelial cells; however, its role in determining melanoma
resistance to PDT is still unknown (117–119). Therefore, further
studies on understanding the molecular mechanism of PDT-
induced autophagy in melanoma resistance will be of significance
to improve the development of future combinatorial strategies.

Photosensitizers
PSs accumulated intracellularly are the first step in PDT. Given
the role of singlet oxygen and other ROS in tissue damage
inflicted by PDT, the most commonly used PSs are dependent
on the molecular oxygen tissue concentrations. Using PSs in
PDT allows for selective tumor targeting due to the intracellular
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metabolism, and are, therefore, important for effective PDT
treatment of malignant tumors. However, melanoma patients do
not seem to have benefited significantly from PDT using the PSs
and treatment protocols available today. There are two possible
reasons that might account for this. First, the high melanin
content in melanoma cells absorbs visible spectral radiation,
especially in the blue region, which reduces the light available
for absorption by the PS and reduces PDT efficacy (120). PSs
with absorption in the near-infrared (NIR) range may be more
suitable for PDT of melanoma cells. Second, tumor targeting and
PS accumulation may not be fully effective with current PSs.
Therefore, in this article, we will now identify and describe PSs
potentially available for melanoma treatment.

Generally, PSs for PDT are divided into three generations,
some of which have been investigated for melanoma treatment
(Table 1). Porfimer sodium, the first-generation PS, mediated
PDT on melanotic and amelanotic malignant melanoma in
athymic nude mice and was effective against amelanotic but
not melanotic melanoma (121–124). There are many types of
second generation PSs, such as porphyrin derivatives (PD),
phthalocyanines, biomimetic dyes, and polycyclic quinone. 5-
ALA is one of the PD used for non-melanoma clinical treatment.
Many in vitro studies revealed that 5-ALA-PDT effectively
inhibits the activity of melanoma cell lines and triggers cellular
apoptosis (24, 31, 125–129). However, when 5-ALA was used for
cutaneous melanoma treatment in vivo, it did not significantly
inhibit tumor progression (24). The effect of 5-ALA seems to
be related to the dose. Our unpublished data showed that only
high doses of 5-ALA (10mM) significantly inhibited autophagy
in melanoma cells. As reviewed in Table 1, methylene blue
(MB) is a cationic dye derived from the phenothiazine family.
It exhibits strong broad-spectrum red light absorption (550–
700 nm, maximum absorption at 664 nm) and high affinity for
melanocytes, which helps selective absorbance of this PS in
cutaneous melanoma. MB-PDT and irradiation with a 664-nm
light hindered tumor growth and prolonged survival in a B16F10
pigmented mouse melanoma model (163, 164).

The third generation PSs have demonstrated improved
tumor treatment characteristics, such as higher biocompatibility,
stronger tumor targeting capacity, higher ROS generation rate,
and longer wavelength absorption, compared to the first- and
second generation PSs. This was achieved by incorporating the
PS into a nanocarrier and by using peptides or antibodies for
selective delivery of PSs to tumors. The second generation PSs
combined with carrier can circumvent the skin barrier and
improve selective delivery to melanoma cells (120, 146, 149,
150, 165). The use of nanocarriers can improve the activity
of photosensitizing agents through preferential accumulation of
the carrier at the tumor site and facilitating slow, controlled
release of the PS (166). Nanocarriers function by binding to
the target molecules of overexpressed receptors in tumor cells,
leading to enhanced uptake of PS that have been conjugated
with peptides, aptamers, and antibody fragments. Additionally,
PS-coated upconversion nanoparticles were found to trigger
ROS production under 980 nm NIR excitation and showed great
promise for PDT (167). Rationally designed DNA nanosponges
were reported to load and deliver PSs effectively, target tumors

precisely, and effectively relieve hypoxia-associated resistance to
enhance the efficacy of PDT (168). In general, the application
of nanotechnology in PDT aims to improve water hydrophobic
drug compatibility/PS, protect against drug degradation, produce
a sustained release of drugs, improve drug bioavailability (169),
increase tumor selectivity, and allow improved treatment of deep
tumor infiltration depth, so as to increase therapeutic efficacy and
reduce adverse side effects (170–172).

It has been found that micelles, liposomes, and metal
oxide enable passive targeting of tumors through enhanced
permeability and retention (EPR) effects to improve the
efficacy of PDT (173, 174). Many of these PS delivery systems
have been used in melanoma treatment (175, 176). For
example, nitrogen-doped titanium dioxide, polyethylene
glycol-polyaspartate-modified rose bengal-loaded magnetic
mesoporous silica (RB-MMSNs), Titanium-dioxide-
nanoparticle-gold-nanocluster-graphene (TAG), doxorubicin,
which is an anticancer agent (DOX/PheoA-ALG NPs), and
POP micelles have all been shown to increase PDT efficacy
against B16F10 melanoma in vivo and to stimulate and enhance
immunological responses (152–155).

NIR light absorption PSs also improve the photodynamic
effect. P-nitrophenyl-pD-glucopyranoside (PNPG), a new class
of PS, exhibits large absorption peak in the NIR spectrum. The
encouraging results have revealed that PNPG can effectively
target CD44-overexpressing cancer cells and selectively kill B16
cells when exposed to NIR light (808 nm) after modified with
hyaluronic acid (HA) and polyethylene glycol diamine (PEG)
(158). The ICG-mediated PDT with a broader irradiation range
(600–1,600 nm) was studied previously. The authors found
that NIR radiation was most effective in inducing B16F10 cell
apoptosis and G0/G1 cell cycle arrest in vitro (156, 157). In
addition, Tookad1 (177), naphthalocyanines (160), PcNP@Drug
(161), and Platinum(II) Ring-Fused Chlorin (162) were reported
to kill melanoma cells and suppress malignant melanoma
tumor growth upon exposure to NIR light (700–1,000 nm) in a
pigmented melanoma model. Therefore, third generation PSs for
melanoma treatment are currently in the spotlight of the PDT
research field.

SONODYNAMIC THERAPY AND
PHOTOTHERMAL THERAPY

Branching out from in-depth research on PDT, new treatments
have emerged such as sonodynamic therapy (SDT) or
photothermal therapy (PTT), which have advantages similar
to PDT, including tumor selectivity, minimal invasiveness, and
ability to enhanced PS activation without the need for direct
access to the tumor site.

SDT represents an emerging approach that offers the
possibility of non-invasively eradicating solid tumors in a site
directed manner. It involves the sensitization of target tissues
with a non-toxic sensitizing chemical agent and subsequent
exposure of the sensitized tissues to relatively low intensity
ultrasound. Because ultrasound has stronger tissue penetration
ability, this method has advantages over similar alternative
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TABLE 1 | The studies of PSs used during PDT to treat melanoma.

Classification PS Cell/Tumor Wavelength References

First generation Hematoporphyrin

Derivative (HpD)

Porfimer sodium MMCs MMC tumor

bearing mice (in vivo*);

YUSAC2/T34A-C4; Human

Beidegröm Melanoma

cell line

Dye-laser (630 nm); Red

light (570–650 nm)

(121–124)

Second generation Porphyrin

derivatives (PD)

5-ALA Mel25; G361; A375;

WM451Lu; B16; SKMel-23;

SKMel-28

Red light (635 nm);Halogen

lamp (420–1,400 nm)

(24, 31, 125–129)

Ruthenium porphyrins ME300 Red light (652 nm) (130)

Halogenated porphyrins A375 Red light (633 nm) (131)

Verteporfin YUSAC2; T34A-C4 Visible light (121)

mTHPC B16 (47)

Phthalocyanines Zinc

octacarboxyphthalocyanine(ZnPcOC)

Me45 Diode laser (685 nm) (132)

Aluminums(III) phthalocyanine

chloride tetrasulfonate (AlPcSCl)

A375 Red light (682 nm) (133)

Dichlorosilicon phthalocyanine

(Cl2SiPc)

M6 Red light (683 nm) (134)

Chloroaluminum Pc (ClAlPc) M3Dau Red light (670 nm) (135)

Ruthenium porphyrins M6 Red light (652 nm) (130)

Chloroaluminum phthalocyanine

(ClAlPc)

G361 B19 Diode laser (670 nm) (136, 137)

ClAlPcS (2) G361 Red light (635 nm) (127)

Chlorin e 6(Ce6) B16; B16 tumor bearing

mice (in vivo*)

Red light (664 nm) (127, 138–141)

Biomimetic dye Methylene blue (MB) B16F1; B16F1 tumor

bearing (in vivo*); C57BL/6J

mice; SK-23; SK-Mel 28

Diode laser (650 nm) (142, 143)

Polycyclic quinone Hypericin UCT Mel-1; A375; UCT

Mel-3

UVA (400–315 nm) or

594 nm

(133, 144, 145)

ZnTPPS(4) G361 Red light (635 nm) (127)

Third generation Cross linked with

the second

generation

CDG2/5-ALA/HA B16; A375 Red light (635 nm) (146)

5-ALA/DPPC

5-ALA in 1,2- dipalmitoyl-sn-glycero-

3-phosphocholine

B16-F10 Red light (630 nm) (147)

5-ALA-silver nanoparticles B16-F10 Red light (635 nm) (148)

Ver-MSNs B16-F10; B16 tumor

bearing mice (in vivo*)

Red light (693 nm) (149)

ZnTcPc and ZnTcPc-g attached to

gold nanorods

B16-F10; B16-G4F Red light (635 nm) (150)

liposomes-encapsulated Fe-CHL. B16-F10 Red light (652 nm) (120)

ClAlPc-loaded SLNs B16-F10 Diode laser (670 nm) (151)

Nanometer

materials

nitrogen-doped Titanium dioxide B16-F10 Ultraviolet light (152)

RB-MMSNs B16; B16 tumor bearing

C57BL/6J mice (in vivo*)

NIB (153)

TAG B16F1 tumor bearing mice

(in vivo*)

Simulated sunlight (154)

DOX/PheoA-ALG NPs B16; B16 tumor bearing

C57BL/6J mice (in vivo*)

Red light (670 nm) (155)

(Continued)
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TABLE 1 | Continued

Classification PS Cell/Tumor Wavelength References

POP micelles B16-F10 tumor model

(in vivo*)

Red light (671 nm) (74)

NIR absorbing 5-Benzoindotricarbocyanine

(indocyanine green, ICG)

Sk-Mel-28; S91 Pulsed, 788 nm (156, 157)

PNPG-PEG-HA B16; B16 tumor bearing

mice (in vivo*)

Red light (808 nm) (158)

Tookad M2R; Tumor C57BL/6 mice

bearing (in vivo*)

Diode laser (763 nm) (159)

Naphthalocyanines B78H1 B78H1

tumor bearing C57BL/6J

mice (in vivo*)

Ti: sapphire laser 809 nm

(Pt) or 826 nm (Pd)

(160)

PcNP@Drug SKMEL-28; SKMEL-28

tumor bearing mice (in vivo*)

Red light (730 nm) (161)

Platinum(II) Ring-Fused Chlorin A375 Red light (700–850 nm) (162)

*In vivo indicated animal experiment.

Ver-MSNs, verteporfin-loadedmesoporous silica nanoparticles; RB-MMSNs, polyethylene glycol–polyaspartate-modified rose bengal-loadedmagnetic mesoporous silica; TAG, titanium-

dioxide-nanoparticle-gold-nanocluster-graphene; DOX/PheoA-ALG NPs, anticancer agent, doxorubicin (DOX), was also loaded within the PheoA-ALG nanoparticles (DOX/PheoA-ALG

NPs); PNPG-PEG-HA, Poly(N-phenylglycine)-based nanoparticles.

methods (such as PDT), thus showing more concentrated
therapeutic effect on the lesions. Many experiments have
confirmed that SDT has obvious killing effect on tumor cells
at home and abroad. Jin et al. (178) compared the efficacy
of ALA-PDT and SDT in a squamous cell carcinoma (A431)
cell line as well as the ability of these treatments to reduce
the size of A431 ectopic tumors in mice. Similarly, the relative
efficacy of Rose Bengal-PDT and SDT was investigated in a
B16-melanoma cell line and in a B16 ectopic tumor model.
The results tested no statistically significant difference in efficacy
between ALA -PDT or SDT in the non-melanoma model;
however, Rose Bengal-SDT was significantly more efficacious
than PDT in the melanoma. This difference in efficacy was
due to the pigmentation of the melanoma cells that effectively
filtered the excitation light preventing it from activating the
sensitizer, while the use of ultrasound avoids this problem
(179). Harada et al. also demonstrated the induction of the
melanoma cell (C32) apoptosis by the combination of TiO2

nanoparticles and ultrasound (US). Meanwhile, in vivo results
showed significant inhibition of C32 solid tumors in mice growth
in groups treated with TiO2 andUS (TiO2-SDT) (180). ALA-SDT
showed synergistic antitumor effects in malignant melanoma by
constituting a positive feedback loop of p53-miR-34a-Sirt1 axis
(181). In addition, there are several new sonosensitizer-mediated
sonodynamic therapies that result in complete regression of
melanoma, such as chloroaluminum phthalocyanine disulfonate
(ClAlPcS2), a nickel ferrite/carbon nanocomposite (NiFeO/C),
redox/enzyme/ultrasound responsive chondroitin sulfate-chlorin

e6-lipoic acid nanoplatform loading docetaxel (136, 182, 183).
These studies suggest that SDT may be more effective than PDT

in treating hyperpigmented melanoma.
PTT is an emerging approach for tumor treatment. Under

NIR illumination, the photothermal conversion materials can
convert light energy into heat energy to kill tumor cells. The

damaged tumor cells can evoke efficient antitumor immune

response and promote the necrosis and apoptosis of tumor
cells. PTT provides a precise and minimally invasive alternative
for cancer treatment. It is effective in controlling metastatic
cancer. Xu et al. (184) developed the GNS-TAT-Cy5 nanoprobe
which can serve as a precise theranostic platform via regulating
the photothermal dose and achieved regulation and detection
of apoptosis related to caspase-3 for melanoma. Zhang et
al. (185) demonstrated the potential application of a piTRL-
mediated immuno-photothermal therapy against melanoma
and its metastases in a study in vivo. Alvi et al. (186)
described a convenient method to synthesize a new type of
superparamagnetic up conversion nanoprobes, which possesses
high biocompatibility and can be used in imaging-guided
photothermal therapy for the treatment of malignant melanoma.
PTT has advantages similar to PDT, such as high specificity,
minimal invasiveness, and precise spatial-temporal selectivity.
PTT penetrates deeper into the tissue, making it more effective
in treating melanoma.

CLINICAL CASES OF PDT IN MELANOMA

Although the question of whether PDT can be used in the
clinical treatment of melanoma still remains unanswered, some
reports on clinical application of PDT for melanoma treatment
are available. For instance, Barbazetto et al. reported results
of PDT in four patients with choroidal melanoma. Results
showed PDT led to tumor regression in two patients (one tumor
decreased in size and remained stable for 18 months; another
tumor exhibited no growth for 11 months), melanomas in the
other patients continued to grow, eventually requiring surgical
intervention (187). Interestingly, another study used the same
protocol on a patient with choroidal amelanotic melanoma and
reported complete resolution of the lesion, leaving a flat, atrophic
chorioretinal scar. Thirteen months after her last treatment, she
remained asymptomatic with no signs of recurrence (188).
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Alternatively, Campbell et al. tested the effectiveness of
PDT with verteporfin on nine patients with posteriorly located
amelanotic choroidal melanomas, one of which contained
a pigmented portion. The basal diameters of the tumors
ranged from 4 to 16mm and heights ranged from 1.3 to
5.7mm. Treatment was repeated until the melanoma adopted
a flat appearance or its height reached a stable end point.
Combination therapy resulted in complete tumor regression
with no recurrence in eight patients during a follow-up period
between 34 and 81 months. However, one case in this study
presented with two local recurrences, one at 21 months and the
other at 34 months (189). Similarly, O’Day et al. reported that
initial tumor regression was achieved in 36 of 41 (88%) patients
with choroidal amelanotic melanoma (no distant metastasis)
following an initial course of PDT. However, recurrent disease
occurred in 44% of these cases with a mean follow-up of
3.5 years. Moreover, primary treatment failure occurred in
12% of patients (190). Turkoglu et al. also examined the
effects of PDT on 12 patients with eye melanoma; 10 of
whom demonstrating amelanotic and two presented with a
lightly pigmented appearance. Results showed complete tumor
regression of small amelanotic choroidal melanoma in 67% of
patients at a mean of 5 years (191). Similarly, Fabian et al. (192)
reported PDT to be a safe and efficient treatment modality for
small pigmented posterior pole choroidal melanoma, achieving
short-term tumor control in 80% of patients by 6-month
follow-up after three PDT sessions. Cumulatively, these studies
suggest that PDT may be an effective therapy strategy for
choroid melanoma, with no major effect on visual acuity.
Alternatively, Sheleg demonstrated the effectiveness of Ce6-PDT
on skin metastases of pigmented melanoma (193). Above all,
PDT may induce tumor regression in a significant proportion
of melanoma.

Although PDT has proven to be relatively safe for use in
clinical treatment, minor side effects have been reported, the
most common of which is local swelling, pain, and a burning
sensation (194, 195). PDT may also elicit side effects such as skin
rash, as was reported in two patients with early gastric cancer
(196). Furthermore, PDT treatment of esophageal cancer may
cause mild esophageal stenosis (197). Nevertheless, an increasing
number of studies suggest that PDT appears to be a non-invasive,
relatively simple method that can be performed on an outpatient
basis. It has also demonstrated reproducible results in basal-cell
carcinoma, cervical intraepithelial neoplasia, and cervical human

papilloma virus (HPV) infection cases, while causing minimal
side effects (15, 198, 199).

FUTURE DIRECTIONS

Despite the efficacy of surgical treatment for early stage
melanoma, appropriate diagnosis of this condition is often
difficult, which causes delay in treatment. Melanoma is often
not diagnosed until intermediate or late stages, which translates
to poor prognosis, recurrence, and low survival rate. Therefore,
the discovery of new adjuvant treatments is an important and
valuable subject in the field of melanoma research.

PDT is a promising therapeutic strategy for tumor treatment.
Significant breakthroughs in basic research have indicated that
PDT can provide substantial benefits in the treatment of
advanced stage melanoma. Overall, this review has summarized
efficacy and resistance mechanisms of melanoma during PDT
treatment, and described new adjuvant therapeutic approaches.
The synthesis of new PSs that absorb NIR light may improve
the efficacy of PDT treatment. Moreover, PDT combined
with autophagy inhibitors, immunotherapy, or melanogenesis
inhibitors might be a better treatment to overcome melanoma
resistance and achieve better therapeutic effects. However,
for optimal safety and efficacy, it will be very important to
understand the molecular mechanisms of these combination
therapies. For example, tumor-derived exosomes induced by
PDT might be a double-edged sword for melanoma treatment.
At present, what we can definitely say is that further research on
ways to exploit PDT for melanoma treatment should continue to
be an important focus of future research.
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