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ABSTRACT Crops are hosts to numerous plant pathogenic microorganisms. Maize has several major disease
issues; thus, breeding multiple disease resistant (MDR) varieties is critical. While the genetic basis of
resistance to multiple fungal pathogens has been studied in maize, less is known about the relationship
between fungal and bacterial resistance. In this study, we evaluated a disease resistance introgression line
(DRIL) population for the foliar disease Goss’s bacterial wilt and blight (GW) and conducted quantitative trait
locus (QTL) mapping. We identified a total of ten QTL across multiple environments. We then combined our
GW data with data on four additional foliar diseases (northern corn leaf blight, southern corn leaf blight, gray
leaf spot, and bacterial leaf streak) and conducted multivariate analysis to identify regions conferring
resistance to multiple diseases. We identified 20 chromosomal bins with putative multiple disease effects.
We examined the five chromosomal regions (bins 1.05, 3.04, 4.06, 8.03, and 9.02) with the strongest
statistical support. By examining how each haplotype effected each disease, we identified several regions
associated with increased resistance to multiple diseases and three regions associated with opposite effects
for bacterial and fungal diseases. In summary, we identified several promising candidate regions for multiple
disease resistance in maize and specific DRILs to expedite interrogation.
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Plants need to defend themselves from many pathogenic microbes
present in their environment. Furthermore, the widespread cultiva-
tion of varieties with limited genetic diversity increases the risk of
pathogen attack (Strange and Scott 2005). Crops are seldom attacked
by just a single pathogen, and thus, breeding is usually conducted for
resistance to multiple pathogens (Khush 1989; Ceballos et al. 1991).
Multiple disease resistance (MDR) is defined as host plant resistance
to more than one disease and is controlled by single to many genes
(Wiesner-Hanks andNelson 2016; Nene 1988). Despite the widespread
need across many crops for multiple disease resistant varieties, little is

known about the genetic determinants of MDR. A few cloned disease
resistance quantitative trait loci (QTL) have been shown to provide
protection against multiple diseases including Lr34 and Lr67 in wheat
(Krattinger et al. 2009; Moore et al. 2015) and GH3-2 in rice (Fu et al.
2011). Genes conferring resistance to multiple diseases include those
that encode signaling pathways, pathogen recognition, hormone-as-
sociated defense initiation, antimicrobial peptides, sugar signaling and
partitioning pathways, and cell death-related pathways (Wiesner-
Hanks and Nelson 2016). A more thorough understanding of MDR
in crops will facilitate the development of varieties resistant to multiple
diseases.

Maize is a staple cereal affected by over 32 major diseases that can
cause substantial yield losses (Mueller et al. 2016; Munkvold and
White 2016). Foliar diseases can cause significant production con-
straints, particularly in conducive environments. A survey from
2012 to 2015 showed that foliar diseases of maize lead to the largest
estimated yield losses in the northern U.S. corn belt in non-drought
years (Mueller et al. 2016). Pesticides are available to manage fungal
foliar diseases but are costly and have environmental impacts (Paul
et al. 2011; Bartlett et al. 2002). No labeled effective chemical control
is available for the major bacterial foliar diseases. An effective and
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environmentally benign method of disease management is host plant
resistance (Nelson et al. 2018). The heritability for foliar diseases are
moderate to high, indicating breeding to develop resistant varieties is
possible (Dingerdissen et al. 1996; Lopez-Zuniga et al. 2019; Zwonitzer
et al. 2010; Ceballos et al. 1991).

Many MDR mapping studies in maize have focused on fungal
diseases, and less is known about the relationship between resistance
to fungal and bacterial diseases. In a synthesis study Wisser et al.
(2006) examined the relationship between fungal, bacterial, and viral
resistance and identified loci that conferred resistance to fungal and
bacterial diseases. Subsequent studies identified regions, and even
genes, that confer resistance to the three most significant fungal foliar
diseases – southern corn leaf blight (SCLB), northern corn leaf blight
(NCLB), and gray leaf spot (GLS) (Lopez-Zuniga et al. 2019;
Zwonitzer et al. 2010; Belcher et al. 2012; Yang et al. 2017b). Rel-
atively few regions have been identified that confer resistance to both
a fungal and a bacterial pathogen in maize (Chung et al. 2010; Chung
et al. 2011; Qiu et al. 2020; Jamann et al. 2014; Jamann et al. 2016; Hu
et al. 2018). In this study, we focused on two bacterial diseases
bacterial leaf streak (BLS) and Goss’s bacterial wilt and blight (GW),
as well as three fungal diseases: SCLB, NCLB, and GLS.

Goss’s wilt and bacterial blight is one of the most destructive
foliar diseases of maize (Mueller et al. 2016) and is caused by
Clavibacter nebraskensis (Li et al. 2018). The blight phase of the
disease is characterized by water-soaked tan to gray linear lesions
with irregular margins parallel to, but not bounded by, leaf veins.
The bacteria colonize the xylem, and vascular wilt symptoms can
develop in susceptible lines (Mbofung et al. 2016; Jackson et al.
2007; Schuster 1972). The bacteria usually enter the leaves through
wounds, but can also enter through natural openings in the absence
of wounding in high-humidity conditions (Mallowa et al. 2016).
First identified in 1969, GW is now found throughout the midwest-
ern United States and Canada (Malvick et al. 2010; Howard et al.
2015; Singh et al. 2015; Schuster 1972; Mueller et al. 2016; Jackson
et al. 2007).

Bacterial leaf streak, caused byXanthomonas vasicola pv. vasculorum
(Xvv), is an emerging disease in the Americas (Damicone et al. 2018;
Jamann et al. 2019; Korus et al. 2017; Leite et al. 2019). The bacteria
enter and exit through wounds and stomata to colonize intercellular
spaces, but do not enter the vasculature (Ortiz-Castro et al. 2018).
NCLB, GLS, and SCLB are among the most important fungal foliar
diseases. NCLB is of global importance and is caused by the
hemibiotrophic pathogen Setosphaeria turcica (syn. Exserohilum
turcicum). In inoculated trials using susceptible germplasm, NCLB
caused a 30–62% grain yield reduction (Perkins and Pedersen
1987; Raymundo and Hooker 1981). Humid conditions and
moderate temperatures favor NCLB development. Gray leaf spot
is also of global importance and is caused by the necrotrophic
fungi Cercospora zeae-maydis and Cercospora zeina. Gray leaf
spot can cause as much as a 50% yield loss (Ward et al. 1999) and
develops quickly in high humidity conditions. Southern corn leaf
blight, caused by Bipolaris maydis, is usually found in hot and
humid regions and can cause up to a 40% yield loss if the varieties
are susceptible, and the conditions are favorable (Byrnes et al.
1989). All the diseases are favored by high humidity environ-
ments. There are overlapping pathogenesis and tissue-level path-
ogen localization between diseases. For example, the pathogens
causing NCLB and GW both colonize the xylem (Chung et al.
2010; Mbofung et al. 2016), and for both BLS and GLS the
pathogen enters the stomata (Beckman and Payne 1982; Ortiz-
Castro et al. 2018).

We conducted linkage mapping for GW in a chromsome seg-
ment substitution line (CSSL) population, referred to as a disease
resistance introgression line (DRIL) population. We selected a DRIL
population because it was developed to study multiple disease
resistance (Lopez-Zuniga et al. 2019). Data for BLS (Qiu et al.
2020), SCLB, NCLB, and GLS (Lopez-Zuniga et al. 2019) were
combined with the GW data to examine MDR. We evaluated the
DRIL78 population, an ideal population for this study, as the donor
line NC344 is resistant and the recurrent parent Oh7B is susceptible
for all the diseases studied (Cooper et al. 2019; Qiu et al. 2020;
Lopez-Zuniga et al. 2019). Thus, we hypothesized that we could
identify regions for resistance to fungal and bacterial pathogens in
this population.

Multivariate analysis was used to identify potential MDR loci.
Multivariate analysis based on Mahalanobis distance (Md) has been
used for genome scans in both human and plant studies (Luu et al.
2017; Tian et al. 2008; Lotterhos et al. 2017). In this study, we usedMd
to combine the mapping results from the five diseases. Md is not trait-
specific; instead, it is a test for outlier markers across all traits and
takes multiple mapping result datasets into consideration. The outlier
markers, reported as putative MDR markers, are those that do not
follow the pattern of the majority of the data point cloud (Rousseeuw
and Van Zomeren 1990).

The overall objective of this study was to compare the genomic
basis of resistance to fungal and bacterial diseases in maize. Mapping
was conducted for GW using phenotypic data collected in three
environments and combined with previously published studies for
BLS, NCLB, SCLB, and GLS (Lopez-Zuniga et al. 2019; Qiu et al.
2020). Here, we: 1) identify novel QTL associated with GW through
linkage mapping; 2) explore the relationship between the five diseases
in this population; and 3) estimate the effect of potential MDR
haplotypes on the five diseases.

MATERIALS AND METHODS

Plant materials
Disease resistance introgression line population DRIL78 is an ideal
CSSL population for multiple disease evaluation, as the donor parent
(NC344) is multiple disease resistant and the recurrent parent (Oh7B)
is multiple disease susceptible (Lopez-Zuniga et al. 2019; Cooper et al.
2019; Qiu et al. 2020; Wisser et al. 2011). The population was
developed by a cross between NC344 and Oh7B, three generations
of backcrosses, and four subsequent generations of self-pollinating via
single-seed descent to obtain BC3F4:5 lines (Lopez-Zuniga et al. 2019).
This population was selected because preliminary data showed
significant differences between the parents of this population for
all diseases examined.

Phenotypic evaluation
The DRIL78 population was evaluated in three environments: Urbana
2016, Monmouth 2017, and Urbana 2017. The Urbana trials were
conducted at the University of Illinois Crop Science Research and
Education Center South Farms located in Urbana, IL. The Monmouth
trial was conducted at the University of Illinois Monmouth Research
Station located in Monmouth, IL. In Urbana 2016, 260 lines were
evaluated for GW in one replication. In 2017, 229 and 233 lines were
evaluated in Monmouth and Urbana, respectively, each with two
replications. Differences in the number of lines evaluated was due
to seed availability and not relative to disease phenotype. For
Monmouth and Urbana 2017, we generated an incomplete block
design using the agricolae package in R (Version 3.5.1) (de Mendiburu
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and deMendiburu 2019; R Core Team 2018). ForMonmouth 2017 and
Urbana 2017, Oh7Bwas included in each block, alongwith the resistant
check line NC344 or NC258. NC344 was not included in every block
due to seed availability. For Urbana 2016, we used an augmented
incomplete block design with one replication. In this location, the
parental lines NC344 and Oh7B were included in each block. Seed was
machine planted with 20 kernels per plot. Plots were 3.2 meters with
0.76m alleys between each plot and row spacing of 0.762 meters. Fields
were managed using standard agronomic practices for central Illinois.

Disease evaluation
Clavibacter nebraskensis isolate 16Cmn001 was used for the GW
inoculations (Cooper et al. 2018). We inoculated the plants twice, once
at the V4 stage and a second time at the V7 stage (Abendroth et al.
2011), as described by Cooper et al. (2018). Two inoculations improved
the differentiation between lines. We assessed the extent of necrosis of
inoculated plants using a visual percentage rating on a per plot basis with
5% intervals starting about two weeks after the first inoculation date. A
rating of 0% represented no disease in the plot, while 100% in-
dicated that all the foliage was necrotic (Poland and Nelson 2011).
In Urbana 2016, two visual ratings were taken 17 days apart; in
Urbana 2017, two ratings were taken 18 days apart; in Monmouth
2017, three ratings were taken with 8 and 9 days between ratings.
We calculated the area under the disease progress curve (AUDPC)
scores for each plot in R (Version 3.5.1) (R Core Team 2018) using
the audpc function in the agricolae package (de Mendiburu and de
Mendiburu 2019) (File S1).

Statistical analysis
Least Square Means (LSMeans) were estimated for GW for each
environment (2016 Urbana, 2017 Urbana, and 2017 Monmouth) and
for the combined multienvironment dataset using AUDPC values
and the lmer function in the R package lme4 (Doran et al. 2007).
Linear mixed models were constructed for each environment and the
combined dataset and are listed below:

Urbana 2016: Yijk ¼ mþ Gi þ Bj þ eijk;
Urbana 2017, Monmouth 2017: Yijkl ¼ mþ Gi þ Rjþ BðRÞðjÞkþ eijkl ;
Combined dataset: Yijklm ¼ mþ Gi þ Ej þ GEij þ RðEÞðjÞkþ

BðRðEÞÞðjkÞl þ ei jklm;

where Y is the response variable (AUDPC) as described above,m is
the overall mean, G is the fixed genotype (introgression line) effect, B
is the random blocking effect, R is the random replication effect, E is
the random environment effect, and GE is the random genotype-by-
environment interaction effect. Blocks were nested within replica-
tions within environments. Only significant factors were included in
the models. We examined the skewness of the data using the skewness
function from the e1071 package (Dimitriadou et al. 2009). Herita-
bility on both a plot and family-means basis were calculated for GW
with SAS (version 9.4) using PROCMIXED, as described by Holland
et al. (2003).

We calculated LSMeans for the BLS data based on the raw
measurements from Qiu et al. (2020). The model included genotype
as a fixed factor, and replication and block nested within replication
as random factors. We obtained LSMeans for SCLB, NCLB, and GLS
from Lopez-Zuniga et al. (2019).

Multiple comparison tests were conducted using the LSMeans
calculated for each disease individually to identify the lines that were
significantly different from the recurrent parent Oh7B. To perform
the tests we used the package multcomp in R, specifically the function
glht, with a Dunnett’s p-value adjustment (Hothorn et al. 2016).

Disease correlations
We conducted Pearson’s product-moment correlation tests among
LSMeans for the diseases (ten total comparisons) in R using the
cor.test function. The parent lines were not included. SCLB, NCLB,
and GLS were rated using a 1-9 rating scale, where 1 indicated 100%
leaf area affected by the pathogen and 9 indicated no disease; BLS
phenotypes were lesion length measurements where small values
indicated shorter lesions; GW was rated using a percentage scale based
on the severity of the disease where 0% indicated no disease. To have a
uniform scale for correlation analysis, we multiplied the BLS and GW
LSMeans values by -1. With this modification, low values indicated
more severe infections for all datasets.

Linkage mapping
A total of 190 lines, including the recurrent parent Oh7B, were shared
across all five datasets.We used the LSMeans for 190 lines and 237 single
nucleotide markers from Lopez-Zuniga et al. (2019) to conduct linkage
mapping for each of the five diseases (File S2). The software ICIMapping
4.0.6.0 with the options “CSL” and “RSTEP-LRT-ADD”mapping were
used to conduct QTL analysis (Meng et al. 2015). We conducted
1000 permutations with a 0.10 Type I error rate to determine the
logarithm of odds (LOD) threshold. We recalculated the LOD
threshold for each disease. The physical positions of markers with
LOD values exceeding the threshold are reported based on B73
RefGen_v3 coordinates (Schnable et al. 2009).

Multivariate analysis
We conducted multivariate analysis to identify QTL associated with
more than one disease using the methods described in Lopez-Zuniga
et al. (2019). The five diseases each served as a variable and the
“robust Mahalanobis distance” method was used to combine the five
variates to detect outlier markers. In this study, Mahalanobis distance
(Md) was calculated based on the five negative log10 p-values of the
LOD scores derived from the five single-disease mapping results.
Outlier markers were detected based on p-values for Md. The detailed
steps of multivariate analysis are described below: (i) conduct linkage
mapping analysis with ICIMaping for each trait in the population
independently; (ii) obtain trait-specific, permutation-based LOD thresh-
olds and trait-specificmarker LODvalues from themapping results; (iii)
calculate p-values for each marker for each disease based on the
following function:

PðLODÞ ¼ 0:5 · ðx21 . 2ln10 · LODÞ
to account for the variation in LOD significance thresholds between
different mapping studies (Nyholt 2000); (iv) convert p-values into
negative log10 p-values; (v) calculate Mahalanobis distance based on
negative log p-values (Md-p) for each of the diseases in R with
OutlierMahdist function in rrcovHD package (Todorov 2018), as
described by Lotterhos et al. (2017); (vi) calculate p-values for Md-p
for each marker (Rousseeuw and Van Zomeren 1990). To control for
multiple comparisons, the false discovery rate (FDR) was calculated by
adjusing the p-values using the “BH”method (Hochberg and Benjamini
1990) with the p.adjust function in R. Markers were declared to be
significant using a 1% FDR.

Haplotype effect calculation
The maize genome has previously been divided into 100 bins which
we used here to delineate disease resistance-associated segments of
the genome (Davis et al. 1999). The chromosomal bin for each
marker that passed the 1% FDR Md-p test and the single-disease
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linkage mapping analysis was recorded. We considered bins with at
least three significant Md-p markers as candidate MDR regions. The
selected MDR regions were delimited by the position of the two
flanking significant markers. To calculate the haplotype effect for each
region, we identified lines with introgressions in the MDR regions
and then calculated, using the raw AUDPC data, the difference
between the mean AUDPC for those lines and the mean AUDPC
for the recurrent parent Oh7B (Belcher et al. 2012). Because different
scales were used for each disease and we wanted to compare between
diseases, we standardized the haplotype effect by Oh7B.

Percentage change ¼ Haplotype effect
mOh7B

· 100%

Finally, we conducted a t-test using the percentage change to de-
termine whether there was a significant difference between the Oh7B
phenotype and the introgression line effect. The null hypothesis was
that there is no difference between Oh7B and the haplotype effect
(percent change = 0).

Data availability
File S1 contains the AUDPC values for Goss’s wilt for all evalauated
lines. File S2 contains the genotypes and LSMeans used for ICIMap-
ping. Data from Lopez-Zuniga et al. (2019) was also used to conduct
the analyses. Supplemental material available at figshare: https://
doi.org/10.25387/g3.11774814.

RESULTS

Characterization of germplasm
As expected, the recurrent parent Oh7B was the susceptible parent for
all the diseases we examined. Of the five diseases, the parents were the
most phenotypically similar for BLS. Using a multiple comparison
test, we detected significant differences between the donor and re-
current parent for all diseases except BLS. Similar to what has been

reported previously for fungal disease phenotypes (Lopez-Zuniga
et al. 2019), there was substantial transgressive segregation for the
bacterial diseases (Figure 1). Like the fungal diseases, the DRIL78
population included lines with transgressive segregation for GW only
in the direction of susceptibility, indicating NC344 may donate alleles
for both resistance and susceptibility. In contrast, transgressive
segregation for BLS occurred in both directions, suggesting that
resistance to BLS in NC344 and Oh7B is conditioned by comple-
mentary sets of alleles. Using our data, we calculated the heritability
for GW: heritability on a plot basis was 0.53 (s.e.= 0.03) and on a
family-mean basis was 0.78 (s.e. = 0.02), indicating that progress can
be made from inbred line evaluations in breeding for this disease.

Using a multiple test comparison, we examined whether there
were DRILs that were significantly more resistant or susceptible than
the recurrent parent. For GW, 16 of the 258 lines, or 6.2% of the lines
tested, were significantly different than Oh7B (Table 1). Despite the
presence of transgressive segregants for susceptibility to BLS, none of
the DRILs were significantly more susceptible than Oh7B; however,
three lines were significantly more resistant than Oh7B.

Correlation between diseases
We tested pairwise correlations among the five diseases. A total of
five of the ten pairwise correlation tests were significant (P , 0.05);
the two bacterial diseases were not significantly correlated. Of the
correlations that were significant, coefficients ranged from 0.15 to
0.31 (Table 2). The correlations for the three fungal diseases vary
slightly compared to Lopez-Zuniga et al. (2019) as fewer lines are in
common for all five diseases as compared to the number of lines in
common and included in the correlation analysis for the three fungal
diseases. For the three fungal diseases, as previously reported, re-
sistance to NCLB was significantly and positively correlated with
resistance to SCLB and GLS, while the correlation between resistance
to GLS and SCLB was positive but not significant (Lopez-Zuniga et al.
2019). Here, we found significant and positive correlations among
pairs of bacterial and fungal diseases (GW and NCLB; GW and GLS;

Figure 1 Phenotypic distributions for the DRIL78 (NC344·Oh7B) population for the five traits. The two vertical lines indicate the least squaremeans
(LSMeans) of the two parental lines. The recurrent susceptible parent Oh7B is represented by the solid line and the donor resistant parent NC344 is
represented by the dashed line. The LSMeans for BLS and GW were based on the lesion length measurement and percent leaf diseased where
lower numbers indicate less disease; the LSMeans of SCLB, NCLB andGLSwere based on a 1 to 9 scale where lower numbers indicatemore disease.
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BLS and NCLB). These correlations suggest that loci conditioning
MDR to bacterial and fungal diseases may exist in this population,
although the correlations could also be due to morphological traits or
other factors.

Identification of multiple disease resistant lines
The correlations between diseases suggested that MDR loci may
exist in this population, so we tested whether the same DRILs were
significantly more resistant or susceptible than the recurrent parent
for multiple diseases. Only 5.3% of the lines (10 of 189 lines) were
significantly different than Oh7B for more than one disease. The
lines that were significantly different for more than one disease
represented seven unique two disease combinations. Not all pos-
sible two disease combinations were represented. Only one line was
significantly different than Oh7B for the combination of the two
bacterial diseases. There were four bacterial/fungal disease com-
binations, all of which included GW, with seven lines that were
significantly more resistant to the combination of a bacterial and
fungal pathogen. The remaining two lines were significantly dif-
ferent than Oh7B for a combination of two fungal diseases (SCLB
and GLS; NCLB and GLS). For NCLB and SCLB there were lines
that were resistant to the respective fungal disease, but susceptible
to GW. No lines were significantly different than Oh7B for more
than two diseases.

GW linkage mapping
The genotype and environment interaction accounted for some
variance; thus, single environment mapping analysis was also con-
ducted for GW. We conducted linkage mapping for GW for three
individual environments, as well as the combined dataset. A total of
ten QTL on chromosomes 1 through 6, and 9 were detected (Table 3).
Six of the QTL were stable, as they were consistently detected across

multiple environments or in the combined dataset. The QTL detected
in chromosomal bin 2.07 (qGW2.07; peak marker PHM14412-4) was
detected in all three individual environments and the combined
dataset. The QTL in chromosomal bins 3.06, 4.06 and 9.02 were
detected in more than one environment, and the additive effect
estimates and percentage of variance explained by these QTL were
similar across datasets.

We examined the additive effect estimates and percentage of
variance explained by the significant markers. The GW QTL were
of small effect, with the largest-effect QTL, referred to as qGW2.07,
accounting for 8.96% of the phenotypic variation in the combined
dataset. The other QTL explained from 3.73 to 8.84% of the pheno-
typic variance. The QTL detected on chromosomes 2, 3 and 9 had
negative additive effect estimates, indicating that the NC344 allele
confers resistance. The QTL with positive additive effect estimates on
chromosome 1, 3, 4 and 6 indicate that the Oh7B allele confers
resistance. On chromosome 3, two QTL were identified within
the same bin. NC344 conferred the resistant allele for both QTL
on bin 3.04.

Multivariate multiple disease mapping
Across all diseases, we detected 18 significant markers in the single-
trait mapping, with two markers for BLS, five for GW, four for SCLB,
three for NCLB and six for GLS. The markers detected in the single-
trait mapping were designated “single-trait markers.” Among the
18 single-trait markers, two were shared by multiple diseases (GW
and SCLB; GW, and GLS) (Figure 2). Across the single-trait analyses,
chromosomes 1 through 4 were all associated with more than one
disease (Figure 2).

Multivariate analysis was conducted to detect MDR regions
using the robust Mahalanobis distance method (Rousseeuw 1985;
Rousseeuw and Van Zomeren 1990). At a 1% false discovery rate,
54 out of 237 markers were detected as related to one or more
diseases. The 54 significant markers included all 18 single-trait
markers. Several regions emerged as likely MDR candidates. We
identified the largest number of significant markers on chromosomes
1 (10 significant markers), 3 (8 significant markers), and 8 (9 signif-
icant markers). On chromosome 4, 6 and 10, several markers
exceeded the multi-trait threshold, indicating that even markers with
relatively low LOD scores for individual diseases can have a high
multi-trait Md value (Lopez-Zuniga et al. 2019). We observed four
co-localized QTL in bin 8.03 and three in bin 9.02. The two regions
with markers that were identified for more than one disease in the
single trait analysis, specifically bin 3.04 (GW and SCLB) and bin 4.06
(GW and GLS), were also detected in the Md test. In all, five regions
with the strongest statistical support and that have been examined in
previous studies, were selected to examine their role in resistance to
multiple diseases.

n■ Table 1 Dunnett’s Multiple Comparison Test for Five Traits in
the DRIL78 Population. A Dunnett’s multiple comparison test was
conducted to identify lines that were significantly different than the
recurrent parent Oh7B. For two disease combinations, all lines were
more resistant to both diseases in the combination, except where
noted otherwise

Disease
Population

Size
Total # of lines significantly different than
Oh7B (# more resistant/# more susceptible)

BLS 229 3 (3/0)
GW 258 16 (3/13)
SCLB 216 23 (23/0)
NCLB 216 6 (6/0)
GLS 216 10 (10/0)
BLS/

NCLB
189 2

BLS/GW 189 1
SCLB/

GLS
189 1

SCLB/
GW

189 2a

NCLB/
GLS

189 1

NCLB/
GW

189 2b

GLS/GW 189 1
a
Both lines were more resistant to SCLB, but more susceptible to GW.

b
Both lines were more resistant to NCLB. Of those, one line was more resistant to
GW, while the other was more susceptible to GW.

n■ Table 2 Pairwise Correlation Coefficients for LSMEANS in the
DRIL78 Population. Phenotypic correlations were examined between
the five diseases examined in this study

Disease BLS SCLB NCLB GLS

GW 0.12 20.11 0.31a 0.24a

BLS 20.11 0.23b 0.06
SCLB 0.16c 0.05
NCLB 0.15c

a
0.001 significance level.

b
0.01 significance level.

c
0.05 significance level.
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Haplotype effect analysis
We hypothesized that some haplotypes may have opposite effects on
bacterial and fungal diseases, e.g., a region may confer resistance to a
fungal disease but susceptibility to a bacterial disease. We selected
MDR regions located in bins 1.05, 3.04, 4.06, 8.03 and 9.02 to test this
hypothesis. We estimated the effect of the haplotype at each of the
selected regions, referred to as the haplotype effect, on disease severity
for each of the diseases (Figure 3). The MDR region at bin 8.03 was
associated with resistance to GW, NCLB and GLS; bin 9.02 was
associated with resistance to GW, SCLB and GLS. While the intro-
gressions conditioned resistance relative to Oh7B for these two bins,
the effect sizes varied. These may be examples of uneven pleiotropy,
whereby an MDR locus has varying effect sizes for different diseases
(Wiesner-Hanks and Nelson 2016), or tight linkage. Some regions
conferred contrasting effects for the diseases examined: the haplo-
types at bins 1.05, 3.04 and 4.06 had an opposite effect for GW as
compared to the other diseases. The NC344 haplotype at bin 1.05 was
associated with resistance to SCLB and GLS, but susceptibility to GW.
The introgressions in bin 3.04 conferred resistance to all the three
fungal diseases, but susceptibility to GW. Lines with introgressions at
bin 4.06 were more resistant to BLS and SCLB, but more susceptible
to GW as compared to Oh7B. The examination of individual loci
showed that the same region can confer opposite effects for different
diseases and suggests that multiple disease resistance may be linked in
these cases, rather than pleiotropic.

DISCUSSION
The heritability of GW resistance in this population was relatively
high and on par with previous GW studies (Ngong-Nassah 1992;
Singh et al. 2016; Cooper et al. 2018). High heritability has been
reported for the three fungal diseases for this population, namely 0.76
for SCLB, 0.75 for NCLB, and 0.59 for GLS (Lopez-Zuniga et al.
2019), indicating that progress can be made from inbred line eval-
uations in breeding for these diseases. Bacterial leaf streak had the
lowest heritability of the diseases examined in this population: 0.42
(Qiu et al. 2020). The GW QTL we identified were relatively stable

across multiple environments in the single trait analysis. The QTL in
bins 1.05, 2.07 and 9.02 were consistently detected and colocalized
with previously identified QTL (Cooper et al. 2018; Singh et al. 2016).

A central objective of this study was to investigate the relationship
between resistance for multiple diseases in a mapping population.
Previous studies demonstrated that resistance for the three fungal
diseases, namely SCLB, NCLB, and GLS, are correlated with each
other. For instance, high positive (.0.5) genetic correlations were
detected in a diversity panel between resistance to all the pairwise
fungal disease combinations in 253 inbred maize lines (Wisser et al.
2011). The DRIL78 correlations for the fungal diseases are not as
strong compared to other populations, as no correlation was detected
between resistance to SCLB and GLS (Lopez-Zuniga et al. 2019).
Resistance between these two diseases are typically significantly and
highly correlated (Zwonitzer et al. 2010). The lack of correlation in
this population is likely due to the alleles segregating in this pop-
ulation. We previously reported a significant positive correlation
between resistance to a bacterial (GW) and a fungal disease (NCLB)
in a different population (Cooper et al. 2018). The significant
correlations among diseases indicate the possibility of MDR in this
population.

Despite the differences between fungal and bacterial pathogens,
some of the pathogens can infect the same tissue types, specifically the
vasculature. SCLB and GLS are non-vascular diseases (Beckman and
Payne 1982; Minker et al. 2018), while GW and NCLB are vascular
diseases (Minker et al. 2018; Mbofung et al. 2016). Only one vascular/
vascular (NCLB and GW) disease correlation combination was
identified. Most combinations were of a vascular and non-vascular
disease (NCLB with BLS, NCLB with SCLB, NCLB with GLS, and
GLS with GW), indicating that either resistance is linked but not
pleiotropic or that there is another resistance mechanism at play that
does not interfere with the pathogen’s growth within specific plant
tissues.

We found evidence of regions conferring resistance to more than
one disease from the single disease analysis. This is consistent with
previous reports across multiple species of clustering of regions

n■ Table 3 Significant QTL Detected in DRIL78 Population for GW across all Environments

Peak marker Chr. a cM Position b Binc Environment LODd Adde PVE(%)f

PHM12633-15 1 116.2 103,835,578 1.05 Combined 3.69 53.72 4.84
PHM14412-4 2 127.4 203,610,640 2.07 Combined 6.58 263.65 8.96

Urbana 2016 3.36 271.34 6.16
Urbana 2017 3.57 255.10 5.39
Monmouth 2017 4.40 261.68 6.62

PZA00348-11 3 68.94 32,780,891 3.04 Combined 3.38 49.76 4.42
PHM5502-31 3 78.21 68,060,067 3.04 Monmouth 2017 3.32 65.67 5.00
PHM1959-26 3 105.64 170,153,721 3.06 Urbana 2016 4.26 282.89 7.90

Monmouth 2017 5.77 279.25 8.84
PHM15864-8 4 87.18 151,565,558 4.06 Combined 2.83 57.70 3.73

Urbana 2017 3.28 74.74 5.02
PZA03092-7 5 64.27 12,049,611 5.02 Urbana 2016 3.24 291.96 5.99
PHM5529-4 6 126.27 167,219,234 6.08 Urbana 2017 4.83 56.39 4.83
PHM5185-13 9 47.48 18,905,238 9.02 Combined 4.76 272.02 6.38

Monmouth 2017 3.22 273.97 4.81
PZA00588-2 9 61.08 62,366,576 9.03 Urbana 2017 5.52 274.93 8.54
a
Chromosome.

b
The physical position (RefGen_v3) of significant markers.

c
Chromosomal bin location of significant QTL (Davis et al. 1999).

d
LOD value at the position of the peak likelihood of the QTL. A permutation test was conducted to determine the LOD threshold for the significant markers.

e
Additive effect estimates of the detectedQTL. Effects are in terms of the disease rating scale used. A negative value indicates that the donor allele increases the disease
resistance of the line in the population.

f
Percentage of the phenotypic variance explained by the detected QTL.
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conferring disease resistance (Wisser et al. 2005; McMullen and
Simcox 1995; Miklas et al. 2000). The same marker was effective
for two disease combinations, specifically for the combination of GW
and SCLB in bin 3.04 and for the combination of GW and GLS in bin
4.06. This is consistent with the multiple comparison test, where
lines effective against these two disease combinations were identi-
fied. The Pearson’s product correlation coefficients were significant
for the combination of GW and GLS. Interestingly, in both instances,
the QTL protect against a combination of a vascular bacterial disease
and a non-vascular fungal disease.

To examine MDR in the DRIL78 population, multi-disease post-
mapping analysis based on Md was conducted. All 18 of the markers
detected in the single-trait mapping analysis were significant in the Md
analysis. One possible explanation for this is that significant Md values
can arise only due to one trait so that if a marker was highly significant
for one disease, it would be identified as an MDR marker as well. The
fundamental idea of the Md approach is to identify outliers in multi-
variate space, and outliers can occur in any one of the dimensions (the
five disease-trait dimensions in our case). For the 36 novel markers from
the multivariate analysis, LOD values were not high enough to exceed
the LOD threshold in the single-trait mapping analysis. However, when
combining the five diseases together, creating a new variable Md-p, and
testing for Md-p outliers, led to the identification of the additional
markers. Lopez-Zuniga et al. (2019) also noted this phenomenon when
testing for MDR markers using an Md approach.

We found that disease-associated QTL were distributed across all
10 chromosomes, but the QTL were not evenly distributed. This is
consistent with previous synthesis studies on the genomic distribu-
tion of disease QTL in maize (Wisser et al. 2006). Based on the
distribution of the single-trait and multi-trait QTL, we focused on five
MDR regions to investigate further. Of these five regions, bins 1.05,
3.04, 8.03 and 9.02 have been reported previously to be related to
multiple diseases in other populations (McMullen and Simcox 1995;
Wisser et al. 2006; Ali et al. 2013; Lopez-Zuniga et al. 2019; Cooper
et al. 2018). Lopez-Zuniga et al. (2019) identified bin 1.05 for
resistance to SCLB, NCLB and GLS, and bin 3.04 for SCLB and
GLS. Another study in maize utilizing near-isogenic lines found that
bin 3.03-3.04 and bin 9.02-9.03 were associated with SCLB, NCLB
and GLS resistance (Belcher et al. 2012). In addition to the three
selected fungal diseases, bin 3.04 was also found to harbor QTL
conferring resistance to European corn borer, Fusarium stalk rot,
common rust and maize mosaic diseases (McMullen and Simcox
1995).

We hypothesized that allele effect sizes differed at each locus for
each disease and that some QTL had contrasting effects for different
diseases. We found that some regions were associated with resistance
to one disease and susceptibility to another, which is consistent with
previous findings in other studies (Belcher et al. 2012). The in-
troduction of resistance for one disease might unintentionally in-
troduce susceptibility for a second disease. Fine mapping is required

Figure 2 Manhattan plot for multivariate analysis.
The mapping results for the two bacterial diseases
are represented with warm colors and the three
fungal diseases in cold colors. The GW&SCLB and
GW&GLS symbols indicate that the same SNP is
significantly associated with both diseases. The
MO symbol corresponds to the markers that were
not significant in the single-trait mapping analysis but
were significant in the multi-trait composite analysis.
The dotted line indicates the 1% FDR for the Md
statistic. The dashed line represents the Md value for
the minimum LOD threshold for the five mapping
analyses.

Figure 3 Estimation of haplotype effect. The x-axis
indicates the selected genomic regions, and the
y-axis indicated the percentage change of disease
severity of lines with an introgression at that region.
The negative percentage value indicates that lines
with an introgression in this region were more resistant
than Oh7B and a positive value indicates that the lines
were more susceptible. A t-test was conducted to
examine the significance of bin effect. � indicates
the 0.05 significance level; �� indicates the 0.01
significance level and ��� indicates that p-value was
smaller than 0.001.
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to determine whether the same gene is conferring resistance to one
disease and susceptibility to another.

Themechanisms underlyingMDR in this population remain elusive.
Of the combinations of diseases identified using the mulitple compar-
ison and multivariate tests, there was no clear pattern of pathogen
kingdom or pathogenesis process in the combinations observed. Thus, if
there is a pleiotropic gene underlying these regions, the mechanism is
not obviously associated with pathogen kingdom or the growth of
the pathogen in the vasculature. Resistance to all five of the diseases
examined here is largely quantitative (Qiu et al. 2020; Cooper et al.
2019; Wisser et al. 2006), and thus it is conceivable that common
quantitative disease resistance mechanisms could underlie the observed
multiple disease resistance. Several mechanisms have been hypothesized
to underlie quantitative disease resistance (Poland et al. 2009; Yang et al.
2017a) and some of these could have effects across pathogen kindgoms
and pathogenesis strategies. It is important to note, that this study does
not have the resolution to resolve these QTL to single genes, and it is
likely that several of these cases are due to linkage, not pleiotropy.
Breakpoint analysis is needed to further dissect these loci.

CONCLUSION
In summary, a total of five QTL associated with resistance to GW in
the combined-environment mapping study were identified, one of
which was consistent across all individual environments and the
combined-environment mapping analysis. By combining GW map-
ping results with published data for NCLB, SCLB, GLS (Lopez-Zuniga
et al. 2019) and BLS (Qiu et al. 2020), we identified genomic regions
associated with multiple disease resistance. Two markers were iden-
tified in the independent single-trait mapping analysis as conferring
effects for two diseases. A total of 36 MDR-related markers were
identified in the multivariate analysis. Disease QTL were distributed
across all ten chromosomes, and we focused on five regions with QTL
clustering. We found strong support for multiple disease resistance
QTL at 1.05, 3.04, 4.06, 8.03 and 9.02 across multiple analyses. We
found evidence of QTL conferring contrasting effects for different
diseases. This work deepens our understanding of multiple disease
resistance in maize and the relationship between fungal and bacterial
disease resistance.
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