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Abstract
Background Fracture healing in osteoporosis is delayed.
Quality and speed of fracture healing in osteoporotic
fractures are crucial with regard to the outcome of patients.
The question arises whether established antiosteoporotic
drugs can further improve fracture healing.
Materials and methods Osteoporosis manifests predomi-
nantly in the metaphyseal bone. Nevertheless, an estab-
lished metaphyseal fracture model is lacking. A
standardized metaphyseal fracture-healing model with
stable plate fixation was developed for rat tibiae. The
healing process was analyzed by biomechanical, gene
expression, and histomorphometric methods in ovariecto-
mized (OVX) and sham-operated rats (SHAM), compared
to standardized estrogen (E)- and raloxifene (R)-supple-
mented diets.
Results Estrogen and raloxifene improved the biomechanical
properties of bone healing compared to OVX (Yield load:
SHAM ¼ 63:1� 20:8N, E ¼ 60:8� 17:9N , R ¼ 44:7�
17:5N , OVX ¼ 32:5� 22:0N ). Estrogen vs OVX was
significant based on a denser trabecular network. Raloxifene

greatly induced total callus formation (R ¼ 5:3� 0:9 mm2,
E ¼ 4:7� 0:5 mm2, SHAM ¼ 4:51� 0:61 mm2,OVX ¼
4:1� 0:6 mm2), whereas estrogen mainly enhanced new
endosteal bone formation. There was no correlation between
the gene expression (osteocalcin, collagen1α1, IGF-1,
tartrate-resistant phosphatase) in the callus and the morphol-
ogy and quality of callus formation.
Conclusion Raloxifene and estrogen improve fracture
healing in osteoporotic bone significantly with regard to
callus formation, resistance, and elasticity. The biomechan-
ically stable metaphyseal osteotomy model with T-plate
fixation presented here has proven to be appropriate to
investigate fracture healing in osteoporosis.
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Raloxifene . Biomechanics . Estrogen

Introduction

In postmenopausal osteoporosis, the increased bone turn-
over is accompanied by a decrease in bone mass and bone
quality followed by skeletal fragility and an increased
fracture risk. In the USA, the annual costs resulting from
osteoporotic fractures have been estimated at $16.7 billion
[1]. In addition, according to animal experiments, osteopo-
rotic bone shows a prolonged and impaired healing process
[2, 3] compared with normal bone. The question arises as to
whether substances, which are successful in the treatment
of osteoporosis, are efficient in improving fracture healing
in osteoporotic bone as well. Currently, inhibitors of bone
resorption such as estrogen and raloxifene are effective in
the treatment of osteoporosis in postmenopausal women
[4]. They also prevent bone loss in ovariectomized rats [5,
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6]. Their effects on bone healing, particularly with regard to
the healing of osteopenic metaphyseal bone, however, are
still unclear.

The ovariectomized rat is a widely accepted model of
osteopenia [7–9]. Bone loss in the proximal rat tibial
metaphysis amounts to about 50% within 3 months after
ovariectomy [8–11]. In humans, osteoporotic fractures are
predominantly located at the thoracic and lumbar spine and
the metaphysis of long bones, i.e., the distal radius,
proximal femur, and proximal humerus. Until now, no
established biomechanical stable metaphyseal fracture
animal model has existed, and all studies addressing
fracture healing in osteopenic bone have focused on
diaphyseal fractures [5, 12–17]. But it is well known that
there are important differences in fracture healing at the
diaphyseal bone compared to the mechanisms of bone
healing in the metaphysis. Diaphyseal bone usually heals
indirectly with visible periosteal callus formation or—in
absolutely stable conditions—directly with lamellar bone
formation. Metaphyseal bone usually heals directly with
endosteal bone bridging by micro-callus and without
significant periosteal callus formation. In addition, osteo-
porotic changes seen in diaphyseal bone are considerably
less and differ compared to those occurring in metaphyseal,
trabecular bone [6, 18, 19].

Materials and methods

Animals and operating procedure

Forty three-month old female Sprague–Dawley rats (Win-
kelmann, Borken, Germany) weighing 220–260 g were
used for this study. Thirty rats were ovariectomized under
Rompun/Ketanest (3.5 v/v, 1 mL/kg) anesthesia. Ten rats
were sham-operated for ovariectomy. During the same
anesthesia, all animals also underwent the following
metaphyseal osteotomy and internal plate fixation proce-
dures for both proximal tibiae as follows.

An anterior–medial approach with an extension from the
medial femur condyle to the middle of the tibia was used. A
needle marked the tibial surface of the knee to obtain the
correct axis for the osteotomy. The proximal tibial third was
prepared in an epiperiosteal manner without harming the
flexor and extensor muscles. A five-hole, 90° small T-
shaped titanium fixation plate XS (57-05140, Stryker
Trauma, Selzach, Switzerland), which was slightly pre-bent
in the transversal part, was fixed with two proximal and two
distal 1.2 mm screws to the anterior-medial surface of the
tibia. The central plate hole was left without screw. To
perform the osteotomy, the plate was temporarily removed.
The osteotomy was performed 7 mm distal to the knee
surface using pulsed ultrasound (Piezosurgery®, Mectron

Medical Technology, Carasco, Italy). This tool only cuts
hard material and prevents muscles, tendons, nerves, and
vessels from being damaged. After the osteotomy, the plate
was fixed in its previous position (Fig. 1a), and an
osteotomy gap of 0.5 mm was obtained. The muscle fascia
was refixed with Vicryl® 4.0 (Eticon Norderstedt, Johnson
& Johnson, Germany) after irrigation and disinfection
(Braunovidon®, Bayer, Leverkusen) of the operating
wound. The skin was closed with brackets (Michel wound
brackets 12×3 mm, Gebrueder Martin GmbH & Co. KG,
Tuttlingen, Germany). The animals were finally injected
with a single dose of perphenacin (5 mg/kg, s.c.), followed
by four injections of carprofen (4 mg/kg) for pain
prophylaxis during the initial 48 h postoperatively.

This animal study protocol was approved by the local
regional government and conformed to German animal
protection laws (District Government of Braunschweig,
permission from 12/5/03, Az: 509.42502/01-53.03).

Treatment groups and substances

Animals were divided into four groups:

Group I Osteopenic control, with ovariectomy (OVX)
received phytoestrogen-free pelleted food
(where protein supplementation was substituted
with potato proteins).

Group II Sham-operated animals, furthermore referred to
as “SHAM,” received phytoestrogen-free pel-
leted food as well.

Fig. 1 X-rays of the rat tibia after the operating procedure (a), and
5 weeks after osteotomy without implant in the anterior–posterior (b)
and lateral view (c). Fracture healing in progress is revealed by the
vague visible fracture gap and less periosteal callus formation
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Group III Osteopenic animals received phytoestrogen-free
food supplemented with estrogen in the form of
estradiol benzoate (E) after ovariectomy. The
average food intake per animal per day was 20 g,
so that the average E intake was 0.5 mg/day.

Group IV Osteopenic animals, received phytoestrogen-
free food supplemented with raloxifene (R)
after ovariectomy. The average intake was
3.4 mg/day of R.

Animals were kept on these specific diets during fracture
healing for a period of 5 weeks.

Intravital fluorochrome labeling

During fracture healing, the rats were subcutaneously
injected with four fluorescent agents (Merck, Darmstadt,
Germany) to label the process of bone formation [20]. The
fluorochrome agents connect to the calcifying surfaces,
which are activated just at the time of injection. They act
competitively to the calcium-apatite binding. The fluoro-
chrome labeling involved application of xylenol orange
(90 mg/kg) on day 13, calcein green (10 mg/kg) on day 18,
alizarin red (30 mg/kg) on days 24 and 26, and tetracycline
(25 mg/kg) on day 35. The additional dose of alizarin red
was given on day 26 to intensify this color. With this
labeling procedure, it was possible to follow the osteopo-
rotic fracture healing process under the influence of
estrogen and raloxifene over the whole period of the trial.
The chronological sequence and the quality of new built
bone could be distinguished, as well as bone resorption and
bone remodeling. Conclusions could be drawn regarding
the individual effects of estrogen and raloxifene (periosteal,
endosteal, amount of callus formation, density of callus
structure) during the healing process.

Endpoint and specimen preparation

Animals were finally killed 2 h after tetracycline
application on day 35 under anesthesia. This time was
chosen because, according to our preliminary trials,
fracture healing was still in progress, although not
complete, and peripheral resorption of the outer callus
should not occur.

Tibiae were prepared as follows: skin, muscles, and
tendons were removed, and the fibula was separated at the
synostosis. The plate and screws were removed (Fig. 1b,c),
and the stability of the screws was observed. Tibiae were
immediately stored at −80°C prior to further analysis. The
right and left tibiae were randomized in such a way that one
was used for biomechanical testing, histological, and
microradiographic analysis, and the other one was used
for the analysis of the gene expression.

Radiographic evaluation

Tibiae used for morphological evaluation were thawed and
continuously moistened with isotonic saline solution.
Microfocus radiographs in the anterior–posterior and
lateral views were taken of all tibiae in the Faxitron
Cabinet X-ray System (Hewlett-Packard, 50 μm x-ray
beam output; model 43855A; IL 60089, USA). A high-
resolution film (Fuji HR-E 30 Medical X-ray) and 40 KV/
6 min radiation were used. The description and evaluation
of the fracture healing was performed in a blinded manner
for all the test groups.

Biomechanical testing

Immediately after X-ray, each tibia was placed on the newly
developed three-point bending and breaking test device as
previously described [21]. A bending test instead of a
torsional test was used because the metaphyseal tibia—
unlike the metaphyseal femur or humerus—is mainly
loaded in tension and compression via the tendons of the
quadriceps, the biceps femoris, and the gastrocnemius
muscle.

At the beginning of the test, the stamp was driven down
onto the metaphyseal tibia at the point of the former
osteotomy until a primary strength of 1 N was reached.
After a final visual check of the correct tibial position, the
bending test was initiated. The investigation was manually
stopped when the first linear rising of the bending graph
visibly decline (force between 50 to 70 N) to prevent
damage or fracture of the callus formation. This procedure
was performed in a blinded manner with regard to the test
groups.

Preparation for microscopy and microradiography

After the bending tests, the tibiae were immediately
defatted in an alcohol series (not decalcified) followed by
embedding in methylmethacrylate. After polymerization,
100±10 μm thick longitudinal sections were cut at right
angles to the plate using a specifically designed diamond-
coated innerhole saw (Leica SP 1600 saw microtome,
Bensheim, Germany). The saw blade had a thickness of
300 μm. The thickness of each slice was confirmed using a
special measuring device for histological sections (Leica,
Bensheim, Germany).

Microradiographies of the three central histological
sections were performed on special high-resolution Kodak
Professional Industrex SR45 film (100NIF) on the Faxitron
Microfocus Cabinet X-ray system (Hewlett-Packard, 50 μm
X-ray beam output; model 43855A; IL 60089, USA) as
previously described [23–26]. The bone sections were
exposed for 3 min to 10 kV. The resolution of the images
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was approximately 0.5 μm (Fig. 2a,c,e). The film was
analysed by light microscopy and digital image processing
(Quantimet system, Leica DM-RXE, Bensheim, Germany)
to quantify the epiperiosteal and endosteal bone healing
process.

After the microradiographic procedure, the three central
sections were mounted on slides for histomorphologic

evaluation. A light microscope (Leitz DM-RXE, Leica,
Bensheim, Germany) with an I3 filter system (excitation
filter 450–490 nm, diachronic mirror 510 nm, suppression
filter 515 nm) was used. The best objective for evaluation
of the different fluorochrome-labeled areas (Fig. 2b,d,f,h)
was achieved with the transmitted and incident light
objective PL Fluotar 10/0.30.

Fig. 2 Typical microradiogra-
phies and corresponding fluoro-
chrome-labeled histological
sections of tibial callus forma-
tion in the control group (a, b),
as well as the sham-operated
group (c, d), the raloxifene-
(e, f), and estrogen-treated group
(g, h). Visualization of the heal-
ing process in the histological
sections: unstructured new bone
formation at the beginning (cal-
cein green), first bony bridges in
the osteotomy gap after 25 days
(alizarin red) and considerable
increase of the endosteal callus
formation in the last 10 days
(tetracycline yellow)

166 Langenbecks Arch Surg (2010) 395:163–172



Gene analysis

Total RNA was extracted from the metaphyseal callus
formation of one tibia. To determine osteocalcin (OC),
insulin growth factor-1 (IGF-1), collagen1α1, and tartrate-
resistant phosphatase (TRAP), tissue samples were chilled
in liquid nitrogen and pulverized in a 5-mL teflon container
with a tissue homogenizer (Microdismembrator™, Braun,
Melsungen, Germany). The extraction of RNA and meas-
urements for real-time PCR were carried out as previously
described [27]. In this study, serum analysis for estradiol-
17β was not redetermined. In preliminary studies, it has
been established that, with an average E intake of 0.5 mg/
day, the serum concentration of estradiol-17β falls within
the physiological range for females (20–350 ng/ml depend-
ing on the hormonal cycle) [21, 27].

Evaluation and statistics

X-rays were analyzed regarding the type of fracture
healing, the site and extension of callus formation, possible
implant loosening, and involvement of the fibula.

On the basis of the biomechanical testing data, the
stiffness and the yield load of each specimen were calculated.

The three central histological sections of each tibia and
corresponding microradiographs were histomorphometri-
cally analyzed (Leica MZ 75, Bensheim, Germany). The
quantitative analysis of bone tissue was digitally deter-
mined by using the Quantimet system (Leica, Bensheim,
Germany). Data were determined on histological and
microradiographic images using a digital camera (Leica
DC200) combined with a specific database system (Leica).
For exclusively analyzing the callus formation of the
metaphyseal tibia, a line was placed on the distal ends of
the cortical bone of the osteotomy gap. A measuring frame
centered on this line was created with a 1-mm edge length
in the cranial and 1-mm edge length in the caudal direction.

For the intravitale fluorochrome-labeled histological
sections, the following areas were evaluated for calcein
green (CG), alizarin red, and tetracycline (yellow) labeling:
periosteal callus formation dorsal, periosteal callus forma-
tion ventro-medial, and endosteal callus formation. Xylenol
orange could not be evaluated because there were only
small islands of xylenol orange-labeled bone surrounded by
calcein green-labeled bone (Fig. 2b,d,f,h), which were visible
at high resolution but not detectable by the computer
system. The microradiographs of callus formation were
analyzed for the following parameters: total bone area,
cortical width dorsal, cortical width ventro-medial, callus
width dorsal, callus width ventro-medial, callus area
density, trabecular width, as well as the number of
trabecular nodes and number of trabecular nodes per square
millimeter.

For statistical analyses, the mean values and standard
deviation for each parameter were calculated. Differences
between the four tested groups were assessed using the
One-way analysis of variance and the post hoc Tukey’s test.

Results

Radiographic evaluation

The tibial osteotomies of all forty rats healed adequately
(Fig. 1b,c) with only one infection occurring in the OVX
group. In some rats, fibula fractures were detected during
post mortal preparation (regardless of the treatment group),
where the tibial osteotomies healed with visibly more callus
formation and axial deviation was triggered by an unstable
biomechanical environment and not as a result of a
hormonal test factor. Therefore, these tibiae were rejected,
and only eight of the OVX-group, nine SHAM-operated,
seven E-, and nine R-treated rats were evaluated in this
study.

The typical trabecular network of the tibial metaphysis
extended from 5.5 to 9.5 mm below the tibia plateau in rats
investigated in this study. The osteotomy level was always
located in this area: In the SHAM group, it was 8.71±
0.63 mm below the joint, in the OVX group 8.12±1.5 mm, in
the R group 8.43±1.05 mm, and in the E group 8.0±0.8 mm.

Biomechanical testing

On the basis of established strength graphs, the stiffness and
yield point were calculated [21]. The yield point amounted
to 32.5±22.0 N for the osteopenic OVX group and 44.7±
17.5 N for R-treated animals, respectively. The OVX yield
point was significantly lower than that for the SHAM group
(63.1±20.8 N) and for the E group (60.8±17.9 N); i.e., a
significant higher force was necessary for inducing irre-
versible plastic deformation of the callus after E supple-
mentation. The stiffness amounted to 90.9±29.5 N/mm in
the OVX group, 82.8±43.6 N/mm in the SHAM group,
93.5±33.3 N/mm in the E group, and 110.3±65.2 N/mm in
the R group. Due to high standard deviation, however, there
was no significant difference between the groups.

Microradiographic evaluation

The ventro-medial callus formation was increased after both E
and R supplementation (Table 1). This increase was signif-
icant only for the latter group compared to OVX.

The trabecular width was significantly enhanced in R-
treated animals compared to OVX, as well as in E-treated
animals (Fig. 3b). The number of trabecular nodes distal to
the fracture callus was significantly lower in the OVX
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group than in the R- and E-treated groups, and the
corresponding density (number of trabecular nodes per
square millimeter) also followed a similar trend—trabecular
density was significantly lower for OVX than for the R-
and E-treated animals (Fig. 3a). There was only one
significant difference between the E and the SHAM and R
groups, respectively: the percentage of bone in the whole
callus area (callus density) was significantly higher in the
SHAM and R-treated animals compared to the E-treated
animals.

The ventro-medial cortical bone was significantly thicker
for OVX animals compared to the SHAM and the E group.

Evaluation of the intravitale fluorochrome labeling

R induced the most callus formation (Fig. 4a), as well as
significantly improved fracture healing at ventro-medial,
dorsal, and endosteal locations (as determined by fluoro-
chrome labeling) at different times compared to the OVX
group (Table 2). R nearly doubled the callus amount at each

Fig. 3 Quantitative evaluation of three microradiographic sections of
each tibia callus regarding the trabecular (a, b) and cortical bone (c, d)
in the osteoporotic control group (C), in the sham-operated group, and

after supplementation with raloxifene (R) or estrogen (E). Values are
expressed as the mean±SD (asterisk p<0.01 vs C, pound sign p<0.01
vs E)

Table 1 Quantitative evaluation of the three central microradiographic sections of the tibial callus formation in osteopenic rats

OVX SHAM Raloxifen Estradiol

Total bone area (mm2) 2.52±0.71 2.33±0.71 2.92±0.739 2.64±0.24
Tibial diameter proximal (mm) 3.11±0.21 2.76±0.26 3.49±0.20 2.89±0.2
Tibial diameter distal (mm) 2.27±0.45 2.25±0.40 2.67±0.35 2.65±0.18
Cortical width dorsal (mm) 0.55±0.06 0.57±0.11 0.59±0.074 0.56±0.17
Cortical width ventro-medial (mm) 0.54±0.10 0.46±0.05* 0.51±0.065 0.46±0.04*
Callus width dorsal (mm) 0.76±0.23 0.82±0.32 1.04±0.449 0.74±0.32
Callus width ventro-medial (mm) 0.41±0.13 0.34±0.11 0.52±0.18* 0.50±0.29
Callus area density (%) 73.51±13.6 80.71±7.99** 75.64±13.81** 70.81±23.5
Trabecular width (μm) 6.01±1.49 6.28±2.3 7.66±1.58* 6.03±1.67
Number of trabecular nodes 6.71±4.83 8.24±5.16** 15.00±7.26* 19.11±14.7*
Number of trabecular nodes (mm2) 9.55±6.84 12.23±5.37** 16.18±6.80* 21.01±11.9*

Average value +SD of the mean
*p<0.05 vs C; **p<0.05 vs E)
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time of labeling with exception of the CG period at the
endosteal callus. For E-treated rats, only the area of
endosteal callus formation showed a significant increase
(Fig. 4b), which proves higher bone formation at all times
of the monitored healing process. In the initial 3 weeks, the
ventro-medial callus formation (Fig. 4c) was significantly
smaller in the E group compared to OVX, but the E
group made up ground in the following 2 weeks. E-
treated rats developed the same level of total callus-like
SHAM-operated rats, and the distribution between ventro-
medial, dorsal, and endosteal locations was very similar
as well.

Gene analysis

After killing the animals, gene expression of OC, IGF-1,
collagen1α1, and TRAP was determined in the callus
formation of one tibia from each rat. Based on the
ovariectomy (set to 100%), gene expression of OC—a typical
osteoblast marker—was significantly reduced in E-treated
animals (54.9±34.1%) and slightly enhanced at SHAM
(107.5±34.5%) and under R treatment (111.1±79.3%). For
the gene expression of IGF-1 and collagen1α1—two other
osteoblast marker genes—a downregulation of both compared
to OVX was observed after supplementation with E (61.2±

Fig. 4 Quantitative evaluation
of the fracture healing process
in fluorochrome-labeled histo-
logical sections of the tibial
callus (CG calcein green, AK
alizarin red, TC tetracycline).
Total callus formation (a) con-
sisting of periosteal callus
dorsal, periosteal callus ventro-
medial, and endosteal callus
formation. Differentiation of the
total callus formation in three
regions of interest: the endosteal
region (b), the ventro-medial
region (c), and the dorsal region
(d). Values are expressed as the
mean±SD (*p<0.01 vs C)

Table 2 Quantitative analysis of the process of bone healing at the metaphyseal tibia after intravitale fluorochrome labeling with calcein green (CG)
(day 18), alizarin red (AK) (day 24 and 26), and tetracycline (TC) (day 35)

osteopenic C SHAM RALOXIFEN ESTRADIOL

Total callus ventro-medial (mm2) 1.14±0.58 1.07±0.40 1.42±1.03 1.00±0.27
Callus area ventro-medial CG 0.49±0.51 0.44±0.40 0.59±0.48 0.28±0.14*
Callus area ventro-medial AK 0.31±0.07 0.32±0.15 0.55±0.33*,** 0.37±0.06*
Callus area ventro-medial TC 0.26±0.24 0.37±0.23 0.42±0.21 0.38±0.16
Total callus dorsal (mm2) 1.42±0.80 1.62±0.60 1.86±0.95 1.96±0.59
Callus area dorsal CG 0.79±0.53 0.80±0.28 1.02±0.48 0.87±0.51
Callus area dorsal AK 0.33±0.17 0.50±0.23 0.56±0.33 0.62±0.33
Callus area dorsal TC 0.19±0.11 0.29±0.23 0.45±0.25* 0.23±0.13
Total callus endosteal (mm2) 1.56±0.59 1.82±0.62 2.06±0.58* 1.71±0.49
Callus area endosteal CG 0.75±0.36 0.91±0.46 0.78±0.28 1.16±0.25*
Callus area endosteal AK 0.37±0.33 0.58±0.25* 0.71±0.29* 0.53±0.14*
Callus area endosteal TC 0.21±0.26 0.26±0.20 0.50±0.25* 0.41±0.18*
Total callus area (mm2) 4.13±0.56 4.51±0.61 5.34±0.65* 4.66±0.45

Average value +SD of the mean
*p<0.05 vs C; **p<0.05 vs SHAM)
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34.6% and 68.7±42.9%, respectively). A reduced expression
of IGF-1 (90.5±39.9%) and collagen-1α1 (88.3±45.9%) was
also seen for R-treated compared to OVX animals, but
these decreases were not significant. SHAM-operated
animals showed the same level of IGF-1 (99.9±60.6%)
and collagen-1α1 (101.9±48.1%) as the OVX group. The
expression of the TRAP gene—an osteoclast marker—was
nearly at the same level in SHAM (105.2±88.6) as in
OVX. It was lower for R-treated animals (76.4±33.1%) but
not significantly reduced when compared to the E-treated
group (82.3±54.2%).

Discussion

Osteoporotic fractures are still an unsolved problem for the
surgeon as well as for the patient. There are two ways of
improving the fracture healing process: first, the develop-
ments of special implants to avoid implant failure; second,
the improvement of bone quality to speed up and improve
callus formation and otherwise to biologically advance
implant fixation. This study focused on the second option.
The newly developed and biomechanical stable metaphy-
seal osteotomy model with mini-plate osteosynthesis in the
osteopenia model rat provides the opportunity to test
various substances regarding their influence on fracture
healing in the osteoporotic bone.

Metaphyseal osteotomy and osteosynthesis model

Former studies of fracture healing in osteoporosis in rats
were essentially performed at the diaphyseal tibia [13] or
femur [5, 14, 28]. Studies which address the metaphyseal
bone healing were all performed in healthy as opposed to
osteoporotic bone. They were performed in rat as a pullout
trial [29], in sheep as a partial osteotomy [30], or in rabbits
as defect healing [31] or under varying biomechanical
stability [32]. The challenge of the model described in
here is the biomechanically stable fixation of bone after
onset of the metaphyseal tibia fracture. With the five-hole
small T-plate and fixation with mildly converging screws
in the epiphyseal tibia, the problem could be solved.

However, the biomechanical stability is dependent on the
integrity of the fibula. If the stabilizing column of the fibula
failed, the metaphyseal fracture healed in a different
manner, with instability and with another kind of callus
formation, although no non-union occurred. It must be
assumed that this kind of unstable fracture would not heal
in humans without further problems arising. Therefore in
this study, some tibiae were excluded, though they were
healed because of their different biomechanical starting
position. It can be assumed that the biomechanical
instability influences fracture healing to a great extent and

interfere with the effects of the antiosteoporotic drugs,
estrogen and raloxifene, so that the overall effect of these
two substances may be masked by the biomechanical
stimulation. The high biomechanical stability of this model in
general (with intact fibula) is visible in the endosteal healing
associated with slight periosteal callus formation as well. This is
typical for fracture healing under stable conditions at the
metaphyseal site. In case of instability, periosteal callus formation
is notably accelerated as described by Claes et al. [33, 34].

A fracture-healing model in osteoporosis represented at
the diaphyseal femur or tibia of the rat is not adequate for
two reasons. Firstly, the mechanisms of metaphyseal
fracture healing are completely different from that seen in
diaphyseal bone. Diaphyseal bone essentially heals with
periosteal callus formation, while metaphyseal bone usually
heals endosteally with micro-callus and with only gentle
periosteal callus formation. In the presented animal model,
a small periosteal callus formation could be evaluated
because the chosen bridge plating osteosynthesis and the
0.5 mm osteotomy gap allow micromotions, which trig-
gered minimal periosteal callus. The second reason is that
osteoporotic fractures in humans occur typically in the
metaphysis, as osteoporosis affects the metaphyseal bone to
a larger degree and in another manner than the diaphyseal
bone. After 3-month duration, rats lose up to 50% bone
mineral density after ovariectomy in the metaphyseal tibia
[10], much more than in diaphyseal bone [35]. The
trabecular structure degrades in the metaphyseal bone,
while the diameter of the diaphysis enlarges to compensate
for the thinning of cortical bone. This results in an
extensive degradation of the metaphyseal bone, whereas
the diaphyseal bone is comparatively less affected. The loss
in diaphyseal biomechanical stability is then often not as
high as expected [6, 19, 20, 36].

The newly developed metaphyseal fracture rat model was
created with a standardized 0.5 mm fracture gap. This fracture
gap was chosen because metaphysis fracture healing occurs
with less periosteal callus formation than in the diaphysis. To
evaluate the potency of a substance in stimulating fracture
healing (at the morphological level), it is necessary to have a
defined area for the evaluation: the 0.5 mm fracture gap
represents this area. It is well known that small fracture gaps
(<2 mm) also ensure better progression of fracture healing,
whereas wider gaps are more likely to interfere in this process
[33, 34]. The duration of 5weeks after performing the osteotomy
was chosen because fracture healing was, according to our
preliminary trials, still in progress and not yet completed [35].

Influence of estrogen and raloxifene on fracture healing

The Food and Drug Administration has approved the rat as
an osteopenia model in research; animals develop substan-
tial osteoporosis within a few weeks. In this study, the
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mature model of osteoporosis was used. Fracture healing at
the metaphyseal tibia was improved by estrogen and
raloxifene. These findings are similar to those observed
by other groups who studied diaphyseal bone [5, 15, 37, 38,
39]. In the diaphyseal bone, there was no insight regarding
trabecular structure and its remodeling. Both substances
were used in established concentration of oral supplemen-
tation [5, 21, 22, 24, 39]. The sufficiency of oral
administration of E was proved by the measured quality
and quantity of the fracture callus: Most values were even
similar to those found at SHAM-operated rats which had no
ovariectomy. The presented metaphyseal fracture-healing
model was able to differentiate the individual effects on the
fracture healing process of these two medicaments of first
choice in osteoporosis.

In postmenopausal osteoporosis, the activity of osteoblasts
and osteoclasts is very high due to a lack of ovarian hormones,
especially of estrogen; this process is called high-turnover
osteoporosis. The action of E is essential for maintenance of
normal bone structure and thereby of bone strength [40, 41].
Interestingly the values of OC, IGF-1, collagen1α1, and
TRAP in the callus formation did not differ significantly
between OVX and SHAM, although there was a lack of
estrogen in OVX. A significant downregulation of all
measured genes was detected for the E-treated group
compared to OVX and SHAM, which means that osteoblast
and osteoclast activity after E supplementation was sup-
pressed. In contrast to what had been expected, it was not
suppressed in SHAM. Raloxifene as a selective estrogen
receptor modulator (SERM) lies in between the other two
extreme values. Including callus morphology and quality,
there seemed to be no correlation between the gene
expression of OC, IGF-1, collagen1α1, and TRAP and the
metaphyseal fracture healing: both “positive control groups,”
SHAM and E, had an equal extent of callus formation and
callus quality but a significantly different level of gene
expression. In similarity with previous studies, gene expres-
sion in the callus formation is highly variable [42–44].

The occurrence of increased callus formation, as found
for raloxifene, does not inevitably imply better mechanical
quality. For estrogen-treated animals and SHAM, the yield
point was significantly higher than in the OVX control
group, which suggests an earlier occurrence of plastic
deformation resulting in micro fracturing in the osteopenic
animals; callus formation is less elastic and therefore less
resistant to interfering forces. In terms of the stiffness,
raloxifene showed a smaller improvement than estrogen,
which had a significant higher value than the OVX group.

Conclusion

Estrogen and raloxifene improve fracture healing in
osteoporotic bone after osteotomy and stable internal

fixation. The quality of the endosteal and periosteal healing
process resembles that of healthy bone, represented by
animals with intact ovaries (SHAM).

The metaphyseal tibial fracture model presented here has
proven to be suitable for the evaluation of different agents
used in the treatment of osteoporosis. In the ovariectomized
rat, osteopenia at the metaphyseal tibia is highly compara-
ble to the disease that manifests in humans with osteopo-
rotic fractures of the distal radius, the hip, or the proximal
humerus. However, this animal model provides the oppor-
tunity of testing calcium, vitamins, hormones, phytoestro-
genes, SERM, and bisphosphonates and observing the
potential abilities of these compounds in improving fracture
healing in this important bone disease.

Conflict of interest statement All authors have no conflict of
interest.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Ray NF, Chan JK, Thamer M, Melton LJ (1997) III. Medical
expenditures for the treatment of osteopenic fracture in the United
States in 1995: Report from the National Osteoporosis Founda-
tion. J Bone Miner Res 12:24–35. doi:10.1359/jbmr.1997.12.1.24

2. McCann RM, Colleary G, Geddis C, Clarke SA, Jordan GR,
Dickson GR, Marsh D (2008) Effect of osteoporosis on bone
mineral density and fracture repair in a rat femoral fracture model.
J Orthop Res 26:384–393. doi:10.1002/jor.20505

3. Hao YL, Zhang G, Wang YS, Qin L, Hung WY, Leung K, Pei FX
(2007) Changes of microstructure and mineralized tissue in the
middle and late phase of osteoporotic fracture healing in rats.
Bone 41:631–638. doi:10.1016/j.bone.2007.06.006

4. Rodan GA, Martin TJ (2000) Therapeutic approaches to bone
disease. Science 289:1508–1514. doi:10.1126/science.
289.5484.1508

5. Cao Y, Mori S, Mashiba T, Westmore MS, Ma L, Sato M,
Akiyama T, Shi L, Komatsubara S, Miyamoto K, Norimatsu H
(2002) Raloxifene, estrogen and alendronate affect the processes
of fracture repair differently in ovariectomized rats. J Bone Miner
Res 17:2237–2246. doi:10.1359/jbmr.2002.17.12.2237

6. Danielsen CC, Mosekilde L, Svenstrup B (1993) Cortical bone
mass, composition, and mechanical properties in female rats in
relation to age, long-term ovariectomy, and estrogen substitution.
Calcif Tissue Int 52:26–33. doi:10.1007/BF00675623

7. Li XJ, Jee WSS, Ke HZ, Mori S, Akamine T (1991) Age related
changes of cancellous and cortical bone histomorphometry in
female Sprague–Dawley rats. Cells Mater Suppl 1:25–35

8. Wronski TJ, Yen CF (1991) The ovariectomized rat as an animal
model for postmenopausal bone loss. Cells Mater Suppl 1:69–74

9. Frost HM, Jee WSS (1992) On the rat model of human
osteopenias and osteoporosis. Bone Miner 18:227–236.
doi:10.1016/0169-6009(92)90809-R

Langenbecks Arch Surg (2010) 395:163–172 171

http://dx.doi.org/10.1359/jbmr.1997.12.1.24
http://dx.doi.org/10.1002/jor.20505
http://dx.doi.org/10.1016/j.bone.2007.06.006
http://dx.doi.org/10.1126/science.289.5484.1508
http://dx.doi.org/10.1126/science.289.5484.1508
http://dx.doi.org/10.1359/jbmr.2002.17.12.2237
http://dx.doi.org/10.1007/BF00675623
http://dx.doi.org/10.1016/0169-6009(92)90809-R


10. Wronski TJ, Lowry PL, Walsh CC, Ignaszewski LA (1985)
Skeletal alterations in ovariectomized rats. Calcif Tissue Int
37:324–328. doi:10.1007/BF02554882

11. Faugerer MC, Okamoto S, DeLuca HF, Malluch HH (1986)
Calcitriol corrects bone loss induced by oophorectomy in rats. Am
J Physiol 250:E35–E38

12. Schmidmaier G, Wildemann B, Bail H, Lucke M, Stemberger A,
Flyvbjerg A, Haas NP, Raschke M (2001) Local application of
growth factors (insulin-like growth factor-1 and Transforming
growth factor-β) from a biodegradable poly(D,L-lactide) coating
of osteosynthetic implants accelerated fracture healing in rats.
Bone 28:341–350. doi:10.1016/S8756-3282(00)00456-7

13. Nakajima A, Shimoji N, Shiomi K, Shimizu S, Moriya H, Einhorn
TA, Yamazaki M (2002) Mechanisms for the enhancement of
fracture healing in rats treated with intermittent low-dose human
parathyroid hormone (1-34). J Bone Miner Res 17:2038–2047.
doi:10.1359/jbmr.2002.17.11.2038

14. Kubo T, Shiga T, Hashimoto J, Yoshioka M, Honjo H, Urabe M,
Kitajima I, Semba I, Hirasawa Y (1999) Osteoporosis influences
the late period of fracture healing in a rat model prepared by
ovariectomy and low calcium diet. J Steroid Biochem Mol Biol
68:197–202. doi:10.1016/S0960-0760(99)00032-1

15. Li C, Mori S, Li J, Kaji Y, Akiyama T, Kawanishi J, Norimatsu H
(2001) Long-term effect of incadronate disodium (YM-175) on
fracture healing of femoral shaft in growing rats. J Bone Miner
Res 16:429–436. doi:10.1359/jbmr.2001.16.3.429

16. Li J, Mori S, Kaji Y, Akiyama T, Norimatsu H (2000)
Concentration of bisphosphonate (incadronate) in callus area and
is effects on fracture healing in rats. J Bone Miner Res 15:2042–
2051. doi:10.1359/jbmr.2000.15.10.2042

17. Hatano H, Siegel HJ, Yamagiwa H, Bronk JT, Turner RT,
Bolander ME, Sarkar G (2004) Identification of estrogen-related
genes during fracture healing, using DANN microarray. J Bone
Miner Metab 22:224–235. doi:10.1007/s00774-003-0482-y

18. Peng Z, Tuukkanen J, Zhang H, Jämsä T, Väänänen HK (1994) The
mechanical strength of bone in different rat models of experimental
osteoporosis. Bone 15:523–532. doi:10.1016/8756-3282(94)90276-3

19. Aerssens J, van Audekercke R, Talalaj M, Geusens P, Bramm E,
Dequeker J (1996) Effect of 1α-Vitamin D3 and Estrogen therapy on
cortical bone mechanical properties in the ovariectomized rat model.
Endocrinology 137:1358–1364. doi:10.1210/en.137.4.1358

20. Rahn BA (1976) The fluorochrome sequence labelling of the
bone. Nova Acta Leopold 44:249–255

21. Stuermer EK, Seidlova-Wuttke D, Sehmisch S, Rack T, Wille J,
Frosch KH, Wuttke W, Stuermer KM (2006) Standardized bending
and breaking test for the normal and osteoporotic metaphyseal
tibias of the rat: effect of estradiol, testosterone, and raloxifene. J
Bone Miner Res 21:89–96. doi:10.1359/JBMR.050913

22. Schenk RK (1965) The histological preparation of undecalcified
bone. Acta Anat (Basel) 60:3–19. doi:10.1159/000142633

23. Stuermer EK, Sehmisch S, Rack T, Boeckhoff J, Wuttke W,
Seidlova-Wuttke D, Stuermer KM (2008) Details of estrogen,
testosterone and raloxifene influence on the microstructure and
biomechanics of the osteoporotic bone. World J Urol (accepted)

24. Stuermer KM (1980) The microradiography of the bone.
Technique, expressiveness and planimetry. Unfallheilk Hft
148:247–251

25. Frost HM (1959) Staining of fresh, undecalcified, thin bone
section. Stain Technol 33:135–146

26. Walsh WR, Sherman P, Howlett CR, Sonnabend DH, Ehrlich MG
(1997) Fracture healing in a rat osteopenia model. Clin Orthop
Relat Res 342:218–227. doi:10.1097/00003086-199709000-00029

27. Seidlova-Wuttke D, Stuermer KM, Stuermer EK, Sehmisch S,
Wuttke W (2006) Contrasting effects of estradiol, testosterone and

of a black cohosh extract on density, mechanical properties and
expression of several genes in the metaphysis of the tibia and on
fat tissue of orchidectomized rats. Maturitas 55S:64–74.
doi:10.1016/j.maturitas.2006.06.018

28. Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W,
Margevicius KJ, Augat P (1998) Effects of mechanical factors on
the fracture healing process. Clin Orthop Relat Res 355
(Suppl):132–147. doi:10.1097/00003086-199810001-00015

29. Aspenberg P, Wermelin K, Tengwall P, Fahlgren A (2008)
Additive effects of PTH and bisphoshonates on the bone healing
response to metaphyseal implants in rats. Acta Orthop 79:111–
115. doi:10.1080/17453670710014851

30. Claes L, Veeser A, Göckelmann M, Simon U, Ignatius A (2008) A
novel model to study metaphyseal bone healing under defined
biomechanical conditions. Arch Orthop Trauma Surg 25 (Epub
ahead of print)

31. Morgan EF, Mason ZD, Bishop G, Davis AD, Wigner NA,
Gerstenfeld LC, Einhorn TA (2008) Combined effects of
recombinant human BMP-7 (rhBMP-7) and parathyroid hormone
(1–34) in metaphyseal bone healing. Bone (Epub ahead of print)

32. Tsiridis E, Morgan EF, Bancroft JM, Song M, Kain M, Gerstenfeld
L, Einhorn TA, Bouxsein ML, Tornetta P 3rd (2007) Effects of OP-
1 and PTH in a new experimental model for the study of
metaphyseal bone healing. J Orthop Res 25:1193–1203

33. Claes L, Augat P, Suger G, Wilke HJ (1997) Influence of size and
stability of the osteotomy gap on the success of fracture healing. J
Orthop Res 15:577–584. doi:10.1002/jor.1100150414

34. Iwaniec UT, Moore K, Rivera MF, Myers SE, Vanegas SM,
Wronski TJ (2007) A comparative study of the bone-restorative
efficacy of anabolic agents in aged ovariectomized rats. Osteo-
poros Int 18:351–362. doi:10.1007/s00198-006-0240-9

35. Blythe JG, Buchsbaum HJ (1976) Fracture healing in estrogen-
treated and castrated rats. Obstet Gynecol 48:351–352

36. Ohishi T, Takahashi M, Kushida K, Hoshio H, Tsuchikawa T,
Naitoh K (1998) Changes of biochemical markers during fracture
healing. Arch Orthop Trauma Surg 118:126–130. doi:10.1007/
s004020050331

37. Namkung-Matthai H, Appleyard R, Jansen J, Hao Lin J,
Maastricht S, Swain M, Mason RS, Murrell GA, Diwan AD,
Diamond T (2000) Osteoporosis influences the early period of
fracture healing in a rat osteoporotic model. Bone 28:80–86.
doi:10.1016/S8756-3282(00)00414-2

38. Miwa M, Sibonga JD, Sarkar G, Bronk JT, Mizuno K, Turner RT,
Bolander ME (1999) Estrogen deficiency causes delayed fracture
repair. Trans Orthop Res Soc 24:482

39. Bolander ME, Sabbagh R, Jeng C, Vivianno D, Boden SD (1992)
Estrogen treatment during fracture repair strengthens healing
callus in an osteoporotic model. Trans Orthop Res Soc 17:138

40. Klein P, Bail HJ, Schell H, Michel R, Amthauer H, Bragulla H
(2004) Are bone turnover markers capable of predicting callus
consolidation during bone healing? Calcif Tissue Int 75:40–49.
doi:10.1007/s00223-004-0183-0

41. Seebeck P, Bail HJ, Exner C, Schell H, Michel R, Amthauer H,
Bragulla H, Duda GN (2005) Do serological tissue turnover
markers represent callus formation during fracture healing? Bone
37:669–677. doi:10.1016/j.bone.2005.06.008

42. Kalu DN (1991) The ovariectomized rat model of postmenopausal
bone loss. BoneMiner 15:175–191. doi:10.1016/0169-6009(91)90124-I

43. Wronski TJ, Dann LM, Horner SL (1989) Time course of
vertebral osteopenia in ovariectomized rats. Bone 10:295–301.
doi:10.1016/8756-3282(89)90067-7

44. Brand RA, Rubin CT (1987) Fracture healing. In: Albright JA,
Brand RA (eds) The scientific basis of orthopaedics. Appleton &
Lange, Norwalk/Connecticut, pp 325–340

172 Langenbecks Arch Surg (2010) 395:163–172

http://dx.doi.org/10.1007/BF02554882
http://dx.doi.org/10.1016/S8756-3282(00)00456-7
http://dx.doi.org/10.1359/jbmr.2002.17.11.2038
http://dx.doi.org/10.1016/S0960-0760(99)00032-1
http://dx.doi.org/10.1359/jbmr.2001.16.3.429
http://dx.doi.org/10.1359/jbmr.2000.15.10.2042
http://dx.doi.org/10.1007/s00774-003-0482-y
http://dx.doi.org/10.1016/8756-3282(94)90276-3
http://dx.doi.org/10.1210/en.137.4.1358
http://dx.doi.org/10.1359/JBMR.050913
http://dx.doi.org/10.1159/000142633
http://dx.doi.org/10.1097/00003086-199709000-00029
http://dx.doi.org/10.1016/j.maturitas.2006.06.018
http://dx.doi.org/10.1097/00003086-199810001-00015
http://dx.doi.org/10.1080/17453670710014851
http://dx.doi.org/10.1002/jor.1100150414
http://dx.doi.org/10.1007/s00198-006-0240-9
http://dx.doi.org/10.1007/s004020050331
http://dx.doi.org/10.1007/s004020050331
http://dx.doi.org/10.1016/S8756-3282(00)00414-2
http://dx.doi.org/10.1007/s00223-004-0183-0
http://dx.doi.org/10.1016/j.bone.2005.06.008
http://dx.doi.org/10.1016/0169-6009(91)90124-I
http://dx.doi.org/10.1016/8756-3282(89)90067-7

	Estrogen...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Animals and operating procedure
	Treatment groups and substances
	Intravital fluorochrome labeling
	Endpoint and specimen preparation
	Radiographic evaluation
	Biomechanical testing
	Preparation for microscopy and microradiography
	Gene analysis
	Evaluation and statistics

	Results
	Radiographic evaluation
	Biomechanical testing
	Microradiographic evaluation
	Evaluation of the intravitale fluorochrome labeling
	Gene analysis

	Discussion
	Metaphyseal osteotomy and osteosynthesis model
	Influence of estrogen and raloxifene on fracture healing
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


