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Abstract
Could enzymatic activities and their cooperative functions act as cellular temperature-sensing systems? This review intro-
duces recent opto-thermal technologies for microscopic analyses of various types of cellular temperature-sensing system. 
Optical microheating technologies have been developed for local and rapid temperature manipulations at the cellular level. 
Advanced luminescent thermometers visualize the dynamics of cellular local temperature in space and time during micro-
heating. An optical heater and thermometer can be combined into one smart nanomaterial that demonstrates hybrid function. 
These technologies have revealed a variety of cellular responses to spatial and temporal changes in temperature. Spatial 
temperature gradients cause asymmetric deformations during mitosis and neurite outgrowth. Rapid changes in temperature 
causes imbalance of intracellular  Ca2+ homeostasis and membrane potential. Among those responses, heat-induced muscle 
contractions are highlighted. It is also demonstrated that the short-term heating hyperactivates molecular motors to exceed 
their maximal activities at optimal temperatures. We discuss future prospects for opto-thermal manipulation of cellular 
functions and contributions to obtain a deeper understanding of the mechanisms of cellular temperature-sensing systems.
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Introduction

Sensing the temperature is an essential activity for life. 
Humans sense a variety of temperatures of air, water, and 
food in their daily lives, such as sauna (~ 100 °C), hot tea 
(~ 60 °C), comfortable shower (~ 40 °C), iced coffee (~ 4 °C), 

and ice cream (~ − 10 °C). We also sense our own internal 
temperature to maintain our body temperature. If the tem-
perature-sensing system is dysfunctional, we cannot predict 
threats such as thermal injury and hypo- and hyperthermia.

It has been shown that living organisms are equipped 
with various different temperature sensors at the cellular 
level. The well-known temperature sensors are the thermo 
transient receptor potential (TRP) channels, which are the 
temperature-sensitive ion channels (Patapoutian et al. 2003). 
These channels are characterized by their high temperature 
sensitivities; the Q10 values of the TRP channels, which 
describe the rate of change in the current amplitude when 
the temperature is elevated by 10 °C, exceed 7 (Vriens et al. 
2014). Furthermore, biochemical processes are tempera-
ture-sensitive in general (Elias et al. 2014). For example, 
Q

10
≈ 1 − 3 for typical enzymatic reactions and ion chan-

nels, with the exception of thermo TRP channels. We also 
need to bear in mind that cellular systems involve coordi-
nated functions of proteins. The  Ca2+ channels, exchangers, 
pumps, and  Ca2+-binding proteins maintain intracellular 
 Ca2+ homeostasis and  Ca2+ signaling (Berridge et al. 2003). 
The temperature sensitivity of the whole  Ca2+ regulatory 
system may be a non-linear combination of the sensitivities 
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of individual reactions, so it is usually difficult to predict 
until examined.

This review focuses on optical methods for manipulating 
the local temperature of cells to directly control a variety of 
cellular temperature-sensing systems. Optical heating is suit-
able for analyzing cellular temperature-sensing systems for 
the following reasons. First, it is well compatible with imag-
ing-based analyses using optical microscopes. Second, it is 
free from the focus drift caused by the thermal expansion of 
materials such as plastics, glasses, and metallic components, 
which occurs when they are heated globally. We begin by 
introducing the optical microheaters and thermometers that 
have been used in microheating studies. Unique temperature-
sensing systems in cells have been revealed and manipulated 
by these opto-thermal technologies, especially for muscle 
contractions, which is reviewed in this paper, followed by 
discussion on future prospects.

Microscopic temperature manipulation

Pioneering studies have used a macro-heater or macro-cooler 
to produce spatial temperature gradients in microscopic 
areas. For instance, the macro-heater and macro-cooler 
comprise two copper fins connected with either hot or cold 
reservoirs (Ishizaka 1969). A linear temperature gradient 
of 1.5–6.5 °C per 100 μm was created over a grasshopper 
spermatocyte by adjusting the gap between the pair of fins. 
Nicklas fabricated a “microheater” with a resistance wire 
heater on a glass needle to apply a localized temperature 
gradient to a single cell (Nicklas 1973). The wire of a thick-
ness of about 1.5–2 μm was bent in a U-shape of a diameter 
of 100 μm at the tip of the microheater. The temperature 
gradient was 10 °C and 15 °C in 10 μm and 50 μm from the 
microheater, respectively.

A temporal temperature gradient has been produced by 
optical heating. Optical temperature-jump (T-jump) meth-
ods are frequently used in studies of protein thermodynam-
ics. For instance, a water-soluble triphenylmethane dye 
crystal violet was heated by a 532-nm laser pulse to induce 
the unfolding of RNase A (Phillips et al. 1995). The rate of 
temperature rise was 10 °C per 70 ps. Microscopic analyses 
with T-jump methods have enabled evaluation of the tension 
response of muscle fibers to fast temperature rises (Rana-
tunga 2018). Compared with the relatively fast temperature 
rise, the uniform heating of solutions with T-jump methods 
results in slow recovery to the initial temperature (~ 10 s) 
(Goldman et al. 1987).

Optical microheaters have resolved this issue by decreas-
ing the volume of the heat source (Fig. 1). An early attempt 
at this was “temperature pulse microscopy” using an alu-
minum aggregate (dimension ~ 10 μm) on a glass coverslip. 
The aggregate was heated by focusing a 1053-nm laser 

light to produce a concentric temperature gradient up to 
2 °C μm−1 around the aggregate (Kato et al. 1999). The tem-
perature gradient could be removed quickly by terminating 
the laser light irradiation. Square-wave heat pulses (origi-
nally referred to as “temperature pulses”) were created with 
rise and fall times of ~ 10 ms. If the aluminum aggregate was 
attached to the tip of a glass micropipette (tip ϕ ~ 1 μm) on 
micro manipulators, the heat source could be positioned at 
arbitrary locations (Zeeb et al. 2004).

Optical heating of nanomaterials is an effective strategy to 
minimize the volume of the heat source. Gold nanospheres 
illuminated by 532-nm laser light were shown to heat human 
embryonic fibroblast WS1 cells locally (Kucsko et al. 2013). 
Owing to the low absorption of near-infrared (NIR) light 
(~ 650–900 nm) by biological samples (Weissleder 2001), 
NIR-absorbable gold nanoshells (Loo et al. 2005; Gobin 
et al. 2007; Marino et al. 2017), gold nanonods (Huang et al. 
2006; Eom et al. 2014; Yoo et al. 2014; Yong et al. 2014), 
and star-shaped gold nanoparticles (Zhu et al. 2021) have 
been developed for photothermal stimulation in deep tissues. 
NIR light was also used to heat carbon nanomaterials such 
as carbon nanotubes (Kam et al. 2005; Miyako et al. 2012b) 
and carbon nanohorns (Miyako et al. 2012a). Miyako et al. 
conjugated the NIR fluorescent dye IRDye800CW to carbon 
nanohorns to enhance the heat power of the nanomaterials 
in cells (Miyako et al. 2014).

Optical microheating without materials is convenient to 
target arbitrary positions, especially in vivo. Optical laser 
traps (optical tweezers) with 1064-nm laser light were 
reported to directly heat membranes of CHO cells with heat-
ing efficiency of ~ 1.15 °C per 100 mW (Liu et al. 1995). 
Water-absorbed laser light achieves heating more efficiently. 
Kamei et al. used 1480-nm laser light for heating acrylamide 
gel as an in vitro tissue model with a heating rate of ~ 1 °C 
 mW−1 and then applied the method in living C. elegans to 
activate heat shock promoter, followed by the induction of 
gene expression only in targeted cells (Kamei et al. 2009).

Microscopic temperature measurement

Thermocouples are commonly used to measure the tem-
perature in solution, but they are too large for the scale of 
single cells. Therefore, in early studies, the temperature was 
visualized by the dewing point (31 °C) and freezing front 
(0 °C) (Ishizaka 1969) or estimated from the birefringence 
of mitotic spindles (Nicklas 1973).

The development of microscopic luminescence ther-
mometry has constituted progress in fluorescence micros-
copy (Fig. 1). Temperature changes alter the luminescence 
properties of temperature probes such as intensity, absorp-
tion and emission spectra, polarization, and lifetime (Jaque 
and Vetrone 2012; Brites et al. 2012; Zhou et al. 2020). 
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Microscopic temperature imaging in solution can be per-
formed by relatively simple methods that detect the thermal 
quenching of water-soluble luminescent dyes such as rho-
damine B (Ross et al. 2001), BCECF (Braun and Libch-
aber 2002), and tetramethylrhodamine or Alexa Fluor 555 
conjugated to dextran (Oyama et al. 2015a). Luminescent 
nanosheets containing the temperature-sensitive dye euro-
pium (III) thenoyltrifluoroacetonate trihydrate (Eu-TTA) 
visualize the temperature distribution on the glass surface 
during optical microheating of solution (Itoh et al. 2014; 
Oyama et al. 2020). Romshin et al. determined the tem-
perature gradient using a fluorescent nanodiamond (FND) 
attached to the tip of a glass micropipette (Romshin et al. 
2021).

Luminescence properties of the temperature probes can 
also be affected by non-thermal environmental parameters 
such as pH. This issue can be resolved by a probe that has 

perfect robustness. For example, temperature-sensitive 
dye can be covered by another material that functions as a 
coating to protect the dye from environmental changes. We 
demonstrated this strategy experimentally for the first time, 
where Eu-TTA dye was enclosed in a glass micropipette 
(Zeeb et al. 2004). We further expanded this strategy by 
developing robust polymer-nanoparticles embedding tem-
perature-sensitive luminescent dyes (Oyama et al. 2012b; 
Takei et al. 2014; Arai et al. 2015a; Ferdinandus et al. 2016).

Intracellular luminescent thermometry has been devel-
oped to detect cellular thermogenesis (Suzuki et al. 2016; 
Okabe et al. 2018; Zhou et al. 2020). The same luminescent 
thermometers are applicable in combination with micro-
heating methodologies. Temperature-sensitive fluores-
cent polymers (Uchiyama et al. 2004) injected into HeLa 
cells demonstrated that the temperature in the cytoplasm 
rose and dropped within 300 and 100 ms, respectively, in 
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Fig. 1  Optical microheaters and thermometers for cell analyses. 
Left, optical heating of aluminum (Al) particles attached to the tip 
of a glass micropipette generates square-shaped heat pulses (Zeeb 
et  al. 2004). Water-absorbable light can heat the cells directly with-
out materials. Gold nanorod (AuNR), gold nanoshell (AuNS), car-
bon nanotube (CNT), and carbon nanohorn (CNH) are excited by 
near-infrared (NIR) light (see text for details). Right, glass pipette 
that either encloses luminescent thermometer europium (III) the-
noyltrifluoroacetonate trihydrate (Eu-TTA) (Zeeb et  al. 2004) or 
attaches a fluorescent nanodiamond (FND) at the tip (Romshin et al. 
2021) detect local temperature in extracellular solution. Thermom-
eter nanosheet containing Eu-TTA visualizes surface temperature 
of cells (Itoh et al. 2014; Oyama et al. 2020). Temperature-sensitive 
fluorescent polymer (Tseeb et al. 2009) and green fluorescent protein 
(GFP) (Kamei et al. 2009) and its sophisticated derivatives (Nakano 
et  al. 2017; Vu et  al. 2021) are used as intracellular thermometers 

in microheating studies. Thermometer nanoparticles are enclosed 
in endosomes and transported along microtubules (named “walking 
thermometer”) (Oyama et al. 2012b). “Organelle thermometers” such 
as ER thermo yellow (ERTY) (Arai et al. 2014), Mito thermo yellow 
(MitoTY) (Arai et al. 2015b), and 5(6)-carboxytetramethylrhodamine 
(TAMRA)-azide (Hou et al. 2016) are targeted to specific organelles 
and can visualize the steep temperature gradient in cells during heat-
ing. Center, hybrid materials working as both heaters and thermom-
eters have been developed with FNDs such as an FND attached to 
the tip of an optical fiber (Fedotov et al. 2015) or FNDs coated with 
the photothermal agent polydopamine (PDA) (Sotoma et  al. 2021). 
Gold nanoparticles (AuNPs) are excited, and the changes of refractive 
index of the medium are probed for temperature measurement (Song 
et al. 2021). Magnetic nanoparticles (MNPs) covered with fluorescent 
thermometer dye DyLight594 are excited by radio-frequency mag-
netic field (Huang et al. 2010)

43Biophysical Reviews (2022) 14:41–54



1 3

response to a heat pulse, where the heat pulse was created 
by an aggregate of aluminum nanoparticles illuminated by 
a focused 1064-nm laser light (Tseeb et al. 2009). The 3D 
temperature distributions in acrylamide gel during heat-
ing with a 1480-nm laser light were visualized using E. 
coli overexpressing GFP (Kamei et al. 2009). Genetically 
encoded fluorescent thermometers measured the temperature 
changes in cytoplasm (Nakano et al. 2017) and nuclei (Vu 
et al. 2021) during opto-thermal microheating. FNDs were 
also demonstrated to detect temperature gradients in cells 
when intracellular gold nanoparticles were illuminated by 
532-nm light (Kucsko et al. 2013) or when heated by focused 
1480-nm laser light (Choi et al. 2020). Other examples are 
small molecules targeted to the endoplasmic reticulum (ER) 
(Arai et al. 2014) and mitochondria (Arai et al. 2015b), or 
fluorescent nanosensors targeted to ER by an intracellular 
bottom-up approach (Hou et al. 2016). These organelle-tar-
geted fluorescent probes visualized the temperature gradi-
ents in respective organelles during local heating.

Two technologies of temperature manipulation and ther-
mometry need to be combined in single hybrid nanomateri-
als to determine the temperature of the nanomaterial as a 
small heat source (Fig. 1). Superparamagnetic nanoparticles 
were coated with the temperature-sensitive dye DyLight549 
to measure the temperature of the nanoparticle surface 
(Huang et al. 2010). Fluorescent diamonds have been used 
as hybrid materials in several ways. For instance, diamond 
microcrystal attached to the tip of an optical fiber was heated 
by a 532-nm laser (Fedotov et al. 2015). Nanohybrids of 
gold nanorod-FND (Tsai et al. 2015) were used to determine 
the rupture temperature of cell membranes (Tsai et al. 2017). 
Sotoma et al. coated FND with polydopamine demonstrating 
photothermal conversion. They successfully measured the 
intracellular thermal conductivity for the first time as about 
one-sixth of that of water, where significant variation of the 
value was also recognized (Sotoma et al. 2021). To map the 
possible inhomogeneity of the heat transfer in a cell, Au 
nanoparticles were pumped with a 532-nm laser for heating 
locally, while the localized temperature changes were probed 
using white light by detecting the temperature-dependent 
changes of the refractive index of the surrounding medium 
(Song et al. 2021).

Cellular responses to spatial temperature 
gradient

The spatial gradient of the temperature is formed in tissues in 
the range of ~ 0.01–1 °C  mm−1. For instance, the temperature 
gradients across skin and eye are 0.2–0.5 °C  mm−1 (Bazett and 
McGlone 1927) and 0.1–1.3 °C  mm−1 (Schwartz and Feller 
1962), respectively. In rabbit oviduct, the temperature differ-
ence between the sperm storage site and fertilization site (the 

distance between two sites is ~ 100 mm) is increased from 0.8 
to 1.6 °C after ovulation (Bahat et al. 2005). From these val-
ues, the temperature difference across a single cell (~ 10 μm) is 
calculated as ~ 0.0001–0.01 °C when a one-dimensional homo-
geneous temperature gradient is assumed. These tiny tempera-
ture gradients are known to affect cellular behaviors. Human 
sperm cells show thermotaxis; they respond to the temperature 
gradient of < 0.014 °C  mm−1 and migrate toward the warmer 
side (Bahat et al. 2003, 2012). Surprisingly, the temperature 
difference in the cell body (46 μm) is < 0.0006 °C.

A temperature gradient affects the process of cell division. 
A temperature gradient (6 °C per 100 μm) along the spindle 
of anaphase spermatocytes accelerates the development of the 
aster at the warmer side, moves the spindle toward the cooler 
side, and induces asymmetric division (Ishizaka 1969). Nick-
las applied a steeper gradient than that of the previous study 
(15 °C per 50 μm) and observed accelerated chromosome sep-
aration at warmer side (Nicklas 1979). The plasma membrane 
at the hotter side of a mitotic HeLa cell is extended toward 
the heat source, termed a polar bleb, due to the asymmetric 
movement of actomyosin cortex by imbalanced actomyosin 
contractile forces (Oyama et al. 2015a) (Fig. 2a). The mini-
mum temperature difference within the cell (~ 20 μm) to form 
the polar bleb was found to be 1.3 °C, or over 65 °C  mm−1. 
Such a large gradient has not been observed in tissues, but it 
may be formed in thermal therapies using nano-/micromaterial 
heaters (Rajan and Sahu 2020; Liao et al. 2021).

Cellular response to the temperature gradient is also the 
subject of studies examining the mechanism in the optical 
guidance of neurite outgrowth. Ebbesen and Bruus calcu-
lated the temperature gradient during the optical guidance 
using an infrared (IR) laser light and proposed that the heat 
activation of TRP channels mediates the neuronal guidance 
(Ebbesen and Bruus 2012). Their conclusion matched the 
experimental findings; TPRV1 antagonist suppressed repul-
sive response of growth cone to the focused 785-nm laser 
light (Black et al. 2016). We observed the attraction of neu-
rite outgrowth of rat hippocampal neurons toward the heat 
source that was formed by 1455-nm IR laser light (Oyama 
et al. 2015b). While the neurite outgrowth was independent 
of the TRP channels’ activity, substantial but non-essential 
contribution of  Ca2+ influx was demonstrated. We proposed 
the mechanism based on heat-accelerated polymerization of 
actin filaments and microtubules and their sliding by molec-
ular motors.

Cellular responses to temporal temperature 
gradient

The previous section summarized cellular responses to the 
spatial temperature gradient that is formed in a steady state. 
Here, we show that the sudden changes in temperature can 
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also cause various cellular responses that range from  Ca2+ 
signaling to membrane excitation.

Rapid cooling induces intracellular  [Ca2+]  ([Ca2+]i) 
increases in various types of cell. For instance, rapid cooling 
from 36.5 °C to a temperature below 18 °C induces guinea 
pig cardiac muscle contractures, named rapid cooling con-
tractures (RCC) (Kurihara and Sakai 1985). The maximum 
tension during RCC depends on the rate of cooling (Sakai 
and Kurihara 1974). The rapid cooling induces  Ca2+ release 
from intracellular  Ca2+ store sarcoplasmic reticulum (SR) 
mainly through ryanodine receptors (RyRs) (Protasi et al. 
2004) and probably also through inositol trisphosphate 

receptors  (IP3Rs) (Talon et al. 2000), both of which are SR 
 Ca2+ release channels. Cooling elevates the open probabil-
ity of RyRs (Sitsapesan et al. 1991). Additionally, cooling 
decreases the activity of sarco-/endoplasmic reticulum  Ca2+ 
ATPase (SERCA) (Dode et al. 2001; Landeira-Fernandez 
et al. 2004), which is suggested to increase the net  Ca2+ 
leak from SR. Rapid cooling is also known to induce  [Ca2+]i 
increases in Paramecium (Inoue and Nakaoka 1990) and in 
plant cells (Plieth et al. 1999; Nagel-Volkmann et al. 2009).

Interestingly, similar  [Ca2+]i increases are also induced 
by a heat pulse for several seconds. When a heat pulse for 
2 s was applied to HeLa cells, there was a  [Ca2+]i decrease 
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Fig. 2  Cellular responses to spatial and temporal temperature gra-
dients. a Responses to spatial temperature gradient. Left, spherical 
mitotic cells extend the plasma membrane (bleb) toward the heat 
source with asymmetric movement of actomyosin cortex (Oyama 
et  al. 2015a). Right, neurites elongated toward the heat source with 
enhanced polymerization/sliding of microtubules and actin filaments 
(Oyama et  al. 2015b). Bottom, repulsive guidance of growth cone 
is triggered by heat-activated  Ca2+ influx through transient recep-
tor potential channels (TRPV1) (Black et  al. 2016). b Responses to 
temporal temperature gradient. Left, heat pulse elevates the intracel-
lular concentration of  Ca2+  ([Ca2+]i) due to  Ca2+ release from intra-
cellular  Ca2+ store endoplasmic reticulum (ER) (Tseeb et  al. 2009; 
Itoh et al. 2014). During heating,  Ca2+ uptake by sarco-/endoplasmic 
reticulum  Ca2+ ATPase (SERCA) is activated (larger arrow). At the 
end of heating,  Ca2+ release through inositol trisphosphate receptors 

 (IP3R) is enhanced (larger arrow). Right, rapid heating elevates mem-
brane potential (Vm) with capacitance increase (Shapiro et  al. 2012; 
Liu et al. 2014) due to geometric changes of bilayer (arrows) (Plak-
sin et  al. 2018). c Mechanisms of muscle contractions triggered by 
depolarization of sarcolemma (left) or  Ca2+-independent thermal acti-
vation of contractile systems (right) (see text for details). d Thermal 
hyperactivation of molecular motors. Long exposure of temperature 
higher than optimal temperature (Toptimal) decreases the enzymatic 
activity due to thermal denaturation (blue plots). Short heating ena-
bles an increase in enzymatic activity, which is higher than the maxi-
mal activity at Toptimal (red plots). This hyperactivation of molecular 
motors interacting with the cytoskeleton has been observed in  vitro 
(Kato et al. 1999; Kawaguchi and Ishiwata 2001) and in cells (Oyama 
et al. 2012b).
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during heating, followed by its overshoot after the end of 
the heating (Tseeb et al. 2009) (Fig. 2b, upper left). The 
minimum temperature rise that was required to induce the 
 Ca2+ overshoot was 1.5 °C at 22 °C, which was reduced to 
0.2 °C at 37 °C. Human fibroblast WI-38 cells responded in 
a similar manner (Itoh et al. 2014). In both cells, the increase 
in  [Ca2+]i was suppressed by the inhibitors of  IP3R, strongly 
suggesting that  IP3R is the major  Ca2+ release channel in the 
heat pulse-induced  [Ca2+]i increase. A plausible mechanism 
explaining this is as follows (Fig. 2b, lower left): (i) Heating 
elevates the net  Ca2+ flow from the cytoplasm toward ER due 
to increased SERCA activity and probably decreased open 
probability of  IP3R (similar temperature sensitivity of the 
open probability as proposed in RCC). The electrochemical 
potential of  Ca2+ across the ER membrane is enhanced. (ii) 
At the end of heating, the net  Ca2+ flow is quickly reversed 
as the activities of SERCA and  IP3R immediately return to 
the pre-heating states. (iii) The  Ca2+ leak that follows the 
enhanced  Ca2+ gradient serves as the initial  Ca2+ for a large 
 Ca2+ leak known as the  Ca2+-induced  Ca2+ release of  IP3R. 
In summary, the  Ca2+ response observed here is a result 
of the asymmetry between the temperature sensitivities of 
 Ca2+ pumps and  Ca2+ release channels and their thermal 
perturbation.

Rapid heating also induces excitation of the cell mem-
brane. Wells et al. previously observed IR stimulation of 
neuronal cells (Wells et al. 2005). They examined photo-
chemical, photomechanical, and photothermal effects on 
sciatic nerve and concluded that the photothermal effect 
causes activation of the plasma membrane (Wells et al. 
2007). Shapiro et al. showed that the electrical capacitance 
of the membrane without ion channels is increased by rapid 
heating (Shapiro et al. 2012) (Fig. 2b, right). They pro-
posed a theoretical explanation for this based on the Gouy-
Chapman-Stern theory (Genet et al. 2000) that rapid heating 
induces asymmetric charge displacements at the intracellular 
and extracellular sides of the plasma membrane. The rate 
of temperature rise was the key parameter for exciting the 
cell membrane of C. elegans (Liu et al. 2014), which was 
consistent with the model (Shapiro et al. 2012). Plaksin et al. 
pointed out an error in the theoretical modeling and pro-
posed an alternative theory considering dimensional changes 
in the membrane (Plaksin et al. 2017, 2018) (Fig. 2b, right).

Muscle contractions induced by heat pulses

IR cardiac stimulation is effective for the optical pacing of 
hearts. Smith et al. succeeded in inducing  [Ca2+]i transients 
in rat neonatal cardiomyocytes using a 780-nm femtosecond 
pulse laser light (Smith et al. 2008). Their efforts were based 
on their own findings that pulse laser light induced  [Ca2+]i 
increase in HeLa (Smith et al. 2001; Iwanaga et al. 2006) 

and PC12 cell lines (Smith et al. 2006). Pulsed 1875-nm 
laser light was also reported to achieve optical pacing of 
quail embryonic heart (Jenkins et al. 2010). The membrane 
excitation induced by opto-thermal stimulations (Shapiro 
et al. 2012) could trigger  Ca2+ influx through sarcolemma 
voltage-sensitive  Ca2+ channels and  Ca2+ release from 
intracellular  Ca2+ store SR, as well as physiological cardiac 
contractions (Bers 2002). Other  Ca2+ sources are addition-
ally suggested. Dittami et al. investigated the mechanism 
of  [Ca2+]i transients in rat neonatal cardiomyocytes evoked 
by pulsed IR light (1862 nm) and concluded that the major 
intracellular  Ca2+ sources were mitochondria (Dittami et al. 
2011). Similarly, inhibitors of mitochondrial  Ca2+ cycling 
suppressed the  [Ca2+]i transients evoked by IR laser light in 
rat ganglion neurons (Lumbreras et al. 2014). Thus, mito-
chondria might also be the  Ca2+ source of the  [Ca2+]i tran-
sients induced by opto-thermal stimulations in these cells.

Train of sub-second heat pulses over ~ 40 °C can induce 
repeated  Ca2+-independent muscle contractions. Cardiomyo-
cytes isolated from adult rats were also found to repeat the 
cycle of contraction and relaxation as a response to heat 
pulses (0.2 s) applied at 2.5 Hz (Oyama et al. 2012a). The 
contraction induced by heating from 36 to 41 °C was sup-
pressed by a myosin II inhibitor, blebbistatin. The  [Ca2+]i 
was stable during the contraction. These results strongly 
suggest that the heating triggers the interaction of actin and 
myosin in a  Ca2+-independent manner (Fig. 2c). Shintani 
et al. further investigated the effect of heating on sarcomere 
dynamics with high-precision measurement of sarcomere 
lengths in rat neonatal cardiomyocytes and found that heat-
ing to ~ 38 °C induced  Ca2+-independent high-frequency 
(5–10 Hz) sarcomeric oscillations termed hyperthermal 
sarcomeric oscillations (HSOs) (Shintani et al. 2015).

What is the mechanism of these heat-induced 
 Ca2+-independent muscle contractions? Physiological car-
diac contractions are regulated by  [Ca2+]i as follows (Bers 
2002) (Fig. 2c). (i) Depolarization of excited sarcolemma 
triggers  Ca2+ influx through voltage-sensitive  Ca2+ channel 
[dihydropyridine receptor (DHPR)] at the sarcolemma. (ii) 
The  Ca2+ influx from extracellular space triggers intracel-
lular  Ca2+ release from SR. (iii) The  Ca2+ influx and release 
increase  [Ca2+]i, which promotes  Ca2+ binding to troponin 
C (TnC) on thin filaments. (iv) The  Ca2+ binding to TnC 
shifts the state of thin filaments to “on,” which allows the 
interaction of actomyosin. (v) Sarcomere shortening is initi-
ated. (vi) As  [Ca2+]i decreases mainly due to  Ca2+ uptake 
into SR by SERCA and  Ca2+ efflux by sarcolemmal  Na+/
Ca2+ exchanger,  Ca2+ dissociates from TnC and the state 
of thin filaments shifts to “off,” which blocks actomyosin 
interaction.

Heat-induced contraction without  [Ca2+]i increase could 
be explained from the perspective of  Ca2+-independent ther-
mal activation of thin filaments (Ishii et al. 2020). In an 
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in vitro motility assay, reconstituted cardiac thin filaments 
slid on myosin in  Ca2+-free solution when the temperature 
was increased over ~ 43 °C (Brunet et al. 2012). Optical 
rapid heating initiated the  Ca2+-independent sliding within 
30 ms (Ishii et al. 2019). These results show that actomyosin 
interaction is enhanced by heating without  Ca2+. Interest-
ingly, the sliding speed in  Ca2+-free solution at 37 °C was 
about 30% of that in a  Ca2+-activated state, suggesting that 
cardiac muscles are partially activated in the relaxed condi-
tion (diastole) at physiological temperature for rapid and 
efficient contraction in systole.

Similar  Ca2+-independent contraction was also demon-
strated using NIR laser light and the photothermal property 
of gold nanoshells that were internalized in myotubes dif-
ferentiated from the skeletal muscle model C2C12 cell line 
(Marino et al. 2017). At least three processes could be sug-
gested to explain the heat-activated muscle thin filaments. 
First, the regulatory proteins may have partially dissociated 
during heating. The complex of tropomyosin (Tm)-Tn has 
been shown to dissociate from actin filaments at tempera-
tures above ~ 41 °C (Ishiwata 1978). Heating unfolds the 
coiled-coil domains of Tm and decreases the affinity with 
actin (Kremneva et al. 2003). Initiation of these processes 
on thin filaments could contribute to the  Ca2+-independent 
activation of thin filaments during the heat pulses. Second, 
heating increases the affinity of TnC to  Ca2+ (Gillis et al. 
2000; Veltri et al. 2017), allowing for actomyosin interac-
tion during heating at relatively low  [Ca2+]i. Lastly, heating 
also elevates the affinity of actin and myosin (Highsmith 
1977, 1978) and increases the number of force-generating 
crossbridges (Zhao and Kawai 1994); that is, crossbridge 
force generation is endothermic (Ranatunga 2018). These 
properties of actomyosin could result in the cooperative 
formation of crossbridges as well as the strong binding of 
myosin, which ensures the proximity of the myosin binding 
sites on the thin filament in the absence of  Ca2+ (Lehman 
2017; Geeves et al. 2019).

Thermal hyperactivation of enzymes 
without denaturation

Enzymatic reactions of proteins are elevated by a tempera-
ture rise, as described by the Arrhenius equation, but pro-
teins are inactivated due to thermal denaturation when over-
heated above the inherent optimal temperature (Daniel and 
Danson 2013) (Fig. 2d). However, protein denaturation is a 
time-dependent process. Enzymes exposed to temperatures 
above the optimal temperature could be hyperactivated at the 
beginning of the heating according to the Arrhenius equa-
tion, and they are then denatured if the heating continues 
thereafter. This scenario has been directly demonstrated in 
a microscopic experiment in vitro, where actomyosin motors 

were reversibly hyperactivated above physiological tem-
perature (> 60 °C) for a short period (62.5 ms) of heating 
(Kato et al. 1999). The gliding velocity of microtubules over 
kinesin molecules in vitro was increased at the temperature 
up to 50 °C for 2 s by following the Arrhenius equation, 
whereas kinesins were inactivated after heating at 35 °C for 
1 min (Kawaguchi and Ishiwata 2001). Heating to 100 °C 
for tens of nanoseconds (~ 40 ns) caused no apparent ther-
mal denaturation of catalase, and the rate of inactivation 
at up to ~ 174 °C is consistent with the Arrhenius equation 
(Steel et al. 2006). In HeLa cells, the velocity of endosomes 
transported on microtubules by the molecular motor kinesin 
or dynein was increased during heating up to 47 °C for 1 s 
(Oyama et al. 2012b). Thus, a short period of heating (~ 2 s) 
hyperactivates enzymes to exceed their steady state maximal 
speed at the optimal temperature.

Thermal hyperactivation of enzymatic reactions may 
enable us to control cellular functions in an analog way by 
adjusting the amplitude of opto-thermal stimulation. This is 
in contrast with other optical manipulations such as optoge-
netics, which are usually based on on–off digital regulation. 
The method may also be applied to achieve enhanced per-
formance of cells beyond the physiological level.

Advantages and limitations of opto‑thermal cellular 
manipulation

The combination of optical heating and cells engineered 
with the heat shock promoter-mediated gene expression 
systems is used for spatial and remote regulation of cellular 
activities (Kamei et al. 2009; Miyako et al. 2012a; Miller 
et al. 2018). Temperature-sensitive mutant of myosin II 
was also employed for local inactivation of the mutant in C. 
elegans embryos, and the division failures were induced in 
targeted cells (Hirsch et al. 2018). Moreover, opto-thermal 
cellular manipulation can target endogenous temperature-
sensing systems (Table 1). It is not necessary to express 
light-sensitive proteins or introduce light-sensitive materials. 
Therefore, opto-thermal methods are suitable especially in 
in vivo applications and in non-model species and are even 
applicable for thermal therapy.

Opto-thermal manipulation is effective to modulate mul-
tiple types of protein or process simultaneously, which is 
challenging in methods based on light-sensitive proteins and 
materials. On the other hand, for the same reason, selective 
targeting is not achieved when micrometer-scale heaters are 
used. To add selectivity, attaching nanoheaters to the tar-
geted proteins is an effective strategy (Stanley et al. 2012; 
Iwaki et al. 2015).

Optical heating with NIR light is suitable for deep tis-
sue applications. For instance, Miyako et al. injected car-
bon nanohorns with IR800CW under the thigh of frog 
expressing thermo TRP channels in nerves endogenously 
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Table 1  Cellular responses to opto-thermal stimulations

This table summarizes responses of intact cells to temperature gradients introduced in this review. Responses of cells that were engineered to 
overexpress temperature-sensitive proteins are not contained
* These studies did not measure changes in temperature during optical stimulation, and the contribution of the temperature was unclear
** These studies did not measure changes in temperature during optical stimulation, but the contribution of the temperature was discussed
*** The mechanism is considered to be the thermal activation of thin filament due to partial dissociation of Tm-Tn complex from actin filaments. 
Heating-enhanced  Ca2+ binding to troponin C and/or myosin binding to actin filaments might be related (see text for the details)
Abbreviations: [Ca2+]i intracellular  [Ca2+], CW continuous wave, ER endoplasmic reticulum, Eu-TTA  europium (III) thenoyltrifluoroacetonate 
trihydrate, IP3Rs inositol trisphosphate receptors, SERCA  sarco-/endoplasmic reticulum  Ca2+-ATPase, TRP transient receptor potential

Cellular response Target Optical heater 
(wavelength)

Types of tem-
perature gradient 
(heating period)

Thermometer Cellular ther-
mosensor

Reference

Membrane exten-
sion

HeLa CW laser 
(1455 nm)

Spatial (20 s) Fluorescent 
dextran

Actomyosin cortex Oyama et al. 2015a

Neurite outgrowth Rat hippocampal 
neuron

CW laser 
(1455 nm)

Spatial (60 s) Thermometer 
nanosheet

Cytoskeleton and 
molecular motors

Oyama et al. 2015b

Growth cone 
repulsive 
response

Rat cortical neuron CW laser (750–
1000 nm)

Spatial (> min) IR camera TRPV1 Black et al. 2016

[Ca2+]i increase HeLa 80-fs pulse laser 
(780 nm)

Temporal 
(125–500 ms)

- Internal  Ca2+ store Smith et al. 2001*

[Ca2+]i increase HeLa 80-fs pulse laser 
(780 nm)

Temporal (13 ms) - ER Iwanaga et al. 
2006**

[Ca2+]i increase PC12 80-fs pulse laser 
(775 nm)

Temporal (13 ms) - - Smith et al. 2006 *

[Ca2+]i increase Rat ganglion 
neuron

4-ms pulse laser 
(1863 nm)

Temporal (4 ms) - Mitochondria Lumbreras et al. 
2014**

[Ca2+]i increase HeLa Al (1064 nm) Temporal (2 s) Eu-TTA in a glass 
pipette

ER (SERCA and 
 IP3R)

Tseeb et al. 2009

[Ca2+]i increase WI-38 CW laser 
(1455 nm)

Temporal (2 s) Thermometer 
nanosheet

ER (SERCA and 
 IP3R)

Itoh et al. 2014

[Ca2+]i increase MCF-7, HeLa Star-shaped AuNP 
(830 nm)

Temporal (39 ms) - Lysosome Zhu et al. 2021**

Nerve excitation Sciatic nerve (frog, 
rat)

Pulse laser 
(0.75–2.12 μm)

Temporal 
(5–5000 μs)

IR camera Plasma membrane Wells et al. 2007

Membrane excita-
tion

Frog oocyte, 
HEK293T

Pulse laser (1869–
1889 nm)

Temporal 
(0.1–10 ms)

Impedance of a 
glass pipette

Plasma membrane Shapiro et al. 2012

Membrane excita-
tion

C. elegans Pulse laser 
(1862 nm)

Temporal 
(300–1500 μs)

Impedance of a 
glass pipette

Plasma membrane Liu et al. 2014

Cardiac  [Ca2+]i 
increase and 
contraction

Rat neonatal car-
diomyocytes

80-fs pulse laser 
(780 nm)

Temporal (8 ms) - - Smith et al. 2008*

Cardiac contrac-
tion

Quail embryonic 
heart

Pulse laser 
(1875 nm)

Temporal 
(1–2 ms)

- - Jenkins et al. 
2010**

Cardiac  [Ca2+]i 
increase

Rat neonatal car-
diomyocytes

Pulse laser 
(1862 nm)

Temporal 
(3–4 ms)

- Mitochondria Dittami et al. 
2011**

Ca2+-independent 
muscle contrac-
tion

Rat adult cardio-
myocytes

CW laser 
(1455 nm)

Temporal 
(0.2–0.5 s)

Eu-TTA in a glass 
pipette

Sarcomere*** Oyama et al. 2012a

Ca2+-independent 
muscle contrac-
tion

Rat neonatal car-
diomyocytes

CW laser 
(1455 nm)

Temporal (10 s) Thermometer 
nanosheet

Sarcomere*** Shintani et al. 2015

Ca2+-independent 
muscle contrac-
tion

C2C12 myotube AuNS (808 nm) Temporal (0.5 s) ER thermo yellow Sarcomere*** Marino et al. 2017

Transporter speed-
up

HeLa CW laser 
(1455 nm)

Temporal (1 s) Walking nanother-
mometer

Endosome/lyso-
some-transport-
ing motors

Oyama et al. 2012b
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and successfully induced twitching of the paw via irradia-
tion of 800-nm laser light from the outside of the frog body 
(Miyako et al. 2014). For deeper heating, radio-frequency 
magnetic field heating of nanoparticles has been adapted. 
Huang et al. used 6-nm manganese ferrite nanoparticles 
to activate temperature-sensing neurons in C. elegans for 
remote manipulation of the worm (Huang et al. 2010). Mag-
netothermal heating has also been demonstrated to excite 
neurons expressing TRPV1 in mouse brain (Chen et al. 
2015).

Perspectives

The discovery of thermo TRP channels led researchers to 
develop the thermal manipulation of neural activities, called 
“thermogenetics” (Bernstein et al. 2012; Ermakova et al. 
2020). Other temperature-sensing systems that are uncov-
ered yet could have the potential to be key components of the 
next method of advanced thermal manipulations and thermal 
therapies.

To understand the mechanism of temperature-sensing 
systems in cells, approaches using reconstituted systems 
composed of purified proteins are sometimes appropriate 
(e.g., see Ishii et al. 2019). One-by-one reconstitution of 
components while examining the thermal response of the 
system allows examination of the contribution of each com-
ponent directly. Computational methods are also effective 
to explain the interactions of multiple temperature-sensitive 
proteins. Shintani et al. reproduced HSOs in numerical simu-
lation of sarcomere by hypothesizing on multiple tempera-
ture effects on thick and thin filaments (Shintani et al. 2020).

The flow of media induced by convection needs to be 
considered with caution in microheating experiments (Tseeb 
et al. 2009), as the flow may stimulate cells mechanically. 
To examine the effect of convection, we apply a similar or 
stronger flow of media to the cells as a control and con-
firm that no obvious responses are induced in the cells as 
in the heating (Oyama et al. 2015a). Minimizing convec-
tion is an alternative approach by reducing the height of 
the imaging chamber down to ~ 10 μm, if allowed by the 
experimental design (Maeda et al. 2011). We also note that 
the temperature gradient causes a concentration gradient of 
biomolecules by the process known as thermophoresis or 
the Soret effect (Duhr and Braun 2006; Baaske et al. 2007; 
Budin et al. 2009; Fukuyama and Maeda 2020). Although 
thermophoresis has not been examined extensively in studies 
of cellular temperature-sensing, it is an attractive subject to 
reveal if and how thermophoresis is involved.

Cellular responses observed under the microscope may 
not represent those in tissues. On stiff basements such 
as glass, plastic, or other polymer-based dishes (> GPa), 
cellular morphology, gene and protein expression, and 

cellular functions such as migration differ from those 
on soft biomaterials that mimic soft tissues in  vivo 
(1–1000 kPa) (van Helvert et al. 2018; Guimarães et al. 
2020; Romani et al. 2021). Cells cultured on or within the 
soft biomaterials form unique multicellular 3D structures 
such as spheroids and organoids (Hofer and Lutolf 2021). 
Recently, Zhu et al. used star-shaped gold nanoparticles in 
MCF-7 tumor spheroid for heating and observed  [Ca2+]i 
increases in the targeted cells, followed by the propagation 
of  Ca2+ waves to adjacent cells (Zhu et al. 2021).

Finally, there remains substantial room for the develop-
ment of advanced optical heaters and thermometers. Intra-
cellular thermometry reported 1 °C or greater local tempera-
ture gradients in both stimulated and non-stimulated cells 
at the organelle level, such as in nuclei (Okabe et al. 2012; 
Nakano et al. 2017) (see also Vu et al. 2021 for the contro-
versial result), mitochondria (Okabe et al. 2012; Kiyonaka 
et al. 2013; Homma et al. 2015; Nakano et al. 2017; Huang 
et al. 2018, 2021; Chrétien et al. 2018, 2020; Savchuk et al. 
2019; Di et al. 2021), and ER/SR (Kiyonaka et al. 2013; 
Arai et al. 2014; Itoh et al. 2016; Hou et al. 2017; Kriszt 
et al. 2017; Oyama et al. 2020). However, these experimen-
tal results largely contradict to the estimates based on the 
theories of macroscopic heat transfer, which expect the local 
temperature rises of the orders of  10−4 to  10−5 °C. For inter-
ested readers of this issue, we recommend Baffou et al.’s 
commentary (Baffou et al. 2014) and following communica-
tions (Kiyonaka et al. 2015; Suzuki et al. 2015; Baffou et al. 
2015), a comprehensive discussion from both biological and 
physical viewpoints (Macherel et al. 2021), and our review 
article (Suzuki and Plakhotnik 2020). The issue is partially 
caused by the ambiguity in the physical parameters for intra-
cellular heat diffusions. As demonstrated by the nanohy-
brids (Sotoma et al. 2021; Song et al. 2021), technological 
advances would provide further insights into the heteroge-
neous local heat transfer in more detail and how the hetero-
geneity is caused by, e.g., the intracellular architectures and 
their building blocks. Moreover, to reveal the physiologi-
cal roles of intracellular temperature gradients (both spatial 
and temporal), methods of heating that can reproduce these 
local temperature gradients, or organelle-targeted nanoheat-
ers, are desired. Simultaneous measurement of temperature 
and another parameter by a single probe will be a powerful 
approach to explore the heat-induced changes in the param-
eter. For instance, it was possible to measure the temperature 
sensitivity of the velocity of active transport directly in cells 
by the nanometry of individual luminescent nanothermome-
ters (Oyama et al. 2012b). FNDs may be powerful probes for 
measuring multiple intracellular parameters such as electric 
and magnetic fields, pH, and protein dynamics in addition 
to the temperature (Fujisaku et al. 2019; Barry et al. 2020; 
Igarashi et al. 2020).
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In this review, we introduced opto-thermal technologies 
and their applications for investigating cellular temperature-
sensing. They have already been widely applied in the field 
of human, animal, and plant studies, and the number of stud-
ies is increasing. Ongoing advances of these technologies 
will reveal novel temperature-sensing systems and physi-
ological significance of thermogenesis in cells and lead us 
to the development of advanced thermal therapies.
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