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Comparison of genome-wide association and genomic prediction 
methods for milk production traits in Korean Holstein cattle
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Objective: The objectives of this study were to compare identified informative regions through 
two genome-wide association study (GWAS) approaches and determine the accuracy and 
bias of the direct genomic value (DGV) for milk production traits in Korean Holstein cattle, 
using two genomic prediction approaches: single-step genomic best linear unbiased prediction 
(ss-GBLUP) and Bayesian Bayes-B.
Methods: Records on production traits such as adjusted 305-day milk (MY305), fat (FY305), 
and protein (PY305) yields were collected from 265,271 first parity cows. After quality control, 
50,765 single-nucleotide polymorphic genotypes were available for analysis. In GWAS for 
ss-GBLUP (ssGWAS) and Bayes-B (BayesGWAS), the proportion of genetic variance for each 
1-Mb genomic window was calculated and used to identify informative genomic regions. 
Accuracy of the DGV was estimated by a five-fold cross-validation with random clustering. 
As a measure of accuracy for DGV, we also assessed the correlation between DGV and de
regressed-estimated breeding value (DEBV). The bias of DGV for each method was obtained 
by determining regression coefficients.
Results: A total of nine and five significant windows (1 Mb) were identified for MY305 using 
ssGWAS and BayesGWAS, respectively. Using ssGWAS and BayesGWAS, we also detected 
multiple significant regions for FY305 (12 and 7) and PY305 (14 and 2), respectively. Both 
single-step DGV and Bayes DGV also showed somewhat moderate accuracy ranges for 
MY305 (0.32 to 0.34), FY305 (0.37 to 0.39), and PY305 (0.35 to 0.36) traits, respectively. The 
mean biases of DGVs determined using the single-step and Bayesian methods were 1.50±0.21 
and 1.18±0.26 for MY305, 1.75±0.33 and 1.14±0.20 for FY305, and 1.59±0.20 and 1.14±0.15 
for PY305, respectively.
Conclusion: From the bias perspective, we believe that genomic selection based on the 
application of Bayesian approaches would be more suitable than application of ss-GBLUP 
in Korean Holstein populations.
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INTRODUCTION

High production ability has been used for primary selection in dairy breeding schemes. In 
particular, milk yield, fat yield, and protein yield are the most important economic traits for 
dairy cattle selection. To date, genetic improvement of these economic traits has been per
formed successfully based on traditional best linear unbiased prediction (BLUP), and the 
breeding values of economic traits have been applied with selection indices in Korean dairy 
breeding systems. The BLUP used in combination with individual records and estimated 
breeding value (EBV) has resulted in considerable genetic progress in the dairy industry 
[1]. In recent years, however, genomic information in the form of commercial single-nucleo-
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tide polymorphic (SNP) marker panels from various companies 
(i.e., Illumina, San Diego, CA, USA; Neogen-GeneSeek, Lin-
coln, NE, USA; and Affymetrix, Santa Clara, CA, USA) have 
become available for genetic evaluations, as a consequence 
of improvements in genotyping technology and statistical 
methods after introduction by Meuwissen et al [2] in 2001. 
Accordingly, genomic prediction using genotypic data has 
been widely applied for various livestock. 
  Genomic selection (GS) involves selection of bulls based on 
genomic breeding values, which are derived from the com-
bination of EBVs and direct breeding values (DGVs) based 
on SNPs using several blending formulae [3,4] or single-step 
methods (e.g., single-step genomic best linear unbiased pre-
diction [ss-GBLUP]) [5] and single-step super hybrid model 
[6]). The advantages of GS are simplicity and resistance to pre-
selection bias [7,8] and more reliable prediction than traditional 
BLUP [1,9,10]. When GS schemes are applied in the field, the 
use of young bulls should be the most effective in terms of 
reliability. For example, in young Holstein bulls in the United 
States, reliabilities for predicted transmitting abilities for milk 
yield based on genomic information ranged from 73% to 79% 
[11].
  Typically, there are two approaches to performing GS. The 
first method is multiple-step GS. In step 1 of this method, 
pseudo-phenotypes (i.e., EBV or deregressed-EBVs), which 
include information related to genotyped and ungenotyped 
animals, are calculated for the genotyped animals; in step 2, 
DGV is calculated using the pseudo-records and genotyped 
data (i.e., Bayesian and GBLUP approaches); and in step 3, the 
traditional EBV and DGV are combined into genomic-en-
hanced EBVs (GE-EBVs). The second method is ss-GBLUP. 
To construct a blended relationship matrix (H-matrix) [5] 
using ss-GBLUP, a numeric relationship matrix (NRM) is 
replaced with a genomic relationship matrix (GRM) and then 
these can be blended with an NRM [10]. In ss-GBLUP, the 
accuracy obtained for milk yield is greater than that obtained 
using multiple-step GS [10]. However, a drawback of ss-GBLUP 
is that it cannot be applied to non-linear estimates, although 
some solutions to ss-GBLUP non-linear estimations have 
been presented in the literature [10].
  The objectives of this study were to compare identified 
informative regions through two different genome-wide asso-
ciation study (GWAS) approaches and assess the accuracy and 
bias of DGVs for milk production in Korean dairy cattle using 
genomic prediction approaches (i.e., ss-GBLUP and Bayesian).

MATERIALS AND METHODS 

Phenotypic data
Raw data for the period from 1998 to 2018 were obtained from 
data collected by the National Agricultural Cooperative Fed-
eration’s dairy cattle improvement center by way of its milk 

testing program, which is nationally based. The pedigree data 
for this analysis were obtained from the Korean Animal Im-
provement Association. Traits considered in this study were 
adjusted 305-day (d) milk yield (MY305), adjusted 305-d fat 
yield (FY305), and adjusted 305-d protein yield (PY305). The 
data set included records for Holstein cows in the first parity 
with full pedigree information and excluded records with ex-
treme milk production (MY305, <2,500 or >16,000 kg; FY305, 
<70 or >600 kg; and PY305, <80 or >500 kg), age at calving 
(<17 or >31 months). The final number of edited records was 
265,271. Table 1 shows the basic statistics of the data.

Genotypic data
Genotypic data were obtained using two SNP panels: Bo-
vineSNP50 v2 and BovineSNP50 v3 (Illumina Inc., USA). 
These two SNP panels were imputed to BovineSNP50 version 
3 using Fimpute version 2.2 [12]. After excluding unmapped 
SNPs and SNPs on sex chromosomes, the available number 
of SNP markers was 54,931. After performing marker quality 
control, genotypes at each locus were excluded based on the 
following criteria: average call rate lower than 0.90; minor allele 
frequency less than 0.01; markers not in Hardy–Weinberg 
equilibrium, with a chi-square value (χ2) greater than 95%; 
and SNPs in extreme linkage disequilibrium (LD, r2 >0.99). 
After editing, 50,765 SNP genotypes were available for anal-
ysis. Furthermore, genotyped animals were excluded from 
analysis based on the following criteria: duplicate animals, 
twin animals, and animals that failed parentage tests. Duplicate 
animals and twin animals were removed based on marker call 
rates. Furthermore, genotype identification that could not be 
matched to the corresponding animal in the phenotypic data 
set was removed from a total of 2,032 Holstein dairy cattle. 
Finally, for ss-GBLUP for all traits, the genotype data set com-
prised 1,919 animals, whereas for Bayes-B, the number of 
animals available for MY305, FY305, and PY305 was 963, 
943, and 946, respectively.

Statistical model
Genetic components, breeding values, and corresponding 
reliabilities of milk production traits were estimated using 
following mixed-model equation:
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 144 

Table 1. Basic statistics of milk composition

Traits N Mean SD Min Max

MY305 265,271 8,437.50 1,718.70 2,504 15,962
FY305 265,004 321.28 73.11 70 600
PY305 261,021 269.02 52.94 80 500

SD, standard deviation; MY305, adjusted 305-d milk yield; FY305, adjusted 305-d 
fat yield; PY305, adjusted 305-d protein yield.
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where yijk is the observation; HYSi is the fixed effect of the ith 
herd-year season; agej is the fixed effect of the jth calving age; 
ak is the random genetic effect of animal k; and eijk is the re-
sidual effect. Using a univariate animal model, the covariance 
between traits was assumed to be zero. In matrix notation, the 
statistical model with single traits was as follows:

  y = Xb+Za+e

where y is the matrix of observations for the traits; X and Z are 
the known incidence matrices for fixed and random effects; 
b is the vector of fixed effects; a is the vector of additive genetic 
effects for each animal, and e is the vector of the residual effect.
  Total phenotypic variance (
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may result in noise or underestimation due to the high ratio 
between the number of SNPs and the number of genotyped 
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animals [14], and adjacent SNPs may be in high LD with the 
same quantitative trait locus (QTL) in high-density SNP panels 
because the effect of the QTL would be spread over all SNPs 
in high LD [18]. For this reason, non-overlapping 1-Mb win-
dows, which is the proportion of genetic variance in each region 
consisting of a 1-Mb genome window, were calculated and 
used to identify informative genomic regions accounting for 
LD, which is more appropriate than using single SNPs.
  The significance level of the informative 1-Mb window re-
gion in ssGWAS and BayesGWAS was, respectively, 1.0% and 
0.5% of additive genetic variance, which was estimated as a 
portion of the total genetic variance explained by all SNPs. 

Accuracy of the direct genomic value 
To estimate the accuracy of DGVs, we applied five-fold cross-
validation with random clustering, whereby we set up training 
data sets, each of which was each constructed by masking the 
phenotype in the SS-method (i.e., setting the phenotype of 
genotyped cows and daughters of genotyped sires and their 
“unknown”) and the response variable in the Bayesian method 
(i.e., setting the response variable “unknown”), whereby 20% 
of the total individuals is set to random without replacement 
so as to be masked precisely once in the training data sets. Using 
these steps, we produced five training and testing sets. This 
results in each genotyped animal having DGVss and DGVBayes 
values from the masking data set, as derived using the sin-
gle-step and Bayesian methods, respectively. The correlation 
coefficient between the DGV and DEBV values was calculated 
and used as a measure of the accuracy of DGV. Additionally, 
the bias (spread) of DGV for each method was assessed us-
ing regression coefficients. Table 2 summarizes the number 
of masked animals and phenotypes in each data set.

RESULTS AND DISCUSSION 

Genetic parameter estimation
Variance components and heritability were estimated from 
regular phenotypic BLUP based on a univariate animal model. 
The estimated heritabilities for MY305, FY305, and PY305 

were 0.26, 0.21, and 0.22, respectively (Table 3). 
  Previous studies have obtained similar heritability estimates 
for MY305, FY305, and PY305 of 0.30, 0.28, and 0.25 [19] and 
0.23, 0.19, and 0.19 [20], respectively.

Genome-wide association study 
Using association analysis based on ssGWAS and BayesGWAS, 
we detected the most significant regions for SNP markers on 
the Illumina BovineSNP50 panel. Figures 1, 2 shows plots of 
genetic variance accounted for by 1-Mb windows, within a 
chromosome, based on different methods. Table 4 shows the 
results of GWAS for milk production traits. The GWAS results 
include the chromosomal position and fraction of variance of 
1-Mb genome windows by informative regions (greater than 
0.5% or 1.0%). Using BayesGWAS, there were 2,521 regions, 
with an average number of 20 SNPs, whereas for ssGWAS, 
there were 2,024 regions with an average number of 20 SNPs. 
  A total of nine and five significant windows (1-Mb) were 
identified for MY305 using ssGWAS and BayesGWAS, re-
spectively. The most informative window was detected on 
chromosome Bos taurus autosomes 15 (BTA15) at 23 Mb using 
ssGWAS and on BTA14 at 21 Mb using BayesGWAS, which 
explained 15.73% and 1.0%, respectively. An informative win-
dow common to both ssGWAS and BayesGWAS was identified 
on BTA14 at 1 Mb, which explained 1.54% and 0.79%, re-
spectively. For FY305, we detected 12 significant QTLs using 
ssGWAS and seven significant QTLs using BayesGWAS. The 
region of BTA14 at 1 Mb was the most significant 1-Mb win-
dow region and a common significant region detected using 

Table 2. Number of masking animals and phenotypes

Item

Single-step GBLUP
Number of masking 
genotyped animal

Bayesian approach

Number of masking phenotype Number of masking genotyped animal

MY305 FY305 PY305 MY305 FY305 PY305

1 16,229 16,197 16,230 398 196 192 194
2 12,438 12,401 12,441 391 191 186 188
3 11,940 11,892 11,937 386 193 189 191
4 14,444 14,418 14,442 362 188 183 184
5 7,792 7,778 7,791 382 196 193 193
Total 265,271 265,004 261,021 1,919 963 943 946

GBLUP, genomic best linear unbiased prediction; MY305, adjusted 305 d milk yield; FY305, adjusted 305 d fat yield; PY305, adjusted 305 d protein yield.

Table 3. Variance components, standard error, and heritability estimates for milk 
production in Korean Holstein cattle

Trait Additive genetic 
variance Residual variance Heritability

MY305 416,220 ( ± 12,855) 1,204,200 ( ± 10,621) 0.26
FY305 514.23 ( ± 18.79) 1,947.8 ( ± 15.89) 0.21
PY305 307.44 ( ± 11.20) 1,102.4 ( ± 9.40) 0.22

MY305, adjusted 305-d milk yield; FY305, adjusted 305-d fat yield; PY305, 
adjusted 305-d protein yield.
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both methods, which indicated that 11.25% (ssGWAS) and 
12.12% (BayesGWAS) of the additive genetic variance was 
captured, respectively. For PY305, we identified 14 and two 
significant regions using ssGWAS and BayesGWAS, respec-
tively. Using ssGWASs and BayesGWAS, the most informative 
window was detected on BTA15 at 24 Mb and on BTA13 at 
31 Mb, respectively. A common informative window obtained 
using both methods was detected on BAT13 at 31 Mb.
  The BTA14 region has received considerable attention from 
many scientists as this region has been reported to harbor a 
large number of QTLs having an effect on milk production. 
The diacylglycerol O-acyltransferase 1 (DGAT1) gene located 
at 1 Mb on BTA14 is generally accepted to be a major gene 
for milk production [21,22]. In addition to the DGAT1 gene, 
the 1-Mb region of BTA14 also harbors a number of other 
genes with linkage to DGAT1, such as cytochrome P450 family 
11 subfamily B member 1 [22,23]. Accordingly, using both 
ssGWASs and BayesGWAS, the 1 Mb region of BTA14 was 
identified to be a region associated milk and fat yield. Although 
the 1-Mb region on BTA14 has also previously been shown 
to be informative with respect to milk protein [21,22], in the 

present study, we were unable to detect this window with re-
gards to milk protein. This could be attributable to the fact that 
the collection system for milk protein yield data in Korea was 
recently changed due to problems associated with the standard 
solution used. Accordingly, the data for milk protein are not 
standardized. Therefore, further research is required to ob-
tain uniform milk protein data.
  Our findings relating to the 1-Mb region on BTA14, along 
with other significant regions, are consistent with previously 
identified regions that have a potential influence on milk 
production in the Animal QTL database (https://www.an-
imalgenome.org/cgi-bin/QTLdb/BT/index). 
  Despite the significantly higher level of genetic variance 
associated with using ssGWAS than when using BayesGWAS, 
the former was able to identify a larger number of significant 
regions. Moreover, it is notable that few significant regions 
were detected using both ssGWAS and BayesGWAS appro
aches, which can probably be attributed to the differences in 
methodologies. Methods like Bayes-B are strongly affected 
by priors, and by the proportion of SNPs assumed not to have 
an effect (π) [14,15,24]. In contrast to Bayesian methods, ss-

Figure 1. Manhattan plots showing genome-wide significant informative windows (≥1% threshold) for adjusted 305-day milk yield (A), adjusted 305-day fat yield (B), 
and adjusted 305-day protein yield (C) in Korean Holstein cattle using the single-step method.
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GWAS analysis is based on available pedigree relationships, 
and does not depend on deregression [14]. Previous studies 
have investigated different GWAS approaches using simulated 
data sets, and found that the different methods were able to 
detect the same regions [25,26]. In contrast, however, Wang 
et al [14] found that few common regions were detected using 
different methods. These disparate findings can probably be 
explained in terms of the limitations of simulations, which do 
not capture the complexities of real data.

Accuracy of direct genomic value 
On the basis of our previous GWAS results, we identified com-
mon QTL regions using two different approaches (i.e., ss-
GBLUP and Bayes-B). However, we were unable to accurately 
determine the location and effect size of true QTLs. Therefore, 
we also compared the accuracy and bias of DGVs when using 
the two approaches.
  Table 5 shows the accuracy and bias of the DGVs deter-
mined using the ss-GBLUP (single-step method) and Bayes-B 
(Bayesian method) approaches. To gain estimates of the ac-
curacy and degree of bias of DGVs, we calculated the averages 
of correlation and regression coefficients in predicting the 

masking individual in the validation set for analysis of the 
non-masking individual in the training set, respectively. 
  The mean accuracies of DGVss and DGVBayes for MY305, 
FY305, and PY305 were 0.316±0.018, 0.374±0.070, and 0.354± 
0.051, and 0.335±0.034, 0.389±0.052, and 0.357±0.033, respec-
tively. The mean biases of DGVs detected using the single-step 
method were 1.497±0.210 (MY305), 1.745±0.3266 (FY305), 
and 1.585±0.203 (PY305), whereas those using the Bayesian 
method were 1.182±0.262 (MY305), 1.138±0.199 (FY305), 
and 1.135±0.145 (PY305).
  For the three studied traits, we noted small differences in 
the accuracy of the DGVs obtained using the two methods. 
The prediction accuracy for trait MY305 (Milk [Acc.]) was 
lower than that for the other milk production traits (fat and 
protein). However, compared with Bayes-B, the single-step 
method for MY305, FY305, and PY305 had a higher bias. 
By using weighting factors in the Bayes-B method, the more 
reliably genotyped animals made a greater contribution in 
estimating SNP marker effects and the prediction of DGVs. 
We did not apply weighting factors when using ss-GBLUP 
as real phenotypes were used as response variables when us-
ing this method. 

Figure 2. Manhattan plots showing genome-wide significant informative windows (≥0.5% threshold) for adjusted 305-day milk yield (A), adjusted 305-day fat yield (B), 
and adjusted 305-day protein yield (C) in Korean Holstein cattle using the BayesB method.
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  A direct comparison of the accuracy and bias of DGV de-
termined in the present study with those determined previously 
is difficult given differences in populations and methodologies, 
such as clustering methodologies (e.g., K-means vs random 
vs identity by state IBS clustering), the models used, assess-
ments of method accuracy (e.g., genetic correlation vs simple 
vs variable setting), and other reasons [9]. Furthermore, ac-
curacy depends on various parameters, including the reference 
population size and its genetic structure [27]. In this regard, 
in a previous study on Danish Holsteins using a five-fold cross-
validation, Su et al [28] reported that the accuracy of DGV 
(rDGV,EBV) for milk production ranged from 0.64 to 0.70. Simi-
larly, Ding et al [29] in their study of Chinese Holsteins, reported 
that the accuracy of DGV (rDGV, EBV) in five-fold cross-valida-

tion using Bayes-B with priors (π = 0.99) and GBLUP for milk 
production ranged from 0.317 to 0.380, whereas Luan et al 
[30] reported an accuracy for milk production of 0.54 to 0.56 
in their study on Norwegian red cattle. 
  We found that the mean accuracies of DGVs for milk pro-
ductions in the present study were smaller than those obtained 
previously, which can probably be explained by the fact that 
the reference population size in our study was smaller than 
that used in other studies, which was at least 2,000 bulls. There-
fore, we intend to increase the size of our reference population 
by continuously updating data on genotyped animals and phe-
notypes. This will accordingly improve the accuracy of our 
genomic predictions. Similarly, if real variants (true QTLs) 
identified from putative informative regions based on GWAS 

Table 4. Result of GWAS for milk production traits

Method Trait Chr_Mb gV (%) Total SNP Method Trait Chr_Mb gV (%) Total SNP

Single-step MY305 15_23 15.73 61 Bayes B MY305 14_21 1.00 18
3_65 3.41 27 14_1 0.79 15
20_37 3.01 24 15_24 0.59 60
20_38 1.80 29 25_20 0.58 18
14_1 1.50 27 1_65 0.50 23
18_7 1.34 27 FY305 14_1 12.12 15
19_35 1.24 24 26_46 1.58 21
14_15 1.18 25 25_20 0.87 18
19_8 1.01 21 5_101 0.68 16

FY305 14_1 11.25 28 13_61 0.65 16
1_103 3.86 22 29_32 0.62 22
18_7 3.38 29 3_92 0.52 28
3_32 2.64 97 PY305 13_31 1.11 21
14_2 2.17 23 6_45 0.53 22
3_99 2.1 23
3_118 1.71 19
6_53 1.58 54
1_98 1.51 26
14_23 1.35 21
7_73 1.19 52
14_3 1.17 35

PY305 15_24 5.85 60
10_0 2.90 229
6_53 2.90 53
16_59 2.79 25
18_7 2.20 27
8_96 1.80 29
11_2 1.55 26
13_31 1.44 28
2_75 1.41 20
4_85 1.17 19
17_66 1.03 29
7_73 1.03 28
13_23 1.01 56
3_65 2.71 16

GWAS, genome-wide association study; SNP, single-nucleotide polymorphic; MY305, adjusted 305-d milk yield; FY305, adjusted 305-d fat yield; PY305, adjusted-305protein 
yield.
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results can be sequenced in detail, this will enhance the ac-
curacy of genomic prediction.

CONCLUSION

In this study, we compared the informative regions identified 
by GWAS and the accuracy of DGV between multiple appro
aches. We found that different numbers of informative regions 
were detected when using single-step and Bayesian approaches, 
and that few common regions were identified by both methods. 
However, a 1-Mb region on chromosome BTA14, which is 
known to harbor many genes, was identified by both methods. 
The mean accuracy of DGVs for milk production traits was 
similar for both methods, although Bayes-B tended to show 
a relatively lower bias than the ss-GBLUP method. Therefore, 
from the perspective of bias, we believe that a Bayesian ap-
proach (i.e., Bayes-B) would be more suitable in GS for Korean 
Holstein populations.
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