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ABSTRACT

Detection of cancer-associated somatic mutations
has broad applications for oncology and precision
medicine. However, this becomes challenging when
cancer-derived DNA is in low abundance, such as in
impure tissue specimens or in circulating cell-free
DNA. Next-generation sequencing (NGS) is particu-
larly prone to technical artefacts that can limit the
accuracy for calling low-allele-frequency mutations.
State-of-the-art methods to improve detection of low-
frequency mutations often employ unique molecu-
lar identifiers (UMIs) for error suppression; however,
these methods are highly inefficient as they depend
on redundant sequencing to assemble consensus
sequences. Here, we present a novel strategy to en-
hance the efficiency of UMI-based error suppression
by retaining single reads (singletons) that can par-
ticipate in consensus assembly. This ‘Singleton Cor-
rection’ methodology outperformed other UMI-based
strategies in efficiency, leading to greater sensitivity
with high specificity in a cell line dilution series. Sig-
nificant benefits were seen with Singleton Correc-
tion at sequencing depths ≤16 000×. We validated
the utility and generalizability of this approach in a
cohort of >300 individuals whose peripheral blood
DNA was subjected to hybrid capture sequencing
at ∼5000× depth. Singleton Correction can be in-
corporated into existing UMI-based error suppres-
sion workflows to boost mutation detection accu-

racy, thus improving the cost-effectiveness and clin-
ical impact of NGS.

INTRODUCTION

High-throughput sequencing technologies have revolution-
ized genetic and biomedical research by uncovering alter-
ations responsible for the development of disease. Although
considerable progress has been made toward germline and
somatic variant detection, identification of variants at lower
allele frequencies remains hindered by sequencing errors
and technical artefacts. This has numerous implications in
oncology, particularly in liquid biopsy applications, where
tumour DNA fragments may be present at frequencies
<0.01% (1,2). Sensitive detection is difficult in these scenar-
ios as sequencer error rates average ∼0.1–1% (3,4).

A promising strategy to suppress errors uses unique
molecular identifiers (UMIs) to compare multiple reads de-
rived from the same DNA fragment (Figure 1A) (5–7). Er-
rors that are found in individual reads are removed, and
only variants present across all redundant reads are retained
to form a single-strand consensus sequence (SSCS). In ad-
dition, strand-aware duplex correction is needed to elimi-
nate artefacts from oxidative damage; duplex consensus se-
quences (DCSs) retain only true variants found on both
strands of a fragment by comparing complementary SSCSs
(Figure 1A) (8–10). While duplex methods allow for greater
error suppression (Supplementary Figure S1), the efficiency
of DCS recovery from SSCSs is poor (15–47%, Figure 1B)
and reliant on sequencing coverage (Supplementary Figure
S2).

A major limitation of current UMI-based error correc-
tion methods is the dependence on redundant sequencing

*To whom correspondence should be addressed. Tel: +1 416 946 2132; Fax: +1 416 946 6561; Email: scott.bratman@rmp.uhn.ca
Correspondence may also be addressed to Trevor J. Pugh. Tel: +1 416 581 7689; Fax: +1 416 581 7430; Email: trevor.pugh@utoronto.ca
Present addresses:
Scott V. Bratman, MaRS Centre, 101 College Street, Princess Margaret Cancer Research Tower, Room 13-305. Princess Margaret Cancer Centre, University Health
Network, Toronto, ON M5G 1L7, Canada.
Trevor J. Pugh, MaRS Centre, 101 College Street, Princess Margaret Cancer Research Tower, Room 9-305. Princess Margaret Cancer Centre, University Health
Network, Toronto, ON M5G 1L7, Canada.

C© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-8073-5888
http://orcid.org/0000-0001-8610-4908


e87 Nucleic Acids Research, 2019, Vol. 47, No. 15 PAGE 2 OF 11

(11). This results in poor efficiency with low yield of unique
sequences despite high sequencing costs. These inefficien-
cies are further magnified in duplex UMI methods, where
both strands of a molecule must be redundantly sequenced
(8–10). This is problematic, as uneven sequencing often
arises from amplification biases, stochastic sampling, and
inadequate coverage (11–13). These factors limit the appli-
cability of duplex correction to only 0.5–2.5% of sequenced
reads (Figure 1B). Furthermore, current UMI-based strate-
gies do not utilize error suppression for single reads (sin-
gletons) that have not been redundantly sequenced. This is
detrimental as singletons may account for over half of all
reads in a moderately deep sequenced sample (defined as
∼1000×–10 000× coverage in this study).

To address these limitations, we developed a ‘Singleton
Correction’ methodology that enables error suppression in
singletons (Figure 1A). By utilizing the large number of
singletons present in hybrid capture deep sequencing data,
Singleton Correction allows dramatically more sequences
to be corrected. Unlike traditional UMI methods that are
restricted to redundant reads, our method also eliminates
errors in singletons using reads from the complementary
strand. Here, we analyzed a combination of cell line and
clinical samples and found that Singleton Correction con-
sistently improved the efficiency of traditional duplex cor-
rection methods and increased sensitivity while maintaining
high specificity for calling low-allele-frequency variants.

MATERIALS AND METHODS

Targeted panel design

We constructed hybrid capture panels targeting genomic
footprints representing two different experimental strate-
gies. A 13 kb panel we named ‘SmallDeep’ was intended
for ultra-deep sequence coverage and encompassed exons
of five genes (KRAS, NRAS, BRAF, EGFR and PIK3CA)
important in the mitogen-activated protein kinase (MAPK)
pathway. We have previously used this panel for cell-free
DNA sequencing analysis in multiple myeloma (14). A 1.2
Mb panel we named ‘LargeMid’ was intended for moder-
ately deep sequence coverage and encompassed exons from
260 leukemia associated genes (xGen® Acute Myeloid
Leukemia Cancer Panel, IDT). We have previously used
this panel for the identification of pre-leukemic mutations
in peripheral blood leukocytes of individuals who later de-
veloped acute myeloid leukemia (15).

Cell line dilution series

To evaluate analytical performance of mutational profiling,
we created cell line dilution series using sheared genomic
DNA from cancer cell lines with known genetic alterations
to emulate varying levels of mutant allele frequencies (Sup-
plementary Table S1). The source of cell line genomic DNA
was as follows: MOLM13 was obtained from DSMZ, SW48
was obtained from ATCC, HCT116 was a kind gift of Dr
Daniel De Carvalho, and MM1S was obtained from Dr
Rodger Tiedemann. For LargeMid, we performed a dilu-
tion series at ratios of 1/5 in duplicate from 5% to 0.04%
(six dilution points including 100% and 0% levels, n = 2 li-
braries per dilution point, total of 12 libraries). For Small-

Deep, we used a dilution series at ratios of 1/10 from 1:1 to
1:106 (eight dilution points including 100% and 0% levels, n
= 1 library per dilution point, total of eight libraries).

Next-generation sequencing library preparation

Illumina-compatible next-generation sequencing (NGS) li-
braries were prepared for each dilution point from ge-
nomic DNA. Briefly, 60–100 ng DNA was sheared before
library construction using a Covaris M220 sonicator (Co-
varis, Woburn, MA, USA) to attain median fragment sizes
of 180–250 bp. The DNA libraries were constructed using
the KAPA Hyper Prep kit (#KK8504, Kapa Biosystems,
Wilmington, MA, USA) with custom adapters containing 2
bp in-line duplex unique molecular identifiers (UMIs, Sup-
plementary Tables S2 and S3). Following end repair and
A-tailing, we performed adapter ligation overnight using
100-fold molar excess of adapters. Agencourt AMPure XP
beads (Beckman-Coulter) were used for library clean up
and ligated fragments were amplified between 4 and 8 cy-
cles using 0.5 �M Illuminal universal and sample-specific
index primers.

Target capture and sequencing

Indexed Illumina libraries were pooled together in a single
capture hybridization (Supplementary Table S1). Following
the IDT Hybridization capture protocol, each pool of DNA
was combined with 5 �l of 1 mg Cot-I DNA (Invitrogen)
and 1 nmol each of xGen Universal Blocking Oligo (Inte-
grated DNA Technologies, Coralville, IA, USA) to prevent
cross hybridization and minimize off-target capture. Sam-
ples were dried and re-suspended in hybridization buffer
and enhancer. Target capture with custom xGen Lock-
down Probes (Integrated DNA Technologies, Coralville,
IA, USA) was performed overnight. Streptavidin-coated
magnetic beads were used to isolate hybridized targets ac-
cording to manufacturer’s specifications. Captured DNA
fragments were amplified with 10–15 cycles of PCR. Pooled
libraries were sequenced using 100–125 bp paired-end runs
on Illumina platforms (HiSeq v3 2000, HiSeq 2500) at the
Princess Margaret Genomics Centre (www.pmgenomics.
ca). NGS libraries for SmallDeep and LargeMid were se-
quenced to an average of 186 312× and 4223× target cov-
erage, respectively (see QC metrics in Supplementary Table
S1).

Data preprocessing

Sequencing reads were de-multiplexed using sample-specific
indices followed by removal of the first 3 bp of each read,
as these correspond to the 2 bp UMI and single T in-
variant spacer sequence necessitated for ligation. Reads
without the invariant T sequence were discarded as they
were not compliant with this design. The extracted UMIs
from paired-end reads were grouped and written into the
FASTQ sequence identifier header of each read for down-
stream in silico molecular identification. FASTQ files were
mapped to the human reference genome hg19 using BWA (v
0.7.12) (16), processed using the Genome Analysis ToolKit
(GATK) IndelRealigner (v 3.4-46) (17), and sorted by

http://www.pmgenomics.ca
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genome position and indexed using SAMtools (v 1.3) (18).
This process created sorted BAM files containing sequence
alignment data.

Barcodes used in UMIs

Short oligonucleotide barcodes have the benefit of re-
duced cost for barcode synthesis and conservation of nu-
cleotide bases for biological DNA in short read sequenc-
ing. To characterize unique molecules, we utilized a 4 bp
barcode (comprised of a pair of 2 bp in-line UMIs on
the end of each fragment) in combination with four se-
quence features from paired-end reads: (i) genomic po-
sition, (ii) concise idiosyncratic gapped alignment report
(CIGAR), (iii) read orientation and (iv) read number. Hy-
bridization capture approaches have the benefit of catch-
ing a wide range of molecules with varying mapping posi-
tions, whereas amplicon-based methods capture fragments
with conserved positions. By utilizing the diverse genome
mapping locations of hybrid capture fragments, shorter bar-
codes can be employed in combination for unique molecu-
lar identification (10).

Analysis of single strand UMIs

Using our UMIs, reads derived from the same strand of
a molecule were condensed into single strand consensus
sequences (SSCS). First, a filter was applied to exclude
reads which were unmapped, paired with an unmapped
mate, or had multiple alignments. Paired reads were as-
signed UMIs as described above using barcode, genome
mapping, CIGAR string, strand of origin, orientation, and
read number information. Reads sharing the same UMIs
were grouped into the same read family. Only families with
2 or more members were error suppressed and collapsed to
form SSCSs as following:

• For each position across a sequence length, a Phred qual-
ity threshold of Q30 was enforced for every read (only
bases with an error probability of one in a thousand or
less (>Q30) were evaluated for consensus formation).

• The most frequent base at each position across all repli-
cate reads of the same molecule was established as the
consensus. The most common base was assigned if the
proportion of reads representing that base was greater
than or equal to the threshold required to confidently call
a consensus (default cutoff 0.7––based on previous liter-
ature (9)), otherwise an N was assigned.

• As each SSCS represents multiple reads derived from the
same strand of a unique fragment, a consensus query
name was assigned to each SSCS pair. Similar to our
UMIs, the pairing tag consists of a barcode along with
four sequence features: (i) genome mapping ordered by
coordinate, (ii) strand of origin inferred from read orien-
tation and number, (iii) CIGAR string ordered by strand
of origin and read number and (iv) read family size (num-
ber of reads supporting SSCS).

Singleton correction

We developed two approaches for Singleton Correction us-
ing the duplex nature of DNA molecules for elimination of

technical artefacts. Following the formation of SSCS, sin-
gletons were grouped with their complementary SSCS for
(i) Singleton Correction by SSCS. If a complementary SSCS
could not be identified, single reads were paired with their
complementary singleton for (ii) Singleton Correction by
singletons. Through this step-wise approach, reads corre-
sponding to the dual strands of a template molecule were
used to perform Singleton Correction as following:

• UMIs were assigned to singleton and SSCS reads. For
each singleton, a duplex identifier was determined by in-
terchanging barcodes and switching the read number. If
R1 and R2 on a positive strand had AC/GT as barcodes,
their duplex barcodes would be GT/AC on the minus
strand. R1 in the forward orientation on the plus strand
corresponds to R2 in the forward orientation on the mi-
nus strand.

• Singleton Correction was achieved using either a com-
plementary (i) SSCS or (ii) singleton corresponding to
the opposite DNA strand. For each base, a Phred quality
filter of Q30 was enforced to remove error prone bases.
Consensus sequences were established by taking concor-
dant bases at each position and assigning Ns for mis-
matches.

• Error suppressed singleton pairs were assigned a consen-
sus query name as described above for SSCS reads.

Recovered singleton were written to separate BAM files
depending on method of correction (i.e. Singleton Correc-
tion by SSCS or Singleton Correction by singletons). They
were subsequently merged with SSCS reads for downstream
duplex formation.

Analysis of duplex barcodes

For optimal error suppression, duplex consensus sequences
(DCS) can be established by condensing SSCSs that origi-
nated from opposite/complementary strands of a template
DNA molecule. This second layer of duplex error suppres-
sion eliminates asymmetric strand artefacts. DCSs were es-
tablished by preserving matched bases between reads from
complementary strands. Although DCSs have the lowest
rates of error, they only depict a portion of the total molec-
ular population. To portray accurate molecular representa-
tion for variant calling, a BAM file containing all unique
molecules was created by combining DCS, SSCS (without
duplex pair), and uncorrected singletons.

Error analysis

We determined base substitution (error) rates using the
integrated digital error suppression (iDES) tool (https://
cappseq.stanford.edu/ides/download.php#bgReport) (10).
BAM files were first converted to base frequency files for
each genomic position using ides-bam2freq.pl. With the
ides-bgreport.pl, background errors were calculated using
non-reference bases <5% allele frequency with at least one
read support. Error rates were determined as the number of
non-reference bases over all sequenced bases within our tar-
geted panel. We evaluated error rates at each step of error
correction.

https://cappseq.stanford.edu/ides/download.php#bgReport
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Recovery efficiency

Efficiency of consensus formation reflects the frequency of
consensus sequences generated per read. This is determined
by the average number of reads needed to construct a con-
sensus sequence. For example, an efficiency rate of 10% in-
dicates each read contributes to 0.1 of a consensus sequence,
or 10 reads are needed to form a single consensus sequence.

In order to compare targeted panels of different sizes, effi-
ciency rates were calculated using the mean target coverage
(cov). GATK (v 3.6) DepthOfCoverage was used to deter-
mine mean fragment coverage per target position. Notably,
we performed fragment counting as it considers overlapping
reads as a single entity rather than double-counting those
reads:

Efficiency =
cov(DCS or SSCS)

covuncollapsed

As DCS formation is dependent on the number of SSCS
and corrected singletons, DCS recovery rates were esti-
mated by comparing observed over expected rates:

RecoveryDCS = observedDCS
expectedDCS

= covDCS(
CovSSCS

2

)

Comparison of previous UMI methods

Error rates (Supplementary Figure S1) and efficiency rates
(Figure 1B) of previous methods were obtained as follows:
Schmitt et al. error rates were reported in the text and effi-
ciency rates were derived from Supplementary Table S1 (8),
Kennedy et al. efficiency rates were obtained from Supple-
mentary Table S1 (9), Schmitt et al. error rate and DCS ef-
ficiency rate (duplex nucleotides/(reads × (101 – 17)) were
derived from Supplementary Table S2 (19), Newman et al.
error rates were reported in text and efficiency rates were ap-
proximated from Supplementary Figure S8 (10). Efficiency
rates were calculated with the equation described under ‘Re-
covery efficiency’, unless otherwise specified.

In silico downsampling

To compare hybrid capture panels of different sizes se-
quenced to various depths, we performed downsampling of
sequencing coverage for each sample. We chose nine inter-
vals ranging between 128 000× and 500× coverage. Each
sample was reduced to the set intervals through in silico
downsampling of paired-end reads with Samtools (v 1.3).
This process was repeated 10 times for each sample across
all intervals to address sampling biases. Each downsampled
file was then processed through our barcoding pipeline to
generate individual BAM files for singletons, SSCS, DCS,
Singleton Correction by SSCS, and Singleton Correction
by singletons. Corrected singletons were merged with SSCS
to generate SSCS (SC) for downstream formation of DCS
(SC). Efficiency for consensus formation and molecular
recovery was assessed for each error suppression strategy
across the broad range of coverage intervals.

Cell line dilution mutation analysis

To assess the sensitivity and specificity of UMI-based er-
ror suppression utilizing Singleton Correction, we analyzed
mixed cancer cell lines diluted in 1/5 fractions across two
technical replicates (Supplementary Table S4). We focused
our analysis on the LargeMid library to evaluate the im-
pact of Singleton Correction as the ultra-deeply sequenced
SmallDeep contained very few singletons. For sensitivity,
we evaluated single nucleotide polymorphisms correspond-
ing to the MOLM13 cell line spiked into the dilution se-
ries. We curated a list of heterozygous (40–60% AF) and
homozygous (>95% AF) single nucleotide polymorphisms
(SNPs) overlapping the targeted panel that were not present
in the background cell line above 1% AF. There were 222
SNPs common between technical replicates with four SNPs
identified only in one of the replicates as a result of our AF
thresholds. Variant calls were generated for each sample us-
ing Varscan2 (v. 2.4.2) (20). We calculated sensitivity using
the list of candidate SNPs across uncollapsed and consensus
reads. When assessing specificity, we bootstrapped 222 po-
sitions across the 1.2 MB targeted panel excluding sites with
potential variants from both cell lines. To prevent inflation
of errors, we excluded regions with poor alignability scores
(obtained from ENCODE). We enumerated false positives
within randomly sampled positions across 1000 iterations
to evaluate specificity.

Analysis of patient samples

In our analysis, we selected samples reported to have pu-
tative driver mutations of acute myeloid leukemia (AML)
(Abelson et al. Supplementary Table S2.1) and healthy age-
and sex matched controls. We obtained 291 BAM files of pe-
ripheral blood leukocyte samples from Abelson et al. (15).
In addition, we received 10 BAM files of umbilical cord
blood samples with hybrid capture using the same 1.2 Mb
leukemia panel (xGen® Acute Myeloid Leukemia Cancer
Panel, IDT) sequenced to similar depths as the peripheral
blood samples. UMIs were previously extracted and ap-
pended to the query name of each file. The BAM files were
aligned with BWA mem to the Genome Reference Consor-
tium Human build 37 (GRCh37).

The 10 umbilical cord blood samples were obtained from
Trillium Hospital (Mississauga, Ontario, Canada) with in-
formed consent in accordance to guidelines approved by
the University Health Network Research Ethics Board.
Cord blood was processed 24–48 h post-delivery. Mononu-
clear cells were enriched using Ficoll-Paque followed by
red blood cells lysis by ammonium chloride and CD34+
selection prior to DNA extraction. 100 ng genomic DNA
from the umbilical cord blood samples was used for li-
brary preparation and target capture sequencing as de-
scribed above.

We processed the reads using our duplex UMI method
with or without Singleton Correction. We carried out con-
sensus efficiency and error rate as described above. To assess
variant detection performance, we used 391 pre-leukemic
mutations reported by Abelson et al. as a gold standard
list (Supplementary Table S2.1, excluding one mutation that
was not present in our BAM files). Files were analyzed to
detect single nucleotide variants (SNVs) and small indels
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using Varscan2 (20). We calculated sensitivity using the 391
pre-leukemic mutations and the 224 samples (67 samples
from pre-AML individuals and 157 samples from age- and
sex-matched controls) in which they were reported. Addi-
tionally, we assessed specificity using the 391 pre-leukemic
mutations in all 301 samples, excluding reported mutations
from Abelson et al. Specificity was similar when only con-
sidering a subset (77) of the 301 samples, including the 10
umbilical cord blood samples and 67 control samples not
found to have pre-leukemic mutations by Abelson et al.
(Supplementary Table S5).

RESULTS

Low efficiency consensus sequence assembly with traditional
UMI methods

To assess the potential impact of Singleton Correction
across diverse datasets, we first calculated important met-
rics of consensus sequence assembly from prior landmark
studies that used traditional UMI methods (Figure 1) (8–
10). This revealed critical inefficiencies in constructing SS-
CSs (efficiency ≤ 25%) and DCSs (efficiency ≤ 2.5%) when
singletons are excluded. To confirm this using newly gen-
erated data, we performed hybrid capture NGS on can-
cer cell line genomic DNA with either a large panel se-
quenced to moderately deep coverage (LargeMid; 1.2 Mb
panel, 4223× average depth) or a small panel sequenced to
ultra-deep coverage (SmallDeep; 13 kb panel, 186 312× av-
erage depth). With two or more redundant reads required to
construct a consensus sequence, only two-thirds of all reads
in LargeMid qualified for traditional error suppression; this
corresponded to a 25% SSCS efficiency rate and 2% DCS
efficiency rate (Figure 1B). Since two SSCSs are required
to form a DCS, theoretically we expect the maximum fre-
quency of DCS recovery to be half of total SSCSs. However,
only 15% of the expected DCSs were observed in LargeMid,
and the more deeply sequenced libraries had only modest
gains in DCS recovery (SmallDeep and (8–10)).

Singleton Correction augments consensus sequence assembly
efficiency

We reasoned that the low consensus efficiency and DCS re-
covery rates observed with traditional UMI methods could
be attributed to the high rate of singletons. Indeed, when
Singleton Correction was applied to the LargeMid dataset,
efficiency increased to 33% for SSCS and 9% for DCS. This
improvement in efficiency of consensus sequence assembly
resulted in a 3.6-fold increase in DCS recovery (53%) com-
pared to traditional duplex UMI methods. In contrast to
the LargeMid dataset, the vast majority (98.7%) of reads in
the SmallDeep dataset contributed to consensus sequences.
With so few singletons available in SmallDeep, Singleton
Correction had a negligible impact on SSCS and DCS for-
mation (Figure 1B).

High quality error suppression using singletons

We next evaluated the quality of the singletons that par-
ticipated in Singleton Correction to assess their suitabil-
ity for error suppression. Singleton Correction reduced the

per-base error rate of singletons by 25-fold from 0.028% to
0.0011% (Figure 2A). Error rates in DCSs augmented by
Singleton Correction were comparable to traditional DCSs
in our datasets (Figure 2 and Supplementary Figure S3) and
those from previous reports (8–10,19) (Supplementary Fig-
ure S1). This suggests high quality error suppression can
be achieved using singletons, challenging the fundamental
notion of requiring redundant reads for correction in tradi-
tional UMI-based methods.

Influence of sequencing depth on the impact of Singleton Cor-
rection

Since we observed a much greater effect of Singleton Cor-
rection on consensus efficiency and DCS recovery in the
LargeMid dataset compared with the SmallDeep dataset,
next we formally assessed the influence of sequencing depth
on the impact of Singleton Correction. We performed
downsampling of SmallDeep and LargeMid sequencing
reads to achieve sequencing depths between 500× and 128
000× and then applied consensus assembly with or with-
out Singleton Correction. Both SmallDeep and LargeMid
displayed similar trends in consensus efficiency and recov-
ery with a greater proportion of singletons corrected as se-
quencing depth increased (Figure 3A–D). Peak Singleton
Correction rate occurred at 8000× depth, where 21% of
singletons were corrected. This high rate was nearly main-
tained up to 16 000×, but at ≥32 000× a smaller pro-
portion of singletons underwent Singleton Correction, sug-
gesting an increased prevalence of duplicate reads. Analy-
sis of SSCSs revealed consistent trends, with decreased effi-
ciency beyond 8000× depth, indicating saturation of unique
molecules with duplicate reads (Figure 3B). While Single-
ton Correction contributed only minor improvements to
SSCS efficiency, DCS efficiency improved >2-fold at se-
quencing depths where singletons were abundant (Figure
3C). Furthermore, Singleton Correction enhanced DCS re-
covery at every coverage interval we sampled (Figure 3D).
Thus, Singleton Correction ameliorated the inefficiencies of
traditional UMI methods and achieved optimal recovery of
DCSs across a wide range of sequencing depths. The over-
all impact of Singleton Correction was muted at ≥32 000×
depth due to saturation of unique molecules in the dataset.

Increasing sensitivity with Singleton Correction

Next, we compared the detection of 222 high-confidence
germline variants from the MOLM13 cell line not found in
SW48 (LargeMid dataset) using duplex UMI methods with
and without Singleton Correction (Supplementary Figure
S4A). Using mixed cancer cell lines, we emulated varying
levels of mutation variant allele frequencies at 5-fold dilu-
tions from 100% to 0.04% MOLM13 (Supplementary Fig-
ure S4B). Across all the dilutions, uncollapsed reads had the
highest sensitivity (58–100%) and the lowest specificity (62–
66%). Likewise, SSCSs displayed greater sensitivity than
DCSs at the expense of reduced specificity (∼97%). Al-
though the inclusion of Singleton Correction resulted in
minimal difference for SSCS, DCS sensitivity increased on
average by 18% without a detriment in specificity (∼99.5%).
At 0.04% MOLM13, the lowest dilution point, Singleton
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A

B SSCS efficiency = SSCS / total reads DCS efficiency = DCS / total reads DCS recovery = DCS / (SSCS / 2)
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Figure 1. Singleton Correction improves traditional duplex UMI methods. (A) Singleton correction (SC) can be achieved through two strategies. (i) In
the absence of redundant reads, singletons derived from complementary strands can be used to correct one another for SC by Singletons. (ii) If PCR
duplicate reads are present only for one strand, they are first collapsed to form a single strand consensus sequence (SSCS). This can be subsequently used
to correct the singleton of the complementary strand for SC by SSCS. Uncollapsed reads are not an accurate representation of molecular diversity and
contain polymerase, sequencer, and oxidation errors. Traditional UMI methods of error suppression are restricted to molecules with redundant reads.
Singleton Correction expands error suppression to duplex-matched singletons and enables error correction for a greater number of reads. (B) Comparisons
of traditional duplex UMI methods from the indicated publications (8–10) and from this study (LargeMid, n = 12 libraries; SmallDeep, n = 8 libraries).
Plot shows SSCS and duplex consensus sequence (DCS) efficiency and recovery for methods with traditional duplex UMI processing or with Singleton
Correction. Efficiency is an assessment of over-sequencing relative to unique molecules, whereas recovery is an estimate of molecular retention after
sequencing. Data are presented as mean ± S.D.

Correction produced an 8-fold increase in DCS sensitiv-
ity from 0.68% to 5.63% (Figure 4A, B). These results
demonstrate the potential of Singleton Correction for high-
confidence detection of low-frequency variants.

Validation of Singleton Correction performance in clinical
samples

To investigate the impact of Singleton Correction in clini-
cal samples, we next applied our method to a large study
on pre-leukemia mutation detection from peripheral blood
(15). Peripheral blood genomic DNA samples from 301 in-
dividuals were sequenced using the 1.2 Mb LargeMid panel
to an average depth of 4746× (Figure 5A). This cohort con-
sisted of 67 pre-leukemia patients and 224 age- and sex-
matched individuals (controls) (15) as well as 10 umbili-
cal cord blood samples that served as additional controls.

Across the entire cohort, over half of all sequenced reads
were unique molecules (singletons) with the remainder com-
prised of duplicate reads. With a traditional UMI correc-
tion method, the efficiency rate was on average 24% for
SSCSs and 1% for DCSs (Figure 5B). Singleton Correc-
tion increased efficiency by 8% in SSCS and 6% in DCS
and increased duplex recovery by 4-fold from 9.6% to 42%.
We again observed a positive correlation between Single-
ton Correction and sequencing depth (Supplementary Fig-
ure S5A). Furthermore, we found consistent efficiency rates
with the LargeMid cell line dilution experiment that em-
ployed a similar sequencing depth.

Singleton Correction expanded the number of reads cor-
rected without inflating the overall error rate in patient sam-
ples. With a traditional UMI correction method, error rates
were 0.01% in SSCSs and 0.0005% in DCSs. Our method
reduced the error rate within singletons to 0.0007%, which
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was comparable to the DCS error profile (Figure 6A) and to
the cell line findings (Figure 2). Error substitution profiles
reflected a signature of oxidative damage in reads without
duplex correction (21). Notably, the characteristic imbal-
ance between G>T and C>A substitutions was eliminated
in singletons that underwent Singleton Correction (Figure
6B, Supplementary Figure S5B). These results validate our
findings from cell lines and indicate that Singleton Correc-
tion is a generalizable approach that can improve the per-
formance of UMI-based techniques in clinical samples.

Detection of low-allele-frequency variants in clinical samples

We next evaluated the effect of Singleton Correction on mu-
tation detection accuracy in this cohort of clinical samples.
Using 391 putative driver mutations of AML from Abel-
son et al. (Supplementary Figure S6A), we assessed sensi-
tivity and specificity of duplex UMI methods. Within the
different consensus data types, we evaluated performance
across a range of variant count thresholds between 1 and
30; variant counts were used as opposed to variant allele
fractions because of the skewed (overestimated) distribution
of variant allele fractions often present within consensus
sequences (Supplementary Figure S6B). Of the consensus
data types, the aggregate of all unique molecules (i.e. merged

DCSs, SSCSs and singletons) had the highest sensitivity but
also low specificity due to inclusion of uncorrected single-
tons (Figure 6C). While traditional DCS had near perfect
specificity without any additional filtering, sensitivity was
less than half of SSCS. Singleton Correction improved sen-
sitivity of DCS by 39% while maintaining specificity >99%.

DISCUSSION

The ability to detect low-allele-frequency variants with
high-throughput sequencing technologies is dictated by the
quantity of template DNA molecules, sequencing depth,
and level of technical artefacts. Effective error suppression
strategies are needed as errors determine the threshold at
which true genetic variants can be discerned from false pos-
itives. False positive mutation calls are particularly prob-
lematic when the analysis space spans many thousands of
bases, as is the case for some commercial sequencing ser-
vices (32–34). Methods reported to date have not been ca-
pable of achieving high accuracy mutation detection at low
thresholds without ultra-deep sequencing and/or sacrific-
ing template DNA molecules, or without the use of large
control cohorts for modeling background error rates (10).
In this study, we present an enhanced UMI-based error cor-
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Figure 6. Error suppression and detection of low-frequency variants in clinical samples. (A, B) Selector-wide error rates and substitution profiles across
reads with varying levels of error correction. Consensus sequences from a traditional UMI approach are compared with those derived from Singleton
Correction. (C) Sensitivity and specificity of SNV calls at variant count thresholds from 1 to 30 for 391 putative driver mutations of acute myeloid leukaemia
from the original study by Abelson et al. (15). Sensitivity was assessed in 224 samples in which the 391 mutations were reported. Additionally, we assessed
specificity using the 391 mutations in all 301 samples, excluding exact matches from Abelson et al.

rection methodology aimed at addressing these important
limitations.

Traditional UMI-based error correction methods require
deep sequencing to achieve multiple redundant reads from
the same template DNA molecule. For instance, Duplex Se-
quencing creates high quality DCSs with exceedingly low er-
ror rates but at the expense of inefficient processes leading to
critical losses of template DNA molecules (14,15,18). Here,
we demonstrate that Singleton Correction is a powerful ex-
tension for UMI-based error correction because it enables
high quality error suppression across a greater number of
reads. Indeed, through Singleton Correction we found that
the benefits of duplex UMI methods can be extended to sin-
gletons, and therefore these reads no longer need to be cat-
egorically excluded from error suppression procedures (8–
10,22). As a result, Singleton Correction results in higher
consensus sequence efficiency and recovery compared to
traditional methods.

Singleton Correction can be incorporated into any du-
plex UMI method (6,8–10,19). We used custom duplex
UMI-containing adapters and sequenced on an Illumina
platform, but other commercial and custom implementa-
tions of duplex UMIs for Illumina and alternative sequenc-
ing platforms would also benefit by incorporating Singleton
Correction. We found the greatest benefit in hybrid capture
NGS datasets with sequencing depths ≤16 000×. Ampli-
con NGS datasets would be expected to benefit less, since
they generally contain fewer singletons compared with hy-
brid capture NGS.

Despite the gains in DCS recovery achieved using Sin-
gleton Correction compared with traditional UMI meth-

ods, still 40–50% of expected DCSs were not recovered. This
could be explained by losses that are known to occur during
upstream library preparation and sequencing (23), which
cannot be completely overcome through over-sequencing or
Singleton Correction. Further innovations in library prepa-
ration and/or sequencing methodologies may be required
to realize even greater improvements in DCS recovery.

Based on our data, an important benefit of incorporating
Singleton Correction is an increase in sensitivity for detect-
ing low-frequency variants without compromising speci-
ficity. We confirmed this result using both a cell line dilution
series as well as a large cohort of clinical samples that in-
cluded individuals with pre-AML and/or age-related clonal
hematopoiesis. High specificity is particularly important for
noninvasive genotyping or screening applications (24), for
instance in the setting of early detection of AML in oth-
erwise healthy individuals (15), as false positive results may
lead to unnecessary procedures and distress. Taken together,
our results will inform future prospective studies in which
NGS is conducted on peripheral blood or circulating DNA
for early cancer detection and for other applications in on-
cology and precision medicine.
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