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Abstract: Soil-transmitted helminth (STH) infections are common in the tropical and subtropical
countries. The burden of disease is highest in endemic areas with limited access to good quality
water supply and poor sanitary conditions. Major approaches to control and reduce morbidity
caused by worm infections include the periodic deworming of pre-school and school-aged children
with anthelminthic drugs. Population-based studies and individual patient management including
interventional studies can only be successful when accurate diagnostic techniques are used. The lack of
appropriate diagnostic tools providing accurate results concerning both infectious status and intensity
of infection—as these two factors vary in regions of low infection intensities—is a major challenge.
Currently, available techniques show limited sensitivity and specificity and as such, a combination of
several techniques is usually used to diagnose the large variety of parasite species. The objective of
this review was to describe the advantages and disadvantages of the different available techniques
for the diagnosis of STH infections and to highlight their use in control programs.
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1. Global Burden of Disease and Importance in Epidemiology

There are four species of soil-transmitted helminths (STHs) that cause infections in humans,
namely Ascaris lumbricoides, Trichuris trichiura and the hookworms (Necator americanus and Ancylostoma
duodenale). They are considered as neglected tropical diseases (NTDs) by the World Health Organization
(WHO). Although Strongyloides stercoralis is not included in this list of NTDs, its geographical overlap
with other STHs and the morbidity related to this parasite also make it an important STH. These parasites
are associated with poverty, causing a significant morbidity measured in disability-adjusted life years
(DALY’s) lost [1,2]. Global estimates suggest that about 1.5 billion people are infected with STHs
worldwide. Two hundred and seventy (270) million are preschool children and over 568 million
are school-aged children that require treatment and prevention interventions. People harboring
heavy infections have a higher morbidity, while people carrying light intensity infections are usually
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asymptomatic. Thus, heavily infected people particularly have debilitating outcomes usually resulting
in a variety of specific and unspecific adverse effects like reduced physical growth and cognitive
impairment in children [3], as well as anemia and intestinal occlusion.

Recent estimates suggest that these four STHs infect over 700, 508 and 480 million people
worldwide respectively [4]. The highest prevalences are recorded in tropical countries. The total
annual number of deaths due to STHs is estimated to be higher than 135,000. Clusters of infections are
more common in crowded households [5]. Three principal conditions contribute to the transmission
of STHs: soil contamination by human or animal feces; favorable conditions for the eggs/larvae to
survive on the soil, the survival of eggs and skin contact with contaminated soil or oral infestation by
consumption of contaminated soil, water and /or food [6].

The most vulnerable groups are mainly children of school age between the ages of 5 and 15 years,
as well as pregnant women [7–9]. Infections are higher in endemic countries with inadequate sanitary
conditions, the absence of portable water and limited healthcare facilities [7,10,11]. The risk of infection
is higher in farmers during their routine agricultural work, and women and children during their
domestic and recreational activities where they are contact with contaminated water [11]. Strategies
aimed at controlling STHs have seen a rise in recent decades, and they principally involve the
integration of control programs of multiple tropical diseases [10,12–15]. Another approach involving
large-scale or mass drug administration (MDA) targeting high-risk groups has been widely used to
reduce worm burden. The WHO recommends preventive chemotherapy, i.e., single-dose anthelminthic
treatment given annually or biannually without a prior diagnosis to young children, preschool
and school-aged children living in settings where the baseline prevalence of STHs is >=20% [16].
This strategy has already proven to be useful [17,18]. The success of such MDA could be more
accurately monitored through the measurement of infection intensities by the use of very sensitive
diagnostic tools. Several methods exist for the laboratory diagnosis of STHs including: Kato-Katz
(KK), formol-ether (FE), sodium nitrate flotation (SNF), direct examination (DE), Kogar agar plate
(KAP), merthiolate-iodine-formaldehyde (MIF), Baermann, McMaster, Harada-Mori and recently
developed flotation, translation and centrifugation (FLOTAC) techniques and molecular diagnostic
techniques. Examples of these molecular techniques include the polymerase chain reaction (PCR)
and Loop-mediated isothermal amplification (LAMP). Each of these techniques has shown promising
outcomes in detecting different parasite species, although some have very low sensitivities in providing
accurate results especially in light-infection and poly-infection settings [19].

2. Choice of Diagnostic Technique

The evaluation of the efficacy, effectiveness and the disease elimination of interventions as well as
control in the community and in endemic areas strongly depends on the accuracy of the diagnostic
tools which are defined by their sensitivity and specificity [20,21]. Traditionally established methods
that are used to detect parasitic elements have always relied on microscopy. However, the detection
of parasites by microscopy in each sample is not always achieved, even when subjects are heavily
infected. There are several factors that account for this difficulty including but not limited to: possible
methodological problems, eggs are not evenly distributed throughout the feces, egg numbers may
be too low for detection in stool, amount of stool sample could affect the number of eggs present
in the sample, the cyst or ova excreted intermittently or the samples are not transported or stored
properly [22,23]. In highly endemic areas, the focus is on the prevention of morbidity and therefore the
use of less sensitive techniques is usually sufficient. On the other hand, when the goal is to evaluate the
prevalence for surveillance and elimination, the use of highly sensitive methods is required. However,
these techniques are expensive and pose an obstacle in resource-limited settings. This has forced many
control strategies in these regions to focus on MDA and the use of cheaper techniques with limited
sensitivities to diagnose and treat infections. More so, since clinical symptoms are too unspecific for
the diagnosis of helminths infections, diverse diagnostic approaches ranging from serology (detection
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of antibodies and antigens), microscopy (detection of eggs/cysts/larvae/oocysts) or radiology and
molecular techniques can be employed.

Mass drug administration (MDA) is a well investigated interventional tool to control several
parasitic diseases in endemic areas. Although MDA is usually done without diagnostic tools,
their effectiveness can be reliably measured if used in conjunction with a sensitive diagnostic
methodology. On the other hand, test and treat strategies require the use of diagnostic methods.
Unfortunately, the available methods pose variable levels of limitations concerning sensitivity, specificity,
cost-effectiveness, personnel skills, and infrastructure. This is problematic in poor countries with
limited resources (human and financial), thus most test and treat control programs carried out in
such areas are forced to choose a cheaper and cost-effective diagnostic tool with potentially limited
sensitivity and specificity. The consequences are evident, despite the initiation of such antiparasitic
interventions in many endemic areas, so the burden of infection remains high. To meet the millennium
development goals, such interventional programs should be implemented at a large scale and the
measurement, evaluation and alignment of their success will rely on the use of the most effective
(sensitive) diagnostic tools.

This review aimed to describe the currently available laboratory microscopic and molecular
techniques, their advantages, disadvantages, and possible improvements. In Figure 1 we present a
flow chart to guide the choice of a diagnostic technique.
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3. Methodology

For this review, we performed a web-based search for original articles and reviews published
using PubMed and Google scholar web. We also obtained information from textbooks. Our search
included articles published between 2000 and 2019. However, we also included articles as far back
as the 1930s which contained original information when the different techniques were developed.
Keywords included diagnostics, intestinal helminths, soil-transmitted helminths, control measures
and technique names (e.g., Kato-Katz, FLOTAC, Baermann, Mc Master, Harada-Mori, Coproculture,
formol-ether, Kogar agar plate, sodium nitrate flotation, merthiolate-iodine-formaldehyde, and PCR).
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4. Diagnostic Techniques

4.1. Direct Examination

The direct microscopic examination of feces is essential to detect parasitic elements such as
the larvae of Strongyloides stercoralis which are motile. It is also usually adequate to detect high
concentrations of the eggs of helminth infections with Ascaris lumbricoides. The main advantage of
this method is that it is rapid and inexpensive. However, it is only semi-quantitative, and it is not
often used in control programs. It is more widely used in the routine analysis to detect protozoan
parasites such as the trophozoites of Entamoeba histolytica, Giardia lamblia and more rarely Balantidium
coli. It involves emulsifying a small quantity of fresh stool in one drop of saline on a microscope
glass slide. A thin smear preparation is obtained by placing a cover glass on the emulsified stool and
examined under a light microscope to detect the eggs/larvae/trophozoites of parasite species. An eosin
or iodine preparation is also necessary to identify the cysts/oocysts of intestinal protozoa [24]. Figure 2
shows the operating steps of the direct examination [25].
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4.2. Kato-Katz Technique

The Kato-Katz technique is the WHO “gold standard” that is widely used to assess the prevalence
and infection intensity of STHs. Amongst the copro-microscopic methods, Kato-Katz has several
advantages including; high sensitivity, egg quantification, cost effectiveness and requires minimal
infrastructure [26]. It is possible to stratify infection intensities using egg counts and cut-off values [11].
For the Kato-Katz technique, the sieved feces sample (approximately 41.7 mg, 20 mg, or 50 mg
depending on the size of the template) is placed on a glass slide. The preparation is covered with a
piece of cellophane soaked in glycerol. Subsequently, the slide is inverted and gently pressed down
resulting in a thin smear. The added glycerol serves to ‘clear’ the fecal material (fat) from around
the eggs. Hookworm eggs require about 30 min for this step, while for the other species, the reading
of the slide under the microscope can be done after 1 to 24 h The eggs are then counted under the
microscope and the count expressed in per gram of feces [11,26]. Figure 3 shows the operating steps of
the Kato-Katz technique.

4.3. Formol-Ether Concentration Technique

The formol-ether-concentration method is commonly used in specialized laboratories [27] for
the diagnosis of STHs. The main advantage is that it is fast, and it allows for the concentration of
a range of fecal parasites. Both fresh and preserved feces can be used with this technique. The use
of formol inactivates the organisms and thus minimizes the risk of laboratory-acquired infection
from fecal pathogens [28]. STHs as well as intestinal protozoa can be diagnosed with this technique.
When used in combination with the Kato-Katz method, the diagnostic sensitivity for helminths is greatly
improved [29]. The stool samples can be fixed with either sodium acetate-acetic acid-formalin (SAF) [27],
or diluted formalin [30], to allow for sample storage and retrospective analyses. An alternative technique
using acetone has been described [31]. Several modifications of the technique have been made over the
years. The Ridley modified method [32] involves emulsifying the feces in formol water, followed by
straining the suspension to remove large fecal particles. After adding ether or ethyl acetate, the mixed
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suspension is then centrifuged. The parasitic elements, cysts, oocysts, eggs, or larvae are fixed and
sedimented, while the fecal debris are suspended in the layer between the ether and the formol water.
The entire sediment is further examined under a light microscope to detect and count the parasite.
Figure 4 shows the operating steps of the formol-ether-concentration method.Trop. Med. Infect. Dis. 2020, 5, x FOR PEER REVIEW 5 of 18 
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4.4. Agar Plate Culture Technique

The excretion of the larvae of S. stercoralis is usually scant in light-intensity infections. This makes
the detection of these larvae difficult. [33]. Two techniques have been described as suitable for the
diagnosis of S. stercoralis and hookworm infections, namely the agar plate culture technique [34] and
the Baermann technique [35]. This method requires an agar media (prepared with 1.5% agar, 0.5% beef
extract, 1.0% peptone and 0.5% Nacl). Ten milliliters (10 mL) of the prepared medium is transferred
into a 150 mm × 15 mm Petri dish and allowed to cool at room temperature. Then, 2 g of fresh stool are
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placed in the center of the agar plate and incubated in an incubator (26–33 ◦C). The plates are examined
for characteristic tracks of larvae movement every 24 h, for up to 72 h. Place the agar plate under a light
microscope and examine for the presence of motile larvae which determines a positive test [36,37].

4.5. Baermann Technique

For this technique, a fecal sample is suspended in a bowl filled with warm water for up to 2 h.
This allows the larvae to migrate from the feces into the surrounding water environment. It requires
about 10 g of stool placed in the center of a double layered cheesecloth. This is then suspended on a
piece of wire gauze and two layers of cotton gauze in a 6 inch plastic glass funnel that is attached with
rubber tubing and a pinch of clamp attached at the bottom. The glass funnel is filled with warm water
and the preparation is left to stand for 2 h. After 2 h of incubation, the clamp is opened to collect 10 mL
of the liquid and centrifuge the tube. After centrifugation, a drop of the sediment is transferred onto a
glass slide and mixed with one drop of Lugol’s iodine solution. The added iodine helps to make the
visualization of the larvae easier under the microscope using the low-power objective (x10) [35,38].

4.6. Water Emergence Technique for Detecting Strongyloides Larvae in Feces

This method requires the use of a fresh stool sample. A deep hole is made in the center of the stool
specimen and filled with warm water. The incubation period at 35–37 ◦C in an incubator for up to 3 h
permits the larvae to migrate out of the feces into the surrounding warm water. Some of the water is
pipetted and transferred onto a glass slide and a cover glass is placed over it to make a thin preparation.
An alternative approach involves collecting the water completely which is then transferred into a
conical tube. The tube is centrifuged at 1500 rpm for 2 min and the sediment transferred onto a glass
slide. The preparation is microscopically examined for motile larvae using the 10x objective. This is a
cost-effective method suitable to be used in resource-limited settings [23].

4.7. Harada-Mori Technique

This technique was initially introduced in 1955 [39]. It involves the use of a filter paper to which
the feces are added and placed in a test tube. Several modifications of the technique have been
described [40,41]. Continuously adding water soaks the filter paper and thus provides moisturized
conditions that are favorable for the ova to hatch and the development of the larvae to occur.
This technique is very simple and more efficient when fresh fecal samples are used. It involves cutting
a filter paper into narrow strips of about 5 inches with slightly tapered ends. One gram of feces
is transferred onto the center of the strip. After adding up to 4 mL of distilled water into a 15 mL
centrifuge tube, the filter paper strip containing the stool is inserted into the tube such that the tapered
end merely touches the bottom of the tube, while the water level is slightly below the fecal spot.
The tube is then screw-capped, cork stoppered of cotton plugged. The tubes are then kept in an upright
position at 25 to 28 ◦C for up to 10 days with daily checks of the water level for evaporation. A smear
is then prepared after 10 days incubation by withdrawing the fluid to a glass slide and examining with
the 10x objective to detect infective third stage motile larvae of Hookworm or free-living and infective
third stage filariform larvae of S. stercoralis. Alternative procedures involve a centrifugation step as
shown in Figure 5.



Trop. Med. Infect. Dis. 2020, 5, 93 7 of 17

Trop. Med. Infect. Dis. 2020, 5, x FOR PEER REVIEW 7 of 18 

 

transferred onto a glass slide. The preparation is microscopically examined for motile larvae using 
the 10x objective. This is a cost-effective method suitable to be used in resource-limited settings [23]. 

4.7. Harada-Mori Technique 

This technique was initially introduced in 1955 [39]. It involves the use of a filter paper to which 
the feces are added and placed in a test tube. Several modifications of the technique have been 
described [40,41]. Continuously adding water soaks the filter paper and thus provides moisturized 
conditions that are favorable for the ova to hatch and the development of the larvae to occur. This 
technique is very simple and more efficient when fresh fecal samples are used. It involves cutting a 
filter paper into narrow strips of about 5 inches with slightly tapered ends. One gram of feces is 
transferred onto the center of the strip. After adding up to 4 mL of distilled water into a 15 mL 
centrifuge tube, the filter paper strip containing the stool is inserted into the tube such that the tapered 
end merely touches the bottom of the tube, while the water level is slightly below the fecal spot. The 
tube is then screw-capped, cork stoppered of cotton plugged. The tubes are then kept in an upright 
position at 25 to 28 °C for up to 10 days with daily checks of the water level for evaporation. A smear 
is then prepared after 10 days incubation by withdrawing the fluid to a glass slide and examining 
with the 10x objective to detect infective third stage motile larvae of Hookworm or free-living and 
infective third stage filariform larvae of S. stercoralis. Alternative procedures involve a centrifugation 
step as shown in Figure 5. 

 
Figure 5. Operating steps of the Harada-Mori technique. Adapted from open source web images. 

4.8. Merthiolate-Iodine-Formaldehyde-Concentration Technique (MIFC) 

The MIF technique is a concentration-based method that requires a centrifuge. It is suitable to 
detect protozoan parasites, but its sensitivity is limited for the detection of other helminths. The 
procedure employs the MIF solution (50 mL formaldehyde at 37%, 10 mL glycerin at 87%, filled to 
1 L with distilled water as stock solution I) as a preservative and staining (with 2 g potassium iodide 
in 10 mL distilled water as stock solution II). Ether is added to dissolve the fecal fats. The preserved 
fecal specimen is prepared as described by Sapero and Lawless [42]. It involves mixing the MIF 
preserved specimen by shaking vigorously for five seconds. The mixture is strained through a gauze 
into a 15 mL centrifuge tube. Up to 3 mL of ether is added to the centrifuge tube and the tube is closed 
with a rubber stopper. The tube is shaken by vortexing to mix. The ether used should be refrigerated 
to reduce volatilization. The stopper is removed and let stand for two minutes, then centrifuged for 
5 min at 1500 rpm to obtain four layers in the tube (an ether layer, fecal debris, formalin, and 

Figure 5. Operating steps of the Harada-Mori technique. Adapted from open source web images.

4.8. Merthiolate-Iodine-Formaldehyde-Concentration Technique (MIFC)

The MIF technique is a concentration-based method that requires a centrifuge. It is suitable to detect
protozoan parasites, but its sensitivity is limited for the detection of other helminths. The procedure
employs the MIF solution (50 mL formaldehyde at 37%, 10 mL glycerin at 87%, filled to 1 L with
distilled water as stock solution I) as a preservative and staining (with 2 g potassium iodide in 10 mL
distilled water as stock solution II). Ether is added to dissolve the fecal fats. The preserved fecal
specimen is prepared as described by Sapero and Lawless [42]. It involves mixing the MIF preserved
specimen by shaking vigorously for five seconds. The mixture is strained through a gauze into a
15 mL centrifuge tube. Up to 3 mL of ether is added to the centrifuge tube and the tube is closed with
a rubber stopper. The tube is shaken by vortexing to mix. The ether used should be refrigerated to
reduce volatilization. The stopper is removed and let stand for two minutes, then centrifuged for 5 min
at 1500 rpm to obtain four layers in the tube (an ether layer, fecal debris, formalin, and sediment).
The sediment contains protozoa and helminth eggs. The fecal plug is carefully removed, and the
sediment is separated from the rest of the solution on top. A drop of well mixed sediment is transferred
and put onto a glass slide and examined under the microscope. The time required to prepare the MIFC
specimen for examination is about four minutes [42,43].

4.9. Flotation Techniques

Flotation tests are mostly used for the detection of eggs of different parasitic worms that are shed
in feces. The principle of the fecal flotation of parasite eggs makes use of the lower specific gravity
of the eggs compared to that of the flotation solutions (FS). The various FS vary in specific gravity
depending on the formulation and could range from 1.18 to 1.27. Most parasite eggs have a specific
gravity (sg) of 1.05–1.20 which allows them to float while large fecal debris which are denser will sink
to the bottom.

4.10. Zinc Sulfate Flotation Technique

This technique is recommended for concentrating eggs of Trichuris trichiura but also cysts of
Giardia lamblia and Entamoeba histolytica. It is less time consuming when compared to the other flotation
techniques. The method involves the use of a zinc sulfate solution (sg: 1.180–1.200). One gram of feces
is emulsified in tap water and strained to remove the fecal debris. The filtrate is then centrifuged,
and the sediment is suspended in 4 mL of ZnSO4 solution. The suspension is allowed to stand for
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30–45 min for the eggs and cyst to float to the top. A cover glass is placed on top of the tube to collect
the eggs/larvae, which are transferred onto a glass slide to be examined under a microscope [24,44].

4.11. Saturated Sodium Chloride Flotation Technique

In field surveys, this technique represents a useful and inexpensive tool most used for concentrating
the eggs of Hookworm and A. lumbricoides. It has the same principle as the zinc sulfate technique
described above with the only difference in the choice of the FS. The FS used in this technique is a
saturated sodium chloride solution [24].

4.12. FLOTAC Techniques for Detecting Helminths Eggs

Recent studies suggest the use of the FLOTAC technique for the diagnosis of STHs in humans.
These techniques have been used extensively in veterinary fields [45–47]. It is an innovative method
to count fecal eggs by combining flotation, centrifugation and translation using a single FLOTAC
apparatus. There exist different FLOTAC protocols depending on the FS used. These include the basic,
dual, double and pellet techniques that require up to 1 g of stool leading to an improved theoretical
analytic sensitivity of two eggs per gram (EPG). The amount of stool used is about 24-fold higher
than for the Kato-Katz technique (41.7 mg), an important factor that explains the higher sensitivity of
the FLOTAC technique [30]. Moreover, there is the possibility to use stool samples preserved up to
83 days [48]. The technique is less time consuming compared to the Kato-Katz technique requiring just
about 12–15 min from preparation to microscopy analysis. It involves accurately weighing up to 1 g or
more of the fecal sample taken from a large amount of fecal material and thoroughly homogenizing it
in tap water. A wire mesh is used to filter through the homogenized suspension into a conic tube and
the tube is centrifuged for 3 min at 1500 rpm. After centrifugation, the supernatant is discarded and the
tube refilled with the FS of choice, and finally homogenized to obtain a suspension and the suspension
is used to fill the two flotation chambers of the FLOTAC apparatus. The FLOTAC apparatus is closed
and centrifuged again for 5 min at 1000 rpm. After centrifugation and the translation of the top parts
of the flotation chambers, they can be read under the microscope.

4.13. Stoll’s Dilution Egg-Counting Technique

Unlike other methods, Stoll’s technique has the advantage of being rapid, inexpensive and offers
the possibility of egg quantification. In this technique, 3 g of feces is weighed and a one in 15 dilutions
with water in a screw-cap container is made. The use of sodium hydroxide 0.1 mol/L in place of
water is recommended when using formed stool. The container should be capped and well shaken to
homogenize. Using a Pasteur pipette up to 0.15 mL of the suspension is transferred onto a glass slide,
covered with a cover slip, and examined systematically under a microscope. The final quantification is
by multiplying the egg count by 100 to obtain the number of eggs per gram of feces [24].

4.14. McMaster Method for Quantitative Fecal Examination

This technique provides a quantitative determination of the burden of nematode worm infections
expressed in eggs per gram of feces. It is comparatively fast and floating eggs can be easily recovered
free of debris and loaded into a counting chamber. The procedure involves weighing up to 2 g of feces
and transferring into a beaker containing 60 mL of ZnSO4 FS (sg: 1.18–1.20). An alternative is to weigh
2 g of feces into 30 mL of saturated salt solution (sg: 1.2). After stirring vigorously to homogenize the
feces, they are then sieved through a cheesecloth or wire-mesh into a second container. The filtrate is
transferred into a clean 15 mL tube, a cover slip is placed on top and then is allowed to stand for 15 min.
Following this, the cover slip is carefully transferred onto a glass slide and read under the 10x power
objective of the microscope. The suspension is re-homogenized and both chambers of the McMaster
slide are filled using a pipette. The chambers are allowed to stand for up to 3 min to allow the eggs
to float to the top, while the debris fall to the bottom of the chamber and are examined using the
10x power objective of the microscope. Only the eggs that fall within the gridded area of both sides of
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the chamber are counted. The final quantification is by multiplying the egg count by 100 to obtain the
number of eggs per gram of feces [25]. Several studies have been performed to evaluate the sensitivity
of this technique. When compared to the Kato-Katz technique for the detection of soil-transmitted
helminths, the McMaster was found to be more sensitive and provided accurate efficacy results [49,50].
Figure 6 shows the operating steps of the McMaster method.
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4.15. Antigen Detection

The methods described so far are based on the detection of parasitic elements (eggs/cysts/larvae)
in stool. However, some studies have described the use of coproantigens captured in an ELISA assay.
The underlying principle in the use of these assays relies on the capture of parasites excretory/secretory
(E/S) proteins using rabbit anti-E/S polyclonal antibodies [51,52]. These methods have been described
to be effective in the diagnosis of S. stercoralis and hookworm infections. However, the methods
based on antigen detection have not been widely used in STH diagnosis as they have been with other
parasites such as Plasmodium species and other protozoan parasites.

4.16. Polymerase Chain Reaction (PCR) Technique

Microscopy techniques require personnel expertise, multiple stool sampling and species-specific
concentration and staining methods to improve performance. The limitations of these techniques with
regards to specificity, sensitivity, intra-specimen variability of egg counts, low-infection intensities
and other factors mentioned earlier have led to an increased use of PCR assays for intestinal parasites
diagnosis [53,54]. Nucleic acid-based detection has had tremendous success in virology and bacteriology
and now increasing efforts are geared towards their use as first-line diagnostic tools for clinical
parasitology. There are however growing concerns that these techniques might replace microscopy
and could have (possible) clinical drawbacks and the beauty of microscopy that allows visualizing the
different forms of parasitic elements might be lost [55]. Different protocols have been developed for
PCR assays based on single, nested, real-time qPCR, and multiplex PCR [56–58]. Depending on the
target interest and available resources the choice of the PCR can vary from a simple semi-quantitative to
quantitative real-time PCR. The steps in a PCR reaction involves a repetitive cycle of DNA denaturation,
primer binding and extension by a Thermo resistant Taq DNA polymerase [59]. PCR methods have
higher sensitivities and specificities, requiring very small amounts starting DNA material [60]. A major
caveat is to know the DNA sequence of the target to design primers for amplification. Other drawbacks
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include DNA damage in stool samples, the amplification of contaminants [61], well trained personnel
and the lack of infrastructure in low-resource settings. However, with more and more technicians
trained in molecular diagnostics and with recent advances in technology that include automation at
various stages of the PCR process, issues related to contamination have been greatly reduced as these
techniques are being optimized.

Loop-mediated isothermal amplification (LAMP) are novel techniques capable of amplifying
DNA with higher specificity and efficiency. The LAMP technique allows DNA amplification in a one
step process under isothermal conditions. Amplification takes place at a constant temperature of
60–65 ◦C and requires the use of two, three or four sets of primers and a strand-displacement DNA
polymerase with replication activity. These conditions lead to the accumulation of large quantities of
target DNA as compared to PCR-based amplification, thus increasing the specificity and sensitivity
of the LAMP technique [62,63]. Following its first reported use in 2000, the LAMP technique has
been used extensively across various fields for the detection of bacterial, viral, fungal and parasitic
infections. They have a potential application as screening assays or as point of care diagnostic platforms.
A colorimetric isothermal assay was recently developed using SmartAmp2 to identify hookworm
(N. americanus), T. trichuria and A. lumbricoides with an observed high sensitivity [64]. The LAMP
technique can have wide application in low- and middle-income countries (LMIC) where the goal is to
reduce morbidity due to STH infections.

The digital PCR method is different from the conventional PCR in that the PCR reactions are
performed in tens of thousands of nano-liter sized droplets each leading to a separate PCR reaction.
This partitioning greatly improves the precision of the technique and thus increases the efficiency of
the quantification of the target DNA [65]. Both qPCR and digital PCR were shown to be able to detect
very low amounts of A. lumbricoides with high sensitivities from reclaimed water in a wastewater
depuration test [66]. The application of these techniques to detect other STH infections especially in
low-intensity infection settings will be very useful to control transmission.

The multiplex qPCR method allows the quantification and detection of several target DNA
sequences simultaneously. DNA amplification occurs in real time using a combination of multiple
primer sets. In the past decade several multiplex qPCR assays have been developed for the detection of
STH infections. Using species-specific primers/probes, studies have shown an increased sensitivity of
detecting up to eight gastrointestinal parasite pathogens [67]. Given that global efforts are in favor of
committing resources towards the control and elimination of STH in LMIC, there is an urgent need to
compliment these efforts with alternative diagnostic assays that can demonstrate excellent run-to-run
consistency, reproducibility and are high-throughput [68] or they have a high sensitivity and specificity,
but are also potentially cheap and can be used in limited-resource settings [69].

Table 1 provides a summary of the diagnostic values of the above described methods. It also
highlights which techniques are suitable for the detection of specific STH parasites. Meanwhile, Table 2
describes the advantages and disadvantages of each technique.

Table 1. Fecal concentration techniques and their limits of detection of soil-transmitted helminths (STHs).

Parasite Formol-Ether Kato-Katz MIFC McMaster FLOTAC Sat.
NaCl ZnSO4

Agar
Plate/Baermann

Eggs
A. lumbricoides ++ ++ - + + + - -

T. trichiura ++ ++ - + + - + -
Hookworm ++ + + + + + - -

Larvae
Strongyloides + - - - - - - ++

Hookworm + - + - - - - ++

++: good diagnostic value, +: low sensitivity, -: limited or no diagnostic value.
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Table 2. Advantages and disadvantages of the diagnostic techniques to detect STHs.

Technique Advantages Disadvantages

Kato-Katz • Simple to operate and cost-effective
• Quantitative

• Requires small stool amounts, thus low
analytic sensitivity

• Requires fresh samples

Ether-based
concentration

techniques

• Stool samples can be preserved
in formol

• Eggs of helminths and cyst of protozoa
can be detected

• centrifugation can destroy eggs of hookworms
• cannot be performed in laboratories with

minimal infrastructure
• Only qualitative

Flotation techniques:
(ZnSO4 and saturated

NaCl)
• Simplicity and low cost

• Lack of precision owing to the absence of a
grid on the cover slides

• Only qualitative

Harada-Mori
• Simple and cost-effective
• Allows both parasitic and free-living

forms to be detected

• It requires distinction from parasitic to
free-living forms.

• Not suitable for refrigerated samples
• Too much time required to obtain results and

only suitable in field surveys where rapid
results are not that important

McMaster techniques • Relatively fast and simple to perform

• Choice of flotation solution may
influence results

• Requires the use of a counting chamber which
might not be readily available in
resource-limited settings

• It has a detection limit of 100 eggs per gram
(EPG) unless multiple counts are done on the
same sample

FLOTAC

• Both fresh and preserved samples can
be used for analysis.

• Eggs of helminths and cysts of
protozoa can be detected

• High sensitivity and accuracy

• Requires centrifuges designed to hold the
FLOTAC apparatus

• Well trained laboratory personnel are required
to perform this technique

Serology
(antibody detection)

• Used to demonstrate exposure
• Confirm clinical findings

• In endemic areas antibody test generates
many false positives due to previous exposure

Antigen detection
• Sensitive in detected coproantigens of
• S. stercoralis

• Production of these tests has not been
extended to other STHs

PCR

• Increased sensitivity and specificity
• Species and strain level identification

of parasites is possible.
• Molecular epidemiology to monitor

transmission patterns

• Requires well equipped laboratory
infrastructure and well-trained personnel

• more expensive compared to the
Kato-Katz technique

• Contamination can lead to false positive

5. How to Choose a Diagnostic Technique

It is hard to imagine that despite the considerable progress over several decades to control the
spread of parasitic diseases in the developing countries following a partnership between different
governments and international organizations in such as the WHO, it is still not possible to have
an adequate and accurate diagnostic test. Most of the data describing the distribution, prevalence
and the burden of parasite infections in endemic communities were obtained using the methods
described above. Their performance characteristics (sensitivities and specificities) thus determine the
accuracy of such data [70]. In low-intensity infections, most of these tests do not perform well in
population assessment, especially after multiple rounds of MDA have been used, reducing infection
levels in endemic communities. The consensus is to harmonize diagnostic protocols to improved
STH diagnosis. This means the development of more new sensitive techniques or the optimization of
available techniques. If one has to choose from the available diagnostic assays, several aspects are
to be considered including; the objective of the diagnostic test, the accuracy of the diagnostic tool
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(sensitivity and specificity) and a balance between the quality and the cost-effectiveness (precision,
simplicity, and robustness) as well as the time and effort. Some of these techniques are quantitative
and provide an advantage when used to measure morbidity. They can thus be very useful to assess the
reduction of infections in control programs such as the WHO goal to reduce infections to less than 1%.

The issues we outline here are intended to raise awareness of the need to optimize helminth
diagnostic techniques, to make a balance between the operational cost-effectiveness of the techniques
that will suit the nature of control that is intended to be achieved.

5.1. Operational Cost and Infrastructure

The burden of infection is higher in endemic areas with limited resources. To this effect, the set
goal is usually aimed at targeting morbidity control through mass treatment. The choice of a diagnostic
technique is almost always based on cost and simplicity with limited emphasis on the sensitivity
of the technique [70]. The MIFC, agar plate, Baermann, formol-ether, McMaster, FLOTAC and PCR
techniques which require expensive materials and more sophisticated equipment are therefore not
particularly suitable for field surveys, or the rapid identification of those most in need of treatment.
Recent advances in molecular diagnostics including the use of rapid diagnostic tests (RDT) and
smart optical devices to detect other parasites such as malaria parasites have shown tremendous
progress in improving diagnosis at the point of care [71–73]. Expanding these techniques to detect
helminth parasites such as hookworms will be beneficial mostly in endemic areas where the focus is to
reduce transmission.

5.2. Sensitivity and Specificity

The need for a precise diagnostic test is the most important aspect when transmission control
is set as the target goal. Several of the aforementioned techniques demonstrate a low sensitivity
since they often fail to detect infections in low-infection intensity settings [74]. Flotation techniques
are less sensitive because not all nematodes can be well concentrated. When stool samples contain
much fecal fat, these techniques become difficult to realize [28]. The sensitivities of the direct smear
examination and the Kato-Katz techniques are reduced when a single stool sample is examined.
As such, most protocols suggest the use of multiple stool samples in low-intensity infection settings [19].
Sensitivity increases when the analysis is repeated with several samples from 52% (single day) to 79%
(consecutive day) [75]. Usually, very small amounts of feces are examined using the Kato-Katz technique
(41.7 mg). This small amount consequently underlies the techniques’ low analytic sensitivity [30].
Other factors that affect the sensitivity of the Kato-Katz technique are day-to-day changes in the egg
excretion [31,32], time delays from when the feces was produced, collected, and processed in the
laboratories, and the rapid clearing of hookworm eggs [33,34]. The MIFC is more suitable for intestinal
protozoa but lacks sensitivity in detecting or quantifying helminth eggs, especially hookworm eggs [30].
The larvae of hookworm and S. stercoralis are sometimes missed in the usual Kato-Katz and FLOTAC
techniques thus the Agar plate, Baermann, and Harada-Mori techniques remain the best choice for
detecting these parasites. The FLOTAC techniques were found to be more sensitive when compared
to multiple Kato-Katz thick smears for the diagnosis of hookworms, A. lumbricoides and T. trichiura
infections [46,48]. The FLOTAC technique therefore could help solving challenges posed by currently
available techniques, but also presents some limitations ranging from cost to sensitivity to detect the
larvae of S. stercoralis. Moreover, as for all other fecal concentration methods requiring the flotation
of parasitic elements, the FS used can greatly influence the sensitivity of the FLOTAC technique [30].
Although rapid diagnostic tests (RDTs) have shown tremendous success in detecting the antigens of
some protozoan parasites, the development of such assays to detect antigens of intestinal helminths
could still be problematic when one considers issues concerning the cross-reaction that can affect the
sensitivity of such assays. The use of bio-informatic tools to identify biomarkers of STH parasites
should be encouraged. Such biomarkers can be developed into antigen/antibody tests that could be
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used as a tool for STH surveillance to characterize different endemic populations and to effectively
measure or monitor the progress of control programs and for vaccine development.

5.3. Safety Issues and Personnel Qualification

When aiming at morbidity control, further diagnostic challenges concerning stool examination
should be considered. As mentioned earlier, infections with multiple species of parasites are usually
common and as explained earlier no single technique can provide an accurate diagnosis of all different
parasite species. Therefore, the performances of these techniques will greatly improve when laboratory
personnel are well trained and adequate quality-control measures are put in place in limited-resource
settings [28]. There are also concerns related to safety, time delays between specimen collection,
transportation to the laboratory and analysis, laboratory infrastructure and the labor-intensity required
for the performance of the technique. The zinc sulphate technique and saturated NaCl are less safe
techniques since the reagents used do not inactivate fecal pathogens and thus represent a potential
source of contamination for laboratory personnel. The ether used in the formol-ether technique is highly
flammable. It is recommended to refrigerate the ether before use to reduce volatility or to use a less
flammable ethyl-acetate, meanwhile, the Kato-Katz is unhygienic [38]. The agar plate and Baermann
techniques are more labor intensive, time consuming and show similar sensitivities [50]. The Baermann
technique is cumbersome whereas the agar plate requires the more skillful and careful manipulation of
the samples to prevent the percutaneous infection of the laboratory personnel [38,50]. The performance
of the FLOTAC technique requires a high level of competence from laboratory personnel. The use
of point-of-care (POC) immunoassay platforms such as those used for Plasmodium species and
Schistosome detection may be a better alternative. Such POCs can be designed to accommodate the
multiplexing capacity for the detection of pan-STH species. Laboratory-based nucleic acid amplification
tests (NAAT) are a valuable alternative. However, the full evaluation and harmonization of PCR
protocols is recommended to boost the performance of these techniques.

6. The Way Forward

The STH infections in areas of high endemicity have huge socio-economic and developmental
consequences for infected populations. Despite global strategies implemented through the WHO and
various NGO partnerships to reduce the burden of infections through mass drug administrations and
morbidity control, a more effective approach would be to integrate laboratory testing using highly
sensitive and specific techniques as a useful adjunct to clinical examinations and sound imaging
techniques. We hereby have undertaken a review of some of the currently available intestinal helminth
diagnostic techniques and their limitations. Stool examination by microscopy techniques provides an
acceptable measure to assess infection levels in highly endemic areas. However, its relevance in areas
of low endemicity is limited. Therefore, other more sensitive techniques such as the PCR are required
in such areas. On the other hand, with proper training of the laboratory personnel, the sensitivity of
microscopy-based techniques can be greatly improved. Molecular diagnosis with PCR or antigen (Ag)
detection, although initially deemed as a superior/more adequate assay for diagnosis, some studies
had suggested that it is only marginally more sensitive than microscopic stool examination [28]. As an
alternative, one would recommend the FLOTAC techniques which have shown higher sensitivities
than the currently available methods. Taken together, the PCR is currently the most accepted technique
because of its slightly higher sensitivity and specificity, but with the non-negligible fact of its high cost
and limited availability for resource-limited settings.

If we want the ongoing control strategies to succeed, it will be imperative to develop and
implement clear-cut protocols, to identify good biomarkers that can be multiplexed to detect all STHs
and to perform more the rigorous validation of new diagnostic assays through multi-country (site)
studies especially in low endemic settings.
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