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In total, five new polyketide derivatives: eschscholin B (2), dalditone A and B (3 and

4), (1R, 4R)-5-methoxy-1,2,3,4-tetrahydronaphthalene-1,4-dio (5), and daldilene A (6),

together with 10 known as analogs (1, 7–15) were isolated from themangrove endophytic

fungus Daldinia eschscholtzii KBJYZ-1. Their structures and absolute configurations

were established by extensive analysis of NMR and HRESIMS spectra data combined

with ECD calculations and the reported literature. Compounds 2 and 6 showed significant

cell-based anti-inflammatory activities with IC50 values of 19.3 and 12.9 µM, respectively.

In addition, western blot results suggested that compound 2 effectively inhibits the

expression of iNOS and COX-2 in LPS-induced RAW264.7 cells. Further molecular

biology work revealed the potential mechanism of 2 exerts anti-inflammatory function

by inactivating the MAPK and NF–κB signaling pathways.

Keywords: mangrove endophytic fungus, Daldinia eschscholtzii, anti-inflammatory activity, NF-κB, MAPK

INTRODUCTION

Mangrove endophytic fungi have proven to be a promising source of novel chemical backbones
and bioactive metabolites owing to extreme environments (tidal flooding, high salinity, anaerobic
soil, and high temperature) of mangroves (Chen S. et al., 2022; Chen Y. et al., 2022). Daldinia
eschscholtzii is an endophytic fungus isolated commonly from mangrove plants (Yang et al.,
2017). The diverse bioactivity metabolites, including tetralones (Liao et al., 2019a), lactones
(Kongyen et al., 2015), naphthoquinones (Wutthiwong et al., 2021), chromones (Barnes et al.,
2016), and polyphenols (Zhang et al., 2016), have attracted much attention. For instance,
naphthoquinones 5-hydroxy-2-methoxy-6,7-dimethyl-1,4-naphthoquinone form D. eschscholtzii
HJ004 showed antibacterial activity (Liao et al., 2019b), and chromones 5-hydroxy-8-methoxy-
2-methyl-4H-chromen-4-one from D. eschscholtzii GsE13 showed phytotoxicity (Flores-Reséndiz
et al., 2021).

It is well known that excessive inflammation could lead to tissue damage, loss
of function, and many more related diseases, such as arthritis, systemic lupus
erythematosus, ulcerative colitis, and cancer (Zhang Y. et al., 2021). The most
often used therapeutic medicines, such as non-steroidal anti-inflammatory drugs
(NSAIDs), have been shown to significantly reduce prostaglandin production by
reducing the activity of cyclooxygenase (COX) enzymes (Bindu et al., 2020). Whereas,
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various side effects might be caused by NSAIDs, including
gastrointestinal mucosal injury, liver, and kidney toxicity (Wang
et al., 2020). As a result, the discovery of new anti-inflammatory
medications has become an unavoidable trend. The metabolites
from mangrove endophytic fungus were the key sources of the
anti-inflammatory lead compounds due to their novel structure,
low toxicity, and significant inhibitory effect (Chen et al.,
2021). As part of our continuing investigation into searching
for novel anti-inflammatory natural compounds derived from
mangrove endophytic fungi, a fungus D. eschscholtzii KBJYZ-
1, which was isolated from Pluchea indica Less., aroused our
interest because the ethyl acetate extract of the fungal culture
displayed excellent anti-inflammatory activity. As a result, five
new compounds (2–6) and ten known compounds (1, 7–15)
were isolated (Figure 1). The anti-inflammatory activity of all
isolated compounds was evaluated by the lipopolysaccharides
(LPSs) induced NO production in RAW264.7 macrophages.
Moreover, the potential anti-inflammatory mechanism of 2 has
been investigated.

MATERIALS AND METHODS

General Experimental Procedures
Specific optical rotation was measured on a PerkinElmer 341
instrument at 25◦C. Cary 5000 spectrophotometer was used
to record UV spectra in MeOH. ECD data were obtained
by Model 420SF CD spectrometer (Aviv Biomedical Inc). In
KBr discs, IR spectra were obtained using Fourier infrared
IS50 spectrometer. All NMR experiments were performed at
room temperature on a Bruker AVANCE 500 spectrometer
using the signals of residual solvent protons (CDCl3: δH 7.26;
CD3OD: δH 3.31) and carbons (CDCl3: δC 77.1; CD3OD: δC
49.2). HRESIMS spectra were tested by Waters TQ-XS mass
spectrometer. Column chromatography (CC) was conducted by
silica gel (200–300 mesh, Yantai Huiyou Silica gel company) and
Sephadex LH-20 (CHCl2/MeOH, v/v 1:1) (Pharmacia Sweden).
On silica gel plates, thin layer chromatography (TLC) was
conducted (GF 254 Silica gel Thin Layer Plate Yantai Huiyou
Silica company). The Typical Culture Preservation Committee
Cell Bank, China provided RAW264.7 cells; the fetal bovine
serum (FBS) was obtained by Gibco; ProCell provided Dulbecco’s
modified Eagle’s medium (DMEM); Sigma supplied LPS and

L-NMMA; Shanghai Beyotime Biotechnology supplied the NO
kit. Thermo Fisher Scientific (Shanghai, China) provided the
primers for iNOS. Cell Signaling (Beverly, MA, USA) supplied all
the antibodies.

Fungal Material
The strain KBJYZ-1 was isolated from the root of Pluchea indica
Less., which was collected in July 2020 from ZhanjiangMangrove
National Nature Reserve in Guangdong Province, China.
Fungal identification was carried out using molecular biological
methods to identify fungal species by DNA amplification and
ITS sequences (Chen et al., 2018). BLAST analysis showed
that this sequence had the highest homology with 100%
to the sequence of Daldinia eschscholtzii (compared with
MW081312.1). Sequence data of the strain is deposited at

GenBank with accession no. OM267787. The fungus was
preserved at Henan University, China.

Fermentation Extraction and Isolation
The fungus was cultured on solid rice medium (100 numbers of
1,000ml Erlenmeyer flasks, each containing 120 g rice and 75ml
of 0.3% seawater) at room temperature for one month under
static condition. After fermentation, the mediums were extracted
with MeOH three times. The organic phase was concentrated
under reduced pressure to yield a total residue of 78.6 g.
Moreover, a silica gel column was used for chromatography
(CC) was used with petroleum ether/ethyl acetate gradient
elution from 10:0 to 2:8, to obtain initial ten fractions (Fr.1–
Fr.10) were obtained. Fr.2 (200.6mg) was separated by Sephadex
LH-20 to obtain 8 (3.2mg). The subfraction Fr.2.1 (60.3mg)
was further subject to silica gel CC (CH2Cl2:PE v/v, 2:1) to
obtain 1 (2.6mg). The subfraction Fr.2.1.4 and Fr.2.3 were
pooled and purified by Sephadex LH-20 CC (CH2Cl2/MeOH
v/v, 1:1) to get 5 (2.1mg) and 6 (3.3mg), respectively. In
total, 7 (4.1mg) and 9 (2.3mg) were obtained from subfraction
Fr.2.4 (40.9mg) which was purified by silica gel CC (CH2Cl2).
Fraction Fr.3 (100.3mg) was separated by Sephadex LH-20
CC (CH2Cl2/MeOH v/v, 1:1) to get two subfraction Fr.3.1-3.2.
Subfraction Fr.3.2 (80.3mg) was further purified to obtain six
subfractions (3.2.1–3.2.6). 2 (2.2mg) was obtained by purification
Fr.3.2.6 (6.5mg) using sephadex LH-20 CC (CH2Cl2/MeOH v/v,
1:1). Fr.4 (450.0mg) was purified and fractionated into four
subfractions (4.1–4.4) by Sephadex LH-20 CC (CH2Cl2/MeOH
v/v, 1:1). Fr.4.1 (125.3mg) was again fractionated using silica gel
CC (CH2Cl2/MeOH v/v, 125:1∼80:1), and subfractions Fr.4.1.2
(15.3mg) and Fr.4.1.4(10.3mg) were purified by Sephadex
LH-20 CC (CH2Cl2/MeOH v/v, 1:1) to obtain 13 (1.8mg)
and 15 (1.3mg), respectively. Fr.5 (200.3mg) was purified
by Sephadex LH-20 CC (CH2Cl2/MeOH v/v, 1: 1) to yield
10 (5mg) and 12 (4.3mg), and other subfractions (5.1–
5.8). Fr.5.3 (20.4mg) was separated into four subfractions
(Fr.5.3.1–Fr.5.3.4) using silica gel CC (CH2Cl2/MeOH v/v,
100:1, 95:1, 90:1, 80:1), and subfractions Fr.5.3.2 furnished
11(3.5mg). Subfractions Fr.5.3.4 purified by Sephadex LH-20
furnished 14. Fr.6 (585.0mg) was purified by Sephadex LH-
20 furnished to give five fractions (6.1–6.5). Fraction of Fr.6.4
(221.0mg) purified by silica gel CC resulted four fractions
(6.4.1–6.4.4), purification of subfraction Fr.6.4.2 (15.3mg) and
Fr.6.4.3 (10.9mg) by Sephadex LH-20 furnished 3 (4.2mg) and
4 (3.5mg), respectively.

Eschscholin B (2): yellow oil; [α] = −15.1 (c 0.26, MeOH);
UV (MeOH) λmax (log ε): 210 (1.68) nm; IR (KBr) νmax: 2,935,
2,856, 2,355, 1,702, 1,464, 1,378, 1,284, 1,053 cm−1; 1H and 13C
NMR (CDCl3) data (Table 1); HRESIMSm/z 269.2470 [M+H]+

(calcd for C17H33O, 269.2468).
Dalditone A (3): yellow solid; [α] = + 0.01 (c 0.12, MeOH);

UV (MeOH) λmax (log ε): 266 (1.77), 205 (1.89) nm; IR (KBr)
νmax: 3,381, 2,928, 2,965, 2,130, 1,760, 1,650, 1,463, 1,064 cm−1;
1H NMR (MeOH-d4) data (Table 1); 13C NMR (MeOH-d4)
data (Table 2); HRESIMS m/z 243.0627 [M + Na]+ (calcd for
C12H10O4Na, 243.0620).
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FIGURE 1 | The structures of 1-15.

TABLE 1 | 1H and 13C NMR data of 2 in CDCl3.

No. δC δH [mult, J (Hz)] No. δC δH [mult, J (Hz)]

1 69.3, CH2 3.43, s 10 27.2, CH2 1.15, overlap

2 49.0, C 11 29.4, CH2 1.15, overlap

3 216.9, C 12 39.6, CH 1.29, m

4 37.3, CH2 2.38, t (7.3) 13 71.1, CH 3.55, td (6.3, 10.7)

5 23.5, CH2 1.43, dd (7.0, 14.0) 14 14.2, CH3 0.75, d (6.8)

6 29.8, CH2 1.30, m 15 20.0, CH3 1.0, d (6.3)

7 29.4, CH2 1.15, overlap 16 21.5, CH3 1.02, s

8 29.1, CH2 1.15, overlap 17 21.5, CH3 1.02, s

9 32.4, CH2 1.15, overlap

Dalditone B (4): yellow solid; [α] = + 10.5 (c 0.33, MeOH);
UV (MeOH) λmax (log ε): 260 (1.23), 224 (1.84), 201 (1.71)
nm; IR (KBr) νmax: 3,288, 2,928, 2,867, 2,200, 1,671, 1,556,
1,460, 1,299, 1,113, 1,039 cm−1; 1H and 13C NMR (MeOH-d4)
data (Table 2); HRESIMS m/z 219.0649 [M – H]− (calcd for
C12H11O4, 219.0643).

(1R, 4R)-5-methoxy-1,2,3,4-tetrahydronaphthalene-1,4-dio
(5): colorless solid; [α] = +23.2 (c 0.60, MeOH); UV (MeOH)
λmax (log ε): 254 (1.80), 210 (1.44) nm; IR (KBr) νmax: 3,389,
3,004, 2,945, 1,728, 1,580, 1,463, 1,269, 1,018, 993, 754 cm−1; 1H

TABLE 2 | 1H and 13C NMR data of 3 and 4 in MeOH-d4.

No. 3 4

δC, type δH, mult (J in Hz) δC, type δH, mult (J in Hz)

1 163.2, C 161.7, C

2 116.3, CH 6.88, d (8.6) 114.7, CH 6.85, d (8.6)

3 132.7, CH 7.83, dd (2.1, 8.6) 130.7, CH 7.79, dd (2.2, 8.6)

4 123.7, C 123.4, C

5 136.3, CH 7.98, d (2.1) 134.9, CH 7.92, d (2.2)

6 111.3, C 110.8, C

7 169.6, C 168.1, C

8 80.0, C 76.3, C

9 97.4, C 96.3, C

10 69.8, C 3.56, dd (6.5, 10.5) 29.8, CH 2.85, dd (6.7, 13.5)

11a 71.1, CH2 3.61, s 65.8, CH2 3.65, dd (6.5, 10.5)

11b 3.56, dd (6.5, 10.5)

12 26.2, CH3 1.53, s 16.2, CH3 1.27, d (1.9)

and 13C NMR (CDCl3) data (Table 3); HRESIMS m/z 194.0498
[M – H]− (calcd for C11H13O3, 194.0490).

Daldilene A (6): yellow solid; UV (MeOH) λmax (log ε):
258 (1.5), 206 (2.1) nm; IR (KBr) νmax: 2,917, 2,949, 1,765,
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TABLE 3 | 1H and 13C NMR data of 5 and 6 in CDCl3.

No. 5 No. 6

δC δH [mult, J (Hz)] δC δH [mult, J (Hz)]

1 63.2, CH 5.06, t (4.7) 1, 12 25.4, CH2 3.54, t (4.7)

2a 25.7, CH2 1.88, m 2, 11 37.7, CH2 3.05, m

2b 2.27, m 3, 10 198.3, C

3a 27.7, CH2 1.80, m 4, 9 126.4, CH 8.95, d (8.3)

3b 2.19, m 5, 8 126.5, CH 7.79, t (7.6)

4 67.7, CH 4.79, m 6, 7 128.7, CH 8.38, d (7.4)

4a 139.9, C 3a, 9a 129.2, C

5 120.9, CH 7.07, d (7.8) 6a, 6b 128.7, C

6 129.0, CH 7.29, t (8.0) 12a, 12b 131.2, C

7 109.7, CH 6.85, d (8.2) 3b, 9b 129.0, C

8 159.5, C

8a 126.7, C

9 55.5, CH3 3.89, s

1,650, 1,193, 1,068 cm−1; 1H and 13C NMR (CDCl3) data
(Table 3); HRESIMS m/z 287.1054 [M + H]+ (calcd for
C20H15O2, 287.1051).

ECD Calculations
The ECD calculations were performed according to the method
described previously (Chen et al., 2019). The conformers of
compounds 1, 2, 4, and 5 were optimized using DFT calculations
at B3LYP/6-31g (d) level in MeOH. Then, ECD calculations were
conducted using time-dependent density functional theory (TD-
DFT) at B3LYP/DGDZVP, PBEPBE/6-311+G, B3LYP/6-31G,
and B3LYP/6-311G levels, respectively.

Anti-inflammatory Assay
Cell Culture
RAW264.7 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% fetal bovine serum, 100 U/ml
penicillin, and 100 µg/ml streptomycin at 37◦C with 5% CO2.

Cell Viability Assay
The cell viability was evaluated using the MTT assay as described
previously (Niu et al., 2021). Briefly, RAW264.7 cells (5×104

cells/well) with logarithmic growth were inoculated in 96-well
plates for 12 h at 37◦C with 5% CO2. Cells were treated with
different concentrations of L-NMMA or the test compounds (10,
20, 30, 40, and 50 µM) and LPS (1 µg/ml) for 24 h. Then,
approximately 10 µl of MTT (0.5 mg/ml) was added to each
well and incubated for 4 h at 37◦C. After completion of the
post-incubation, the absorbance was measured at 490 nm.

Measurement of NO Production
RAW264.7 cells were inoculated in 96-well plates and incubated
for 14 h at 37◦C. Period, different concentrations of L-NMMA
or the test compound were added, and stimulated with LPS (1
µg/ml) for 24 h. The levels of NOweremeasured according to the
instructions of the manufacturer. The absorbance was measured
at 540 nm.

Western Blot
Briefly, RAW264.7 cells (1×106 cells/well) were inoculated into
the 6-well plates and incubated with 2ml DMEM at 37◦C.
The spent cell culture medium was discarded when the cell
fusion reached about 70–80%. Then, cells were stimulated with
compounds (25, 12.5, and 6.25 µM), and incubated for 24 h.
Western blot was carried out and the assay was done as
described previously (Niu et al., 2021). Blots were visualized using
enhanced chemiluminescence (ECL) detection kits and analyzed
using the Image J software.

Statistical Analysis
All the experiments were repeated at least three times and
statistical analyses were evaluated using the GraphPad Prism 7
program. The data were expressed as a means ± SD. p < 0.05
indicates statistical significance. A one-way ANOVA analysis was
used to determine statistical significance.

RESULTS AND DISCUSSION

Structure Elucidation
Compound 1 was identified as eschscholin A (Liu
et al., 2017) by comparing the 1H and 13C NMR data
(Supplementary Table S1). Here, the absolute configuration of
12S was first determined by ECD calculation (Figure 2).

Compound 2, a yellow oil, had a molecular formula
of C17H32O2. As established by high-resolution electrospray
ionizationmass spectrometry (HRESIMS), it showed two degrees
of unsaturation. The 1H NMR spectrum (Table 1), provided
signals for four methyls at δH 0.75 (d, J = 6.8Hz, H3-14),
0.7 (d, J = 6.8Hz, H3-15), 1.02 (s, H3-16), and 1.02 (s, H3-
17); one oxygenated methylene at δH 3.43 (s, H2-1), 2.38 (t,
J = 7.3Hz, H2-15); an oxygenated methine group at δH 3.55
(td, J = 6.3Hz, 10.3Hz, H-13). 13C NMR (Table 1) and HSQC
spectra data of 2 exhibited 17 carbon signals, including four
methyls, tenmethylenes, twomethines, and one carbonyl carbon.
Moreover, the spin system of H2-4/H2-5/H2-6/H2-7/H2-8/H2-
9/H2-10/H2-11/H-12(/H3-14)/H-13/H3-15 from COSY data
(Figure 3), together with the HMBC correlations (Figure 3) from
H3-16 to C-2 and C-1, from H3-17 to C-2 and C-3, from H2-4
to C-3, established the preliminary structure. Finally, except for
a carbonyl group, the remaining indices of hydrogen deficiency
were determined as 14-membered macrocycle. Comparing the
NMR data indicated the structure of 2 was a resemblance to
eschscholin A (Liu et al., 2017). Thus, the structure of 2 was
established as exhibited in Figure 1. The relative configuration
of 2 was confirmed by the NOESY correlation of H-13/H3-
14, together with the large coupling constant JH−12,H−13 =

10.7Hz (Figure 4). Furthermore, the absolute configuration was
confirmed by the ECD calculation. The identical experimental
and calculated ECD curves (Figure 2) assigned the 12S, 13R
configuration of 2.

Compound 3 was obtained as a yellow solid. The molecular
formula was determined as C12H10O4, based on the HRESIMS
data. The 1H NMR spectrum (Table 2) provided signals for one
methyl δH 1.53 (s, H3-12), one oxygenated methylene δH 3.61 (s,
H2-11), three methines δH 6.88 (d, J = 8.6Hz, H-2), 7.83 (dd,
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FIGURE 2 | Experimental and calculated ECD curves for 1 (A); 2 (B); 4 (C); 5 (D).

FIGURE 3 | Key HMBC and COSY correlations of 2-6.
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J = 2.1Hz, 8.6Hz, H-3), 7.98 (d, J = 2.1Hz, H-5). The 13C NMR
(Table 2) and HSQC spectra displayed 12 carbons, including one
methyl, one methylene, six sp2 carbons, two sp carbons, and one
carboxyl carbon. The HMBC correlations (Figure 3) from H-5
to C-8, from H2-11 to C-9, from H3-12 to C-9, C-10, and C-
11, together with the chemical shift at C-8 (δC 80.0) and C-9
(δC 97.6), supported that the alkynyl group is located at C-6.
Furthermore, the weak HMBC correlation from H2-11 to C-
1 confirmed that C-11 and C-1 were connected by an oxygen
atom. Compound 3 was determined to be the scalemic mixture
as shown by the flat ECD spectra and tiny specific rotation
value. The chiral-phase resolution under various circumstances
was unsuccessful.

Compound 4, a yellow solid, its molecular formula
determined to be C12H12O4 by the HRESIMS, and indicated
seven degrees of unsaturation. Comparing the NMR data
(Table 2) disclosed a similar structure of 3 and 4, except for the
absence of the hydroxy at C-10 in 4. The spin system of H3-12/H-
10/H2-11 was observed from the COSY spectrum (Figure 3).
The HMBC correlation (Figure 3) from H-10 to C-8 further
confirmed the deduction. In addition, the HMBC correlation
and HRESIMS supported that the ether bond between C-11 and
C-1 was fractured. The 12S configuration was confirmed by the
identical experimental and ECD calculation curves (Figure 2).

Compound 5, a colorless solid, had a molecular formula
of C11H14O3 by HRESIMS, and showed five degrees of
unsaturation. 1H NMR (Table 3) showed three aromatic signal
peaks at δH 7.07 (d, J = 7.8Hz, H-5), 7.29 (d, J = 8.0Hz, H-6),
6.85 (d, 8.2Hz, H-7), two oxygenated methines signal peak δH
5.06 (t, J = 5.1Hz, H-1), 4.79 (m, H-4). Comparing the NMR
data (Table 3) revealed that 5 and 12 (Talapatra et al., 1988) had
a similar structure. Except in 5, where the carbonyl group at
C-1 was converted to a hydroxy group. The above conclusion
was verified by the H-1/H-2/H-3/H-4 correlation from the COSY
spectrum (Figure 3), combine with the HMBC correlations
(Figure 3) from H-1 to C-8 and C-8a. While, according to the
HMBC correlation from H3-9 to C-8, decided that methoxy
was located in C-8. The absence of correlation of H-1 and H-
4 in the NOESY spectrum showed the 1S∗, 4S∗ configuration
of 5. Thereafter, the identical test and calculated ECD curves
(Figure 2) determined the absolute configuration of compound
5 as 1S, 4S.

Compound 6, a yellow solid, its molecular formula was
identified as C20H14O2, according to the HRESIMS. The 1H-
NMR (Table 3) showed three aromatic protons at δH 8.95 (d, J =
8.3Hz), 7.79 (t, J = 7.6Hz), 8.38 (d, J = 7.6Hz), two methylene
peaks δH 3.54 (t, J = 4.7Hz) and 3.05 (m). While the 13C NMR
(Table 3) and HSQC spectra exhibited 20 carbons, including
four methyls, six sp carbons, and the rest of the carbons, were
quaternary carbon (including two carbonyls). Comparison of the
NMR data (Table 3) of 6 and 7, showed a similar structure for
6 and 7, except for the absence of the hydroxyl group at C-4
and C-9 in 6. The deduction was supported by the H-4/H-5/H-6
correlation from the COSY spectrum and theHMBC correlations
(Figure 3) from H-4 to C-3 and C-3a. Thus, the structure of 6
was established.

FIGURE 4 | NOESY correlation of 2.

In total, ten other known compounds were characterized as 4,
9-dihydroxy-1, 2, 11, 12- tetrahydroper-ylene-3,10-quinone (7)
(Li et al., 2006), (2R,4R)-3,4-dihydro-5-methoxy-2-methyl-2H-
1-benzopyran-4-ol (8) (Zheng et al., 2016), 4H-1-benzopyran-4-
ne,5,8-dihydroxy-2-methyl (9) (Rao and Venkateswarlu, 1956),
5-hydroxy-8-methoxy-2-methyl-4H-1benzopy ran-4-one (10)
(Sun et al., 2012), (2R) 7-hydroxy-2,5-dimethylc-hromone
(11) (Konigs et al., 2010), (-)-regiolone (12) (Talapatra
et al., 1988), (4S)-4,8-dihydroxy-5-methoxy-a-tetralone (13)
(Machida et al., 2005), (4S)-4,5-dihydroxy-α-tetralone (14)
(Liu et al., 2004), (4S)-naphthalenone-3,4-dihydro-4-hydroxy-5-
methosy (15) (Yamamoto et al., 2003) by comparison of the
spectroscopic data with the previous literature.

All compounds were assayed for the anti-inflammatory
activities on mouse macrophage RAW264.7 cells. Compounds 2
and 6 showed a considerable inhibitory action, with IC50 values of
19.3 µM and 12.9 µM, respectively (positive control L-NMMA:
32.8 µM, Figure 5). Compounds 5 and 14, showed weaker
inhibitory activity compared with the positive control (Figure 5).
Other compounds exhibited no inhibitory action (IC50 >50µM).
At the studied concentrations, none of the compounds were
cytotoxic to RAW264.7 cells.

Several inducible enzymes in macrophages were significantly
up-regulated in the process of inducing inflammation. For
example, rate-limiting enzymes responsible for NO production
include iNOS. At the same time, inflammatory injury mainly
stimulates monocytes, and macrophages induce COX-2
generation, which is a key link in triggering a subsequent
inflammatory response. In conclusion, iNOS and COX-
2 were considered valuable targets for the treatment of
inflammatory diseases (Gao et al., 2021). In the current
study, after LPS stimulation, the protein expression levels of
iNOS and COX-2 in RAW264.7 cells showed a considerably
higher amount than in the control group (Figure 6). The
expression of iNOS and COX-2 was significantly down-
regulated compared with the LPS group, when 2 has been
added at different concentrations (P < 0.001). The results
indicated that 2 could suppress the NO production by
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FIGURE 5 | Influences of compounds on NO production for LPS-induced RAW264.7 cells. Compound 2 (A); compound 5 (B); compound 6 (C); compound 14 (D).

Data rendered are the mean ± SD, n = 3. In comparison to the control, ***P < 0.001. In comparison to LPS, ###P < 0.001.

FIGURE 6 | Influences of compound 2 on iNOS, COX-2, and GAPDH protein expression were detected by Western blotting (A). The ratio of the content of

iNOS/GAPDH and COX-2/GAPDH (B). Data rendered are the mean ± SD, n = 3. In comparison to the control, ***P < 0.001. In comparison to the LPS group, ###P

< 0.001.

inhibiting the protein expression of iNOS, meanwhile
inhibiting protein expression of COX-2 in LPS-induced
RAW264.7 cells.

In macrophages, NF–κB and MAPK signaling pathways
were the main signaling pathways controlling inflammatory
responses. In NF–κB signaling, key signaling proteins, including

Frontiers in Microbiology | www.frontiersin.org 7 May 2022 | Volume 13 | Article 900227

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Wang et al. Polyketides With Anti-inflammatory Activities

FIGURE 7 | Influences of compound 2 on the MAPK pathway detected by Western blotting. (A) The expression levels of p-JNK, p-ERK, p-P38, and GAPDH detected

by the western blotting. (B) The proportion of p-JNK to GAPDH content. (C) The proportion of p-ERK to GAPDH content. (D) The proportion of p-P38 to GAPDH

content. Data rendered are the mean ± SD, n = 3. In comparison to the control, ***P < 0.001. In comparison to the LPS, ###P < 0.001.

FIGURE 8 | Influences of compound 2 on p-P65, p-IκBα and GAPDH protein expression detected by the western blotting (A). The proportion of p-P65 to GAPDH

content and p-IκBα to GAPDH content (B). Data rendered are the mean ± SD, n = 3. In comparison to the control, ***P < 0.001. In comparison to the LPS, #P <

0.05, ###p < 0.001.
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IκBα and P65 phosphorylation forms, were chosen as markers of
signaling activity; meanwhile, inMAPK signaling pathways, JNK,
ERK, and P38 phosphorylation forms were chosen as indicators
of signaling activation (Zhang H. et al., 2021). In Figure 7,
LPS could significantly upregulate JNK, ERK, and P38 protein
phosphorylation in RAW264.7 cells in comparison to the control
group (P < 0.001). Compound 2 to varying degrees inhibited
the expression of JNK, ERK, and P38 proteins phosphorylation
in LPS stimulated RAW264.7 cells. In conclusion, the anti-
inflammatory function of compound 2 might be connected to
the suppressed MAPK signaling pathways in RAW264.7 cells.
In Figure 8, LPS remarkably improves the phosphorylation of
IκBα and P65 in RAW264.7 cells in comparison to the control
group (P < 0.001). Compound 2 inhibited the expression of p-
P65 and p-IκBα proteins in LPS-induced RAW264.7 cells. In
conclusion, the anti-inflammatory effect of compound 2 may
be connected to the suppressed NF–κB signaling pathways in
RAW264.7 cells.

CONCLUSION

In total, five new compounds, including eschscholin B
(2), dalditone A-B (3-4), (1R, 4R)-5-methoxy-1,2,3,4-
tetrahydronaphthalene-1,4-dio (5), and daldilene A (6),
were isolated from mangrove endophytic fungus D. eschscholtzii.
Their structures and absolute configurations were determined
by spectroscopy data and ECD calculation. The absolute
configuration of 1 was first determined by ECD calculation.
Compounds 2 and 6 exhibited potent anti-inflammatory
activities with IC50 values of 19.3 and 12.9 µM, respectively.
Compound 2 belongs to the family of macrocyclic ether, which
showed various biological activities. For example, eurysoloids B
with immunosuppressive and adipogenesis inhibitory activities
(Teng et al., 2021), 12S, 13S-epoxyobtusa-llene IV with cytotoxic
activity (Gutiérrez-Cepeda et al., 2016), durumhemiketalolides A

and C with anti-inflammatory activity (Cheng et al., 2009) have
reported. In addition, further studies showed that compound
2 might play an anti-inflammatory role by inhibiting the
activation of MAPK and NF–κB signaling pathways. This study
will contribute to the chemical diversity of polyketide and the
discovery of potential anti-inflammatory agents from extreme
mangrove-derived fungi.
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