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Translucent materials are ubiquitous in nature (e.g.
teeth, food, and wax), but our understanding of
translucency perception is limited. Previous work in
translucency perception has mainly used
monochromatic rendered images as stimuli, which are
restricted by their diversity and realism. Here, we
measure translucency perception with photographs of
real-world objects. Specifically, we use three behavior
tasks: binary classification of “translucent” versus
“opaque,” semantic attribute rating of perceptual
qualities (see-throughness, glossiness, softness, glow,
and density), and material categorization. Two different
groups of observers finish the three tasks with color or
grayscale images. We find that observers’ agreements
depend on the physical material properties of the
objects such that translucent materials generate more
interobserver disagreements. Further, there are more
disagreements among observers in the grayscale
condition in comparison to that in the color condition.
We also discover that converting images to grayscale
substantially affects the distributions of attribute ratings
for some images. Furthermore, ratings of
see-throughness, glossiness, and glow could predict
individual observers’ binary classification of images in
both grayscale and color conditions. Last, converting
images to grayscale alters the perceived material
categories for some images such that observers tend to
misjudge images of food as non-food and vice versa. Our
result demonstrates that color is informative about
material property estimation and recognition.
Meanwhile, our analysis shows that mid-level semantic
estimation of material attributes might be closely
related to high-level material recognition. We also
discuss individual differences in our results and highlight
the importance of such consideration in material
perception.

Introduction

Many materials in our daily life are translucent,
which allow some of the light to penetrate the object,
refract, and scatter multiple times throughout the
body of the medium, before exiting from a different
location on the surface. Translucent materials are
ubiquitous in life, including skin, teeth, fruits, liquid,
crystals, glass, plastics, and wax. Yet, in comparison to
opaque materials, relatively little is understood about
translucent appearance (Fleming, 2017; Gigilashvili,
Thomas, Hardeberg, & Pedersen, 2021). Translucency
is challenging to study due to several reasons. First,
the physical process of translucency is complex,
involving surface reflection and subsurface scattering
(see Gkioulekas, Xiao, Zhao, Adelson, Zickler, & Bala,
2013; Xiao, Walter, Gkioulekas, Zickler, Adelson, &
Bala, 2014 for detailed description of physical model
of subsurface scattering and translucency perception).
Previous work shows that physical material properties,
lighting, shape, and context all affect the appearance of
translucent objects (Chowdhury, Marlow, & Kim, 2017;
Fleming & Bülthoff, 2005; Gigilashvili, Shi, Wang,
Pedersen, Hardeberg, & Rushmeier, 2021; Gigilashvili,
Thomas, Hardeberg, & Pedersen, 2021; Marlow &
Anderson, 2021; Marlow, Kim, & Anderson, 2017;
Motoyoshi, 2010; Nagai, Ono, Tani, Koida, Kitazaki,
& Nakauchi, 2013; Sawayama, Dobashi, Okabe,
Hosokawa, Koumura, Saarela, et al., 2019; Tamura,
Higashi, & Nakauchi, 2018; Xiao et al., 2014; Xiao,
Zhao, Gkioulekas, Bi, & Bala, 2020), and it still remains
unknown how humans extract intrinsic translucent
material properties from images. Second, there are
many different kinds of translucent materials in real life.
Different types of materials (e.g. skin versus wax) have
different physical generative processes. Even though
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these materials can be all described as “translucent,”
humans have no trouble visually discriminating them.

Humans can often report whether a surface is glossy
or matte with verbal rating, even though perception
of gloss is multidimensional (Ferwerda, Pellacini,
& Greenberg, 2001). But translucent appearance is
difficult to be verbally described and is likely to be high
dimensional. Using rendered images, most previous
works have measured translucent appearance using a
single task (e.g. asking observers to rate the apparent
translucency, asking observers to judge which of the
two images seems to be more translucent, or matching
the images based on the perceived translucency by using
a slider to adjust one particular physical parameter)
(Motoyoshi, 2010; Nagai et al., 2013; Xiao et al.,
2020). Such measurements may not fully reflect how
humans perceive and recognize translucent materials
in the real world. In this paper, we measure material
perception using photographs of real-world objects
in three different tasks, namely, binary classification
of translucency (Experiment 1), semantic attributes
rating (Experiment 2), and material categorization
(Experiment 3) with the goal of understanding
translucency perception in the wild with a focus on the
role of color.

Previous findings on translucency

Previous research has focused on exploring the
relationship between physical parameters in the
subsurface scattering and translucent appearance using
rendered images. Fleming and Bülthoff have studied
the effect of direction of illumination on translucency
perception of rendered objects with relatively simple
rendering models and geometry (Fleming & Bülthoff,
2005). One of their findings is that observers seem to
be poor at “discounting” the effects of light source
direction, and translucent objects tend to appear more
translucent when they are illuminated from behind.
Xiao et al. used a more complex 3D shape, a “Lucy”
model, rendered with more sophisticated models, and
show that the lighting direction has a strong effect on
translucent appearance with non-isotropic scattering
phase functions (Xiao et al., 2014). Gkioulekas et al.
found that translucent edges have specific qualitative
features as the result of a combination of scattering,
refraction, and reflection, and these features can
distinguish translucent edges from edges in opaque
objects (Gkioulekas, Walter, Adelson, Bala, & Zickler,
2015). Using rendered images, previous work has also
proposed image cues for perceiving translucency (see
a recent review Gigilashvili, Thomas, Hardeberg, &
Pedersen, 2021 for details). Specifically, Motoyoshi et al.
showed that the “relationship with respect to contrast
and sharpness between the specular highlights and
the non-specular body” is a robust cue for perceived

translucency (Motoyoshi, 2010). Nagai et al. found
that perceptual translucency depends on local image
features, such as mean luminance, within specific image
regions (Nagai et al., 2013). Even though these works
provide testable image cues for translucency perception,
it is not clear whether they can be generalized to
real-world materials beyond rendered images.

Role of color in translucency

Nearly all previous work in translucency perception
has used monochromatic images (Motoyoshi, 2010;
Nagai et al., 2013; Xiao et al., 2020). The use of
monochromatic images in translucency perception
is largely due to the lack of high-quality renderings
of physically plausible colored images of translucent
appearance. Even though there are significant
improvements in spectral rendering of translucent
materials, such as wax, jade, and skin (Brunton,
Arikan, Tanksale, & Urban, 2018; Jimenez, Whelan,
Sundstedt, & Gutierrez, 2010), these rendering methods
may not extend to realistically replicate the variety
of translucent appearances in real life, such as food.
Some recent studies examine translucency in a more
realistic setting: Gigilashvili et al. have used real physical
objects (an artwork collection of Plastique made
of resin) to explore potential appearance ordering
system that implies translucency (Gigilashvili, Thomas,
Pedersen, & Hardeberg, 2021); Chadwick et al. used
color photographs of translucent liquids (glasses of
milky tea) when they compared perceptual performance
with real and computer-generated stimuli (Chadwick,
Cox, Smithson, & Kentridge, 2018). In reality, color
could play important roles in translucent appearance,
as shown in Figure 1. For example, some low-level
color-related image cues (e.g. saturation) might affect
perceived translucency (e.g. the color gradients in
yellow microcrystalline wax cube is an important
cue). On the other hand, removing color might also
alter the state of the object through association (e.g.
cooked shrimp might appear to be uncooked when the
image is shown in grayscale), which in turn affects the
observer’s material perception (e.g. uncooked shrimp
is usually perceived to be more translucent). Previous
works find that color interacts with the perception of
surface gloss (Nishida, Motoyoshi, & Maruya, 2011;
Xiao & Brainard, 2008), perception of fabrics (Toscani,
Milojevic, Fleming, & Gegenfurtner, 2020; Xiao, Bi,
Jia, Wei, & Adelson, 2016), perception of transparent
objects (D’Zmura, Colantoni, Knoblauch, & Laget,
1997; Ennis & Doerschner, 2021), and perception of
object states such as wet or bleached (Okawa, Shimano,
Asano, Bise, Nishino, & Sato, 2019; Sawayama,
Adelson, & Nishida, 2017; Toscani et al., 2020). On the
other hand, a previous study on material classification
from photographs using the Flickr Material Dataset
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Figure 1. Illustration of how converting images to grayscale affects various aspects of material perception of translucent and opaque
objects, including low-level image cues, mid-level estimation of material attributes, and high-level material recognition. From left to
right, the microcrystalline wax (parawax) cube appears less translucent and less “see-through” in grayscale than in color; the
grapefruit looks less juicy and might be recognized as a fake fruit in grayscale; the cooked shrimp might look uncooked in grayscale;
the chunk of tofu might appear plastic or stonelike in grayscale.

finds that removing color does not significantly affect
classification accuracy (Sharan, Rosenholtz, & Adelson,
2014). However, little is known about how removing
color affects the perception of more diverse materials,
including translucent objects. Some studies (Chadwick
et al., 2018; Fleming & Bülthoff, 2005) have pointed
out that saturation variations can affect the perceived
translucent appearance, but they are insufficient on
their own to produce an impression of translucency. It is
also not clear whether color affects material appearance
mostly through low-level processing of color-related
image cues or through high-level association with object
identity or recognition memory (Wichmann, Sharpe,
& Gegenfurtner, 2002). A previous study has also
studied translucency perception of a blind observer,
suggesting that some aspects of translucence perception
do not depend on regions critical for color and
texture processing (Chadwick, Heywood, Smithson,
& Kentridge, 2019). In this paper, by systematically
measuring the effect of color across different
tasks, we aim to discover the relationship between
different hierarchical processes involved in material
perception.

High level material perception and individual
difference

Relatively few studies have examined high-level
semantic material perception, such as assigning
semantic class of materials from real-world images or

paintings (Baumgartner, Wiebel, & Gegenfurtner, 2013;
Di Cicco, Wijntjes, & Pont, 2020; Fleming, Wiebel,
& Gegenfurtner, 2013; Sharan et al., 2014; Sharan,
Rosenholtz, & Adelson, 2009; van Zuijlen, Pont, &
Wijntjes, 2020; Wijntjes, Spoiala, & De Ridder, 2020).
Specifically, Sharan et al. found that humans can
recognize materials in rapid visual presentation within
predesigned categories (Sharan et al., 2009). Fleming
et al. found that ratings of subjective qualities (e.g.
glossiness, colorfulness, and roughness) could account
for class membership with 90% accuracy (Fleming,
2014). Fleming also suggests that material estimation
might be affected by high-level material recognition
(Fleming, 2017).

We assume that measuring material perception using
photographs of real objects, instead of rendered images,
might result in larger individual difference. Chadwick
et al. have observed that the models explaining
the variation in the psychophysical data differ
among individuals (Chadwick et al., 2018). A recent
investigation suggests that young children rely more
heavily on small-scale local image features for material
perception than older children and adults do (Balas,
Auen, Thrash, & Lammers, 2020). Individual difference
has been found in color constancy (Aston & Hurlbert,
2017; Emery & Webster, 2019; Lafer-Sousa, Hermann,
& Conway, 2015; Toscani, Gegenfurtner, & Doerschner,
2017; Witzel, O’Regan, & Hansmann-Roth, 2017),
and in color naming and categorization, mostly due
to cultural and environmental factors (Webster, 2015),
but it has not been systematically quantified in material
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Figure 2. Stimuli and tasks. (I) Example stimuli in color and grayscale. (II) Binary classification experiment interface. Observers were
asked to classify the material of the object as either “translucent” or “opaque.” (III) Semantic attribute rating experiment interface.
Observers were asked to rate five translucency-related material attributes using a 6-point scale (6 means high and 1 means low).
(IV) Material categorization experiment interface. Observers were asked to choose the material category that best suits the object in
the image among 18 categories.

perception. In a recent work, Gigilashvili et al. discussed
multiple challenges observers have faced due to the
ambiguity of the concept of perceptual translucency,
such as the vague definition of “translucency” in
terms of perception and the limited knowledge on
how to quantify translucency (Gigilashvili, Thomas,
Hardeberg, & Pedersen, 2020). In this study, we analyze
both pooled results across observers and individual
data, and discuss individual differences which might
arise in the results.

Main questions and study overview

In this paper, we aim at examining the role of
color in perceiving translucent appearance across
several tasks using photographs of real-world objects.
In addition, we aim to understand how these tasks
are related both at the group and individual levels.
Our main hypothesis is that material perception
involves both high-level recognition and mid-level
estimation of material attributes, and we hypothesize
that color affects both processes. We will ask the
following questions: Will converting images to grayscale
change an object’s appearance from “translucent” to

“opaque”? How does color affect the estimation of
material-related attributes? Can removing color alter the
recognition of material categories (e.g. from crystal to
jelly)?

To answer these questions, we designed three
experiments. We use a between-group design in which
different groups of observers perform the same tasks
with color and grayscale images, respectively. In
Experiment 1, two groups of observers perform binary
classification judging whether the material of the object
is “translucent” or “opaque” in either color or grayscale
condition (see Figure 2II). In Experiment 2, we measure
semantic attribute ratings of the same images in color
and grayscale. Specifically, observers rate five attributes
using a 6-point Likert scale (see Figure 2III). In
Experiment 3, we use a material categorization task to
reveal how observers recognize the material categories
(see Figure 2IV). Across the three experiments, we
aim to reveal how color affects the estimation of
material properties and material categorization by
analyzing both between-group effects and individuals’
performances. In the meantime, we investigate to
what degree these tasks are related, and whether we
can use the results from semantic attribute ratings to
characterize translucency classification.
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General method

Image data set and stimuli presentation

Our image data set contains 300 photographs
of everyday objects, including fruit, meat, seafood,
crystals, soap, wax, stone, plastics, etc., as experimental
stimuli. The data set consists of images downloaded
from Google Images and photographs taken by the
authors. Each photograph contains one object placed
against a uniform black background, which is achieved
by using a binary mask to filter the contour of the
object before copying and pasting it onto a blank
image. Even though, we try to make the ratio of the
size of the object to the background consistent across
the images, we do not control the lighting, image
acquisition processes, and photography styles. Different
from previous studies, we intend to sample the images
from different sources in order to have a representation
of the richness of everyday visual experiences.

The images from the data set were presented to
the observers in two separated conditions, color and
grayscale, as shown in Figure 2I. In the color condition,
the images were displayed in the original red, green,
and blue (RGB) color space. We created the grayscale
images by removing the color from the RGB images.
There are many methods to convert color images
to grayscale. In the current study, our method was
based on the lightness dimension in the CIELab color
space. We assumed D65 as the reference to convert the
sRGB images to grayscale. Here, we used the OpenCV
function COLOR-BGR2Lab to convert the BGR image
into CIELab space, and then extracted, duplicated, and
concatenated the lightness dimension.

Due to the coronavirus disease 2019 (COVID-19)
pandemic, the experiments were conducted online.
Different from crowd-sourcing, we recruited the
observers from American University. The experiments
were built by PsychoPy and jsPsych and hosted on the
online experiment platform Pavlovia.org (De Leeuw,
2015; Peirce, 2007). The observers had access to the
experiment on their own computers and were instructed
to use a device with at least a 13-inch display and make
the brightness of the screen at the maximum level. The
images were resized to 0.45 of the screen size used by
the observers.

In both experiments, 60% of observers used a laptop
with MacOS system with 13-inch to 16-inch displays,
and 40% used Windows system with 13-inch to 15-inch
displays except two people who used 24-inch displays.

Observers and experimental paradigm

Using a between-group design, we have one group
of observers performing the tasks with color images,

and a different group completing the tasks with
grayscale images. In each condition, 20 observers first
completed the binary classification, hence finished
the semantic attribute rating experiment, and 15 of
these observers also performed material categorization
experiment. All observers are students from American
University. The observers who participated in the color
experiments have a median age of 24 years. Observers
who participated in the grayscale experiments have a
median age of 20 years. Overall, there are 12 women and
8 men in each group. Based on self-report, all observers
speak fluent English, although their native languages
are different. All observers reported to have normal
or corrected to normal visual acuity and have normal
color vision. For all experiments, informed consent
was obtained before experimentation. The procedures
were conducted in accordance with the Declaration of
Helsinki and were approved by the Human Research
Ethics Advisory Panel at American University. We do
not assume any prior difference between the two groups
of observers in terms of life experiences with materials,
special skills, and knowledge of image processing.

Figure 2 shows example stimuli and user interfaces
for three experiments. The details of tasks and user
interfaces are described in the subsequent experiment
sections.

Control experiment

We also conducted an experiment by using a different
method of converting the color images to grayscale
to test the extent to which the results are affected.
We generated the grayscale images using the Contrast
Preserving Decolorization method supplied in OpenCV
(Lu, Xu, & Jia, 2012), and recruited another group
of 20 observers to perform the Binary Classification
and Material Categorization tasks. The details of
the experiment can be found in the Supplementary
Material.

Results

Experiment 1. Binary classification

Because “translucent” and “opaque” have been
frequently used in the previous studies in the perception
of subsurface scattering materials, we first look at
how well observers are able to classify the objects in
our image data set into two categories, “translucent”
and “opaque,” and explore how converting images to
grayscale affects the binary classification. Our goal is to
build a labeled data set of these photographs for each
observer and further examine the relationship between
binary classification and semantic attribute ratings
(Experiment 2).



Journal of Vision (2022) 22(2):6, 1–23 Liao, Sawayama, & Xiao 6

Procedure
Figure 2II shows the experiment interface. During

each trial, the observer was asked to judge whether
the material of object shown in the image is either
“translucent” or “opaque” through keyboard responses.
Prior to the experiment, the observer was introduced
to the physical model of light transmission of opaque
and translucent materials. Specifically, they were shown
an illustration and a brief description of volumetric
scattering model and a pair of images rendered with
and without subsurface scattering. To avoid biases, we
did not provide photographic examples of translucent
materials. Three hundred images were shown to the
observer in a pre-randomized order, which was same in
both color and grayscale conditions.

Results
Converting images to grayscale affects the trial-by-

trial percent agreement among observers. For analysis,
we compute the percent agreement among observers
for each trial in the binary classification for both color
and grayscale conditions. The percent agreement of an
image i, Pi, is calculated based on following Equation 1:

Pi = max
(
Noi

N
,
Nti

N

)
(1)

where Noi is the number of observers that classify the
image as “opaque,” Nti is the number of observers
that classify the image as “translucent,” and N is total
number of observers. Figure 3I plots the trial-by-trial
percent agreement for both color (red line) and
grayscale (blue line) conditions. On the X-axis, the
images are ordered from uniformly agreed to be
“translucent” (left) to uniformly agreed to be “opaque”
(right) in the color condition. Percent agreement is
high for obviously transparent objects (e.g. glass) and
for obviously opaque materials (e.g. metal block),
but is low for translucent materials (e.g. wax). Based
on the aggregated data, we can see the ranking of
materials based on the percent agreement, from most
“translucent” to “opaque,” is largely consistent with
the ground-truth. This figure also shows that the
trial-by-trial percent agreement is different in color and
grayscale conditions. For example, some images judged
to be “translucent” in color condition are judged to be
“opaque” in grayscale.

Converting the images to grayscale flips classification
labels for some images. We further look at what images
are most affected when they are converted to grayscale.
Based on the binary classification result, we label an
image as “translucent” (T) if at least 60% of observers
classify it as translucent, as “opaque” (O) if at least
60% of observers classify it as opaque, as “unsure”
(U) if less than 60% of observers classify it as either
translucent or opaque. Using these labels, we find that

some images flip from “Translucent” in color condition
to “Opaque” in grayscale condition, and vice versa.
Histogram in Figure 3II shows that 61 images have
flipped their classification labels.

Figure 4I depicts the image-by-image representational
dissimilarity matrices (RDMs; Kriegeskorte, Mur,
& Bandettini, 2008) based on observers’ judgments
in both color and grayscale conditions. Specifically,
for each pair of images, we compute normalized
Hamming distance based on the 20 observers’ binary
classification results. For example, image i receives the
binary classification label from 20 observers in color
condition, and its voting pattern can be represented by
an array ai. Similarly, the voting pattern for image j in
color condition can be represented by aj. Assuming ai =
(1,0,...,0), and aj = (0,0,...,1), the normalized Hamming
distance between image i and j is computed by first
finding the number of elements at which the arrays ai
and aj are different, and then dividing it by the number
of observers (N = 20). In this example, the normalized
Hamming distance is 2 divided by 20, which equals 0.1.

In Figure 4I, the more saturated color in the RDM
represents higher dissimilarity (larger normalized
Hamming distance). From top to bottom of the axis,
we order the images as receiving an increasing number
of votes of being “opaque” in color condition (same as
the X-axis in Figure 3I). The boxed regions represent
the images labeled as “translucent” (T), “unsure” (U),
and “opaque” (O) in the color condition using the
same definition in Figure 3II. In the color condition,
dissimilarity is lower for the opaque region (lower
right) than the translucent region (upper left). We
conduct a one-sided Mann-Whitney U test to compare
corresponding regions between color and grayscale and
find that all of these regions in grayscale RDM have
statistically higher dissimilarity in comparison to those
in color RDM (p < 0.0001 for each pair of regions).

Converting images to grayscale leads to higher level
of disagreements among observers. To investigate
individual difference in the results, we compute Cohen’s
Kappa (κ) as a measurement of interobserver agreement
on the classification of images (Cohen, 1960). Cohen’s
Kappa can be calculated from the following Equation 2:

κ = Pa − Pe

1 − Pe
(2)

where Pa is the actual observed agreement, and Pe is the
chance agreement (McHugh, 2012).

In Figure 4II, we show Cohen’s Kappa (κ) between
observers for both conditions. The dark blue and blue
cells correspond to low κ, meaning that the level of
agreement between the pair of observers is none (0
< κ < 0.20) or minimal (0.21 < κ < 0.39). The dark
red and red cells correspond to relatively higher κ,
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Figure 3. Experiment 1: Effect of color on the percent agreement among observers in binary classification experiment. (I) The
trial-by-trial percent agreement of binary translucency classification in color (red) and grayscale (blue) conditions. Top insertions: The
example images corresponding to different levels of agreements. (II) Different types of classification label flips when the images are
converted to grayscale. The legend at the bottom shows how the labels are defined based on observers’ agreements. For example,
“translucent to opaque” means the image flips its label from translucent in color condition to opaque in grayscale condition.
(III) Examples of images that flip the classification label when they are converted to grayscale.

Figure 4. Comparison of individual variability between color and grayscale in binary classification (BC) task. (I) Image-by-image RDMs
of the binary classification measured by normalized Hamming distance. The boxed regions represent different categories of images
labeled as “translucent” (T), “unsure” (U), and “opaque” (O) in the color condition, which were explained in Figure 3. (II) Person-by-
person heat map based on Cohen’s Kappa (κ) of the binary classification task (Cohen, 1960). Observers in color condition are indexed
from 1 to 20, and those in grayscale condition are indexed from 21 to 40.
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meaning that the level of agreement between the pair
of observers is moderate (0.60 < κ < 0.79) or weak
(0.40 < κ < 0.59). From all pairs of observers, we do
not observe a strong level of agreement (0.80 < κ <
0.90) in either condition. The are 83.7% and 96.3% of
the cells in color and grayscale conditions that show
the minimal and weak level of agreement, suggesting
that there is substantial individual difference in the
binary classification task. Moreover, there are more
pairs of observers reach moderate level of agreement
(16.3%) in the color condition in comparison to that
of the grayscale condition (3.68%). The one-sided
Mann-Whitney U test comparing the two conditions
shows that observers have a lower level of agreement
when the images are shown in grayscale (p < 0.0001).

Discussion
Experiment 1 shows that converting images

to grayscale leads to more ambiguity in binary
translucency classification for some images, reflected by
larger individual variability. Converting to grayscale flips
classification labels for some images. We hypothesize
that the image cues, such as color gradient, might be
necessary for assessing the translucent appearance,
which are absent in grayscale images. Further, color is
often associated with object identification, which might
also affect the individual’s translucency classification.
Without color, the object’s identity might be ambiguous
and prone to personal interpretation, which might lead
to more individual variability in the grayscale condition.
For the control experiment with the contrast-preserved
version of grayscale images, we obtained the similar
results and also observed high ambiguity in the binary
translucency classification. The results can be found
in the Supplementary Material. We also acknowledge
that the choice of using 60% as the threshold could
impact the distribution of labels in our data set. One
mitigation is to use a larger sample size in the future so
that more statistically significant and reliable results can
be obtained.

Experiment 2. Semantic attribute rating

In Experiment 2, instead of classifying the material
into “translucent” or “opaque,” we asked the observers
to judge a few commonly used mid-level material
attributes associated with translucency with the goal of
describing the perceptual space of translucency. Our
goal is two-fold: first, we aim to explore to what degree
the attribute ratings are affected by converting the
images to grayscale; and second, we aim to characterize
the relationship between the semantic attribute ratings
and binary translucency classification, and see whether
the selected attributes are related to translucency
classification for the individual observers.

Procedure
Prior to the main experiment, we conducted a survey

after a pilot binary classification experiment (e.g. a
shorter experiment done by different observers from the
experiment reported here). We asked the observers to
describe the image properties or cues they found useful
in the binary classification task using adjectives. Based
on their responses and previous literature, we selected
five perceptual attributes to describe the translucent
appearance of materials, including “see-throughness,”
“glossiness,” “softness,” “glow,” and “density.” For
example, “glow” was first proposed as a cue for
translucency by Fleming and Bülthoff (Fleming &
Bülthoff, 2005). Observers were asked to rate each of
these attributes of the material of the object shown in
the image on a 6-point Likert scale (see Figure 2III). We
choose five attributes because otherwise the experiment
would be very long.

Observers were first asked to carefully read the
description of the semantic attributes. On each
trial, without time limit, they used a slider to rate
each attribute, using 1 for low attribute value and
6 for high attribute value. The order of images was
pre-randomized and was different from the binary
classification experiment. We define the attributes as
follows:
• See-throughness: To what degree the object allows
light to penetrate through.
• Glossiness: To what degree the object appears shiny
and reflective.
• Softness: To what degree the object is easy to
deform.
• Glow: To what degree the object appears to glow
light from inside.
• Density: To what degree the object appears to be
“dense.”

Results
Converting to grayscale affects the distribution of

attribute ratings for some images. For each image, we
plot the distribution of ratings across observers for
each attribute. Figure 5I shows some examples of
images for which distributions of attribute ratings are
affected when they are converted to grayscale, such as
the images of a wax candle and a green resin bun. To
quantify the effect of color on ratings for each image
and attribute, we calculate Kullback–Leibler divergence
(KL divergence) between the distributions of attribute
ratings of color and grayscale conditions. The KL
divergence is calculated as following:

DKL (G ‖C ) =
∑
x∈X

G (x) log
(
G (x)
C (x)

)
(3)

where G(x) is the probability distribution of ratings
for an attribute in grayscale condition, and C(x) is
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Figure 5. Experiment 2: Effect of converting images to grayscale on material attribute ratings. (I) Examples of the distribution of
observers’ ratings of five semantic attributes in color and grayscale conditions. We compute KL divergence between the rating
distribution of color condition (top) with that of the grayscale condition (bottom), and show it in the yellow box. (II) Left: The
cumulative distribution function of values of KL divergence for each attribute. The X-axis is the value of KL divergence and the Y-axis is
the cumulative percentage of images with the corresponding KL divergence value. Right: The distribution of KL divergence of 300
images for each semantic attribute. (III) The effect of converting images to grayscale on the skewness of the distribution of ratings for
each attribute. Each line represents the difference between the skewness of the distribution of ratings in color condition and that in
grayscale, Ds (see Equation 4), for a particular image.

the distribution of ratings for the attribute in color
condition.

Figure 5I compares the distributions of ratings
between color and grayscale images. Figure 5II plots
the distribution of KL divergences across all images
for each attribute. The figure shows that about 80% of
images have relatively small KL divergence and only a
small portion of images have high KL divergence. The
shape of the distributions of KL divergence is similar
across five attributes, with a highly positive skew toward
low KL divergence, suggesting that color only weakly
affects the attribute ratings for the majority of images.
For a small number of images, color has a stronger
effect on the ratings, which leads to relatively higher

KL divergences. From the two examples, we can see
that high value of KL divergence corresponds to visible
difference of the shape of the distribution. For the wax
candle images, more observers use relatively high glow
ratings in the grayscale condition in comparison to the
color condition, resulting in a large KL divergence
of 1.019. For the green resin images, observers are
more likely to use lower see-throughness ratings in
the grayscale condition, also resulting in a high KL
divergence of 2.204. Although there is no universal
standard for KL divergence, we observe that KL
divergence greater than 1 (i.e. DKL(G||C) > 1) could
be an informative threshold indicating significant
difference between the distributions of attribute ratings
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Figure 6. Average see-throughness, glossiness, and glow ratings show correlation with level of translucency resulted from binary
classification experiment, whereas average softness and density do not. Each point in the plot represents an image from the data set.
On top of the scatter plots are the Kendall rank correlation coefficient (τ ) between the average attribute rating and the number of
votes for being “opaque,” and the associated p value at confidence level of 95%.

in color and grayscale conditions. Among our stimuli,
9.0%, 11.0%, 17.3%, 6.3%, and 17.7% of the images
have DKL(G||C) > 1 for the distribution of ratings of
“see-throughness,” “glossiness,” “softness,” “glow,” and
“density,” respectively.

For a particular image, in order to understand
whether the distributions of ratings are shifted toward
the higher or lower end of the scale when color is
removed, we compute the difference in the skewness
between color and grayscale, of distribution of attribute
ratings, Ds, by Equation 4:

Ds = scolor − sgray (4)

where scolor and sgray are the skewness of distribution
of attribute ratings in color and grayscale condition
respectively. Figure 5III shows the Ds of all images in
five attribute ratings. The order of X-axis is the same
as that in Figure 3I. If a line falls in the blue region,
it shows that an image has more observers that assign
higher ratings for that attribute in grayscale condition
in comparison to color. We can see that many lines fall
into the pink region, meaning that, for a great number
of images, more observers assign higher ratings to
the attributes in color condition. Together, converting
images to grayscale causes more observers to assign
lower ratings of glossiness, softness, glow, and density
but might cause some opaque objects to appear more
see-through.

The correlations between attribute ratings and
perceived level of translucency. Figure 6 plots the average
attribute ratings for the images in color and grayscale
conditions. On the X-axis of each plot, the images
are ordered by the number of votes for being opaque,
based on the binary classification result in color and
grayscale condition, respectively. On the left, the images
are uniformly agreed to be translucent, and, on the
right, the images are uniformly agreed to be opaque.
The Y-axis represents the average attribute rating of an
image. The figure shows that some attributes’ ratings

are significantly correlated with binary classification
whereas others are less correlated. We compute the
Kendall rank correlation between the mean attribute
ratings and the level of translucency based on the
binary classification (Experiment 1), and summarize
our findings as below:

• Average ratings of see-throughness and glow are
significantly correlated with the level of agreement
of translucency from the binary classification
such that their values decrease as the images
are more uniformly agreed to be opaque. For
see-throughness, the statistical results are τ =
−0.77, p < 0.05 in color condition, τ = −0.74, p
< 0.05 in grayscale condition; for glow, we find
τ = −0.69, p < 0.05 in color condition, and τ =
−0.6, p < 0.05 for grayscale, suggesting moderate
correlation.
• Average rating of glossiness has moderate
correlation with binary classification under both
conditions (τ = −0.44, p < 0.05 in color condition,
and τ = −0.51, p < 0.05 in grayscale condition).
• Average ratings of softness and density are not
significantly correlated with the level of agreement
of translucency.

These results suggest see-throughness, glow, and
glossiness are closely related to how observers classify
the objects into translucent and opaque.

Correlation between semantic attributes. We also
analyze to what extent the ratings of the attributes
are dependent on one another. Figure 7 shows the
Kendall rank correlation matrix between the average
attribute ratings. Some of the attributes are statistically
significantly correlated with Bonferroni correction
adjusted alpha level of 0.005 (0.05/10). Overall,
the average ratings of see-throughness, glow, and
glossiness are positively correlated with each other,
whereas density and softness are negatively correlated.
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Figure 7. The correlation matrix of average ratings of semantic attributes. Left: Color condition. Right: Grayscale condition. The
numbers shown in the cells are the Kendall rank correlation coefficients between ratings of two attributes. Blue color represents
positive correlation and red color represents negative correlation. * Indicates p < 0.005.

Specifically, in both color and grayscale conditions,
see-throughness is positively correlated with glow (τ
= 0.67, p < 0.005 in color, and τ = 0.61, p < 0.005 in
grayscale), and is weakly correlated with glossiness (τ
= 0.35, p < 0.005 in color, and τ = 0.41, p < 0.005
in grayscale); glossiness is also weakly correlated with
glow (τ = 0.45, p < 0.005 in color, and τ = 0.49,
p < 0.005 in grayscale); density is highly negatively
correlated with softness (τ = −0.74, p < 0.005 in color,
and τ = −0.71, p < 0.005 in grayscale). The correlation
between see-throughness and glossiness is consistent
with previous findings that glossiness is important in
translucency perception and vice versa (Gigilashvili,
Shi, et al., 2021; Motoyoshi, 2010).

Clustering of images in the space of perceptual
qualities. To understand if the semantic ratings can
be used to predict observers’ binary classification, we
first compute the mean semantic attribute ratings for
each image in both color and grayscale conditions.
Then, we use Principal Component Analysis (PCA) to
reduce the dimensionality of the rating data. Figure
8 shows the perceptual space of the images with the
first two principal components (PCs), where we color
the points using the classification labels “Translucent,”
“Opaque,” and “Unsure” defined in Figure 3II. The
first two PCs account for approximately 82% of the
variance in both color and grayscale conditions. Figure
8I shows that the images can be clustered into
“Translucent” and “Opaque” in the 2D perceptual
space. In the right panels of Figure 8I, the arrowed
vectors describe how much each semantic attribute
contributes to a particular PC. Large loading (either
positive or negative) indicates the attribute having
a strong relationship with a particular PC, and the
sign of loading indicates whether an attribute and
a PC are positively or negatively correlated. In the
color condition, see-throughness, glow, and glossiness

have slightly higher weights in the first PC (PC1), and
softness and density have large loadings on the second
PC (PC2). In the grayscale condition, see-throughness,
glow, and glossiness primarily contribute to PC1,
whereas softness and density primarily contribute
to PC2. In both conditions, we see that the loading
vectors of see-throughness, glow, and glossiness are
orthogonal to the direction spanned by density and
softness, suggesting that the light transmission related
attributes are highly correlated with each other and
softness and density are anti-correlated, confirming
the results shown in Figure 7. Figure 8I shows that
the direction spanned by see-throughness, glow, and
glossiness separates the “Translucent” cluster from the
“Opaque,” suggesting that these three attributes could
be indicative of translucent materials labeled in the
binary classification task.

To look at the results on the individual level, we
use each observer’s attribute ratings to perform PCA
analysis based on polychoric correlation (Revelle, 2020).
Common across all observers, similar as results from
mean ratings, we find that the loadings of density and
softness are mostly orthogonal from those spanned
by see-throughness, glow, and glossiness. Figure 8II
shows the loading of each attribute on the first two PCs
and the correlation among them vary somewhat across
observers.

See-throughness, glossiness, and glow can be used
to predict observers’ binary translucency classification.
While considering the presence of individual variability
in semantic attribute rating and binary classification
tasks, we aim to understand the relationship between
them. For each observer, we use their five attribute
ratings as features, and perform a logistic regression
with three-fold cross validation to predict the observer’s
binary classification of an image. Figure 9I shows
that using logistic regression achieves 80% prediction
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Figure 8. (I) A Principal Component Analysis (PCA) of the mean attribute ratings in color and grayscale conditions. Left: PCA
scatterplots of 300 images in color and grayscale conditions. Right: The loadings of five semantic attributes. The axis represents the
loading on the first or second principal component, with the explained variance shown in parentheses. (II) The loading of attribute of
selected observers in color and grayscale conditions.

Figure 9. Prediction of individual observers’ binary classification from semantic attribute ratings using the logistic regression.
(I) Prediction accuracy for observers in color and grayscale conditions. The error bar indicates the standard deviation of the prediction
accuracy of the three-fold cross-validation. The orange line corresponds to prediction by chance (50%). (II) The median number of
observers in the three cross-validations that reaches statistical significance (p < 0.05) in the logistic regression for each semantic
attribute. The error bar shows the difference between the maximum and minimum number of observers in the three
cross-validations.

accuracy for most observers in both color and grayscale
conditions. While running the logistic regression
using three different train-test splits for each observer
(three-fold cross-validation), we record the attributes
that are statistically significant in predicting the binary
classification at significant level of 0.05. For each
train-test split, we count the number of observers who

reach statistical significance for each attribute, and
repeat this three times. Thus, for each attribute, we
obtain three measurements representing the number
of observers reach statistical significance. Figure 9II
plots the median value of the measurements for each
attribute. In both conditions, see-throughness is a
statistically significant predictor for all observers, and
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glow and glossiness are significant features for at least
30% of observers. Softness and density are statistically
insignificant predictors for most observers. Although
softness and density themselves may not be strong
predictors for the binary translucency classification,
they might be used together with other attributes in
binary classification for some observers.

Discussion
In Experiment 2, we find color differentially affects

ratings of certain images and attributes. It is possible
that these effects depend on specific lighting condition
and the object’s intrinsic material properties. We
conjecture that relatively low KL divergence between
color and grayscale ratings of a particular attribute
indicates the easiness of perceiving this attribute and
recognizing the material category from the image.

Based on both group and individual results, we
see that see-throughness, glossiness, and glow are
correlated, and that they are statistically significant
features to predict the observers’ binary translucency
classification in both color and grayscale conditions.
For some observers, see-throughness alone is an
effective feature to predict whether an image is judged
as “translucent.” For others, the combination of
see-throughness with other semantic attributes is
required. Even though density and softness might not
contribute to the perception of translucency, we find
removing color affects their distributions of ratings. As
shown in Figure 5, there are more images having high
KL divergence in the ratings of density and softness,
suggesting that, for some images, converting them to
grayscale effectively influences observers’ estimation
of these two attributes. Finally, our list of attributes
might not be complete. But we do not think adding
additional attributes will change the results such that
see-throughness, glow, and glossiness are important in
the perception of translucency. In the next experiment,
we are interested in exploring the likelihood that
observers’ attribute ratings are related to material
recognition.

Experiment 3. Material categorization

In this experiment, we measure material
categorization beyond binary classification using the
same image data set, investigate whether and how
converting images to grayscale affects categorization,
and explore the relationship between semantic attribute
ratings and material classes.

Procedure
To decide on which categories to include in the

options provided to the observers, we first asked
the authors in this paper to independently write

down the material names for each image in our data
set and generated a list of categories based on the
consensus. Figure 2IV shows the experiment interface.
On each trial, without any time limit, observers used
the radio button to select the category of the material
that is most appropriate to the object shown in the
image from 18 options, including food in general,
food/cheese, food/fruit/vegetables, food/gummi/jelly,
food/meat/seafood, food/candy/sugar, food/shaved
ice/ice cream/cream, crystal/quartz/mineral/jade, glass,
ivory, marble/stone/concrete, plastic/synthetic, rubber,
soap, wax, wood, chalk, and metal. Excluding the
images that contain objects with uncommon materials,
we selected 287 images from the data set. The order
of images was pre-randomized and was different from
the binary classification and semantic attribute rating
experiments. For both color and grayscale conditions,
we asked 15 observers who participated the binary
classification and semantic attribute rating experiments
to perform this task.

Results
Effect of color on material categorization. Figure

10 shows the number of observers misjudge the
material category of an image in color and grayscale
conditions. Each radar chart contains the images
belonging to a specific ground-truth material category,
and the distance from the data point to the center
represents the number of observers that select the
incorrect material for an image. Instead of showing the
radar chart for all 18 categories in the experiment, we
discard “chalk” and “wood,” which only have a few
images in the data set, and combine the rest to the
following eight major categories: “food in general,”
“soap,” “marble/stone/concrete/ivory,” “glass,” “crys-
tal/quartz/mineral/jade,” “plastic/synthetic/rubber,”
“wax” and “metal.” Overall, observers are more
likely to misjudge material categories of objects in
grayscale images in comparison to color images,
which is confirmed by our statistic test (one-sided
Mann-Whitney U test, p < 0.005). The error rates
are especially high for the materials such as “food in
general,” “soap,” and “wax.”

In the absence of color, observers were especially
poor at identifying “food.” After we obtain the material
classifications from observers, we manually regroup the
material classes, “soap,” “marble/stone/concrete/ivory,”
“glass,” “crystal/quartz/mineral/jade,” “plas-
tic/synthetic/rubber,” “wax” and “metal,” as “non-food”
and the rest as “food in general,” and examine observers’
material classification under this binary setting. Figure
11I shows the trial-by-trial material categorization in
both conditions. The X-axis is ordered by the images
uniformly classified as “food in general” (left) to
uniformly classified as “non-food” (right) in the color
condition, and the stacked bar shows the number of
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Figure 10. Experiment 3: Radar charts showing the number of observers misjudge the material category of the image in color and
grayscale conditions. Each radar chart represents the images belonging to the same ground-truth material category. The distance
from the point to the center depicts the number of observers who misjudge the material category of a corresponding image in color
(red) or grayscale (blue) condition. All charts use the same range.

Figure 11. Experiment 3: Observers do not reach uniform agreement on food and non-food categorization of some materials. Some
images uniformly judged as “food” in color condition, are judged as “non-food” in grayscale condition, and vice versa. (I) Trial-by-trial
categorization of image as “food in general” or “non-food.” Material categories, including “crystal/quartz/mineral/jade,”
“marble/stone/concrete/ivory,” “glass,” “plastic/synthetic/rubber,” “soap,” “wax,” and “metal,” are further generalized as
“non-food.” The rest are generalized as “food in general.” (II) Examples of images with different material categorization results from
observers in color and grayscale conditions. The histograms show the distributions of material category judged by the observers.
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Figure 12. Experiment 3: Converting images to grayscale results in more observer disagreements in material categorization (MC) task.
(I) Person-by-person RDMs of Experiment 3 in color and grayscale conditions. For each condition, 15 observers who completed the
binary classification and semantic attribute rating experiments performed this task. The axes represent individual observers with the
same observer index shown in Figure 4II. The dissimilarity is computed from observers’ material classification results of 287 images
using normalized Hamming distance (see Experiment 1 for how this is computed). More saturated-color cells correspond to higher
dissimilarity between two observers, indicating that they are more likely to disagree. (II) The comparison of distributions of the
normalized Hamming distances in color and grayscale conditions.

observers judge the material as food or non-food. The
figure shows that trial-by-trial classifications of food
versus non-food are different for some images in color
and grayscale. Some objects uniformly agreed as “food
in general” in the color condition are judged by more
observers to be “non-food” in grayscale. To relate to
our previous experiments, we notice that some of these
misjudged images tend to be translucent. Figure 11II
shows the examples of images and their distribution
of judged categories. For instance, some observers
reckoned the orange slice (and also a chunk of mango
jelly) as “crystal/quartz/mineral/jade” or “glass,” in
grayscale condition. On the other hand, the stone
is judged by most observer as “non-food” in color
condition but judged as “food” by some observers in
grayscale. For the unfamiliar materials, such as the
green resin bun, which can take any shape and color,
observers are more likely to misjudge the material
category in both color and grayscale conditions. This
might be caused by their individual difference in object
recognition and the association between color and
object identity.

Effect of color on observers’ disagreements in material
categorization. On the level of individuals, observers
are more likely to judge differently in the grayscale
condition. Figure 12 plots the person-by-person RDMs,
which use normalized Hamming Distance to measure
to what degree a pair of observers are different in
material categorization. We find that the two RDMs
are significantly different. Specifically, the grayscale
condition RDM is more likely to have high dissimilarity
values in comparison to the color condition RDM
(one-sided Mann-Whitney U test, p < 0.0001).

Relationship between material categorization and
semantic attribute ratings for individual observers.
Figure 13 shows the t-SNE (van der Maaten &
Hinton, 2008) plots of images using five semantic
attribute ratings as features, colored with the observer’s
choice of the material category, for selected observers.
We can see that the images that are closer in the
embedding spanned by the semantic attribute ratings
are likely to be classified as similar materials. It is
possible that observers involuntarily use material
recognition as an intermediate step to estimate the
material properties. In addition, we notice that material
categories, such as “crystal/quartz/mineral/jade,”
“marble/stone/concrete/ivory,” and “metal,” are close
to each other in the t-SNE embedding. Observers
might not be able to meticulously assign distinctive
attribute ratings to them. Further, our results show
that it is possible to separate the materials into “food”
and “non-food” from the t-SNE plot derived from
semantic attribute ratings. It is interesting to see the
perceptual space extracted from semantic ratings
not only can cluster the images into binary classes
translucency and opaque, but also can cluster them into
“food” and “non-food,” suggesting that there might be
common representations between food-related material
classification and translucency perception.

Discussion
When color is removed, we notice that observers

are incapable of recognizing the ground-truth material
category of some objects. Particularly, observers often
misjudge “food” as “non-food” for the physically
translucent objects in grayscale, suggesting that
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Figure 13. The t-SNE (Maaten & Hinton, 2008) embeddings (perplexity = 15) of individual observer’s material attribute ratings show
clusters emerge corresponding to the perceived material categories. It is easy to see “food” is clustered away from “non-food” for
most observers. Hard materials, such as glass and crystals, are also clustered together. Top panels are two observers’ embeddings in
color condition and the bottom panels are two observers’ embeddings in grayscale.

color could be a cue that is associated with food
recognition. We also obtained similar results for
the control experiment with the contrast preserved
version of grayscale images. The results can be
found in the Supplementary Material. To relate the
results in material categorization to our previous
experiments, we find that the images judged to be the
same material class by the observer are close to each
other in the individual t-SNE embedding of ratings,
providing the hint that observers might rely on material
recognition to estimate the semantic attributes related
to translucency. However, we need future work to
investigate the causal directionality of the relationship
between semantic attributes and recognition of material
categories. It also remains to be investigated how the
perception of food is related to the perception of
translucency.

General discussion

Our study is the first to measure the effect of color
on translucency perception using photographs of
real-world objects. We find that converting images to
grayscale affects both material property estimation and
recognition of translucent objects. In Experiment 1,
we find that converting images to grayscale affects the
trial-by-trial percent agreement among observers of
whether an object is translucent or opaque. We also find
that there are more disagreements among observers in
the grayscale condition. In addition, converting images
to grayscale causes some objects in the images to change
their class label from “translucent” to “opaque”and vice
versa. In Experiment 2, we find that converting images
to grayscale substantially affects the distributions of
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semantic attribute ratings for some image/attribute
combinations. In particular, removing color causes the
distributions of ratings of glossiness, softness, glow,
and density to skew toward lower values. We also find
the ratings of see-throughness, glossiness, and glow are
moderately correlated with the degree of translucency
derived from binary classification. We further show
that the ratings of the attributes can be used to predict
individual observers’ binary classification, indicating
that a combination of these attributes might be used
by the observers to perceive translucency. However, it
is still insufficient to conclude the causal relationship
between the semantic attribute ratings and the binary
classification. In addition, common across all observers,
we discover that see-throughness, glow, and glossiness
are positively correlated, and density and softness are
negatively correlated. Finally, in Experiment 3, we
find observers are more likely to misjudge the material
categories in comparison to ground-truth for grayscale
images. This effect is especially strong when observers
are judging the images of food versus non-food
categories.

Overall, we find that removing color has a differential
effect on images in our data set, meaning that some
images and material attributes are more affected than
others. In the meantime, we find material categorization
is related to semantic attribute ratings, which is
consistent with previous studies (Fleming et al., 2013;
Zuijlen et al., 2020). However, different from previous
work, we analyze the data from the level of individual
observers, and discover that converting images to
grayscale results in more interobserver disagreements.

Effect of color: High-level association versus
low-level image cues

We conjecture that color affects translucency
perception in two possible pathways. One is through
high-level association among color, object identity, and
individual understanding of translucency. Specifically,
color might affect recognizing an object through
association (e.g. a red shrimp is usually cooked).
In turn, there might be an association between
object identity and whether an observer believes it is
translucent (e.g. a cooked shrimp is opaque). Therefore,
when color is removed, it is likely for some observers
to judge a grayscale shrimp to be raw and, therefore,
translucent.

Observer’s misjudgment of “food” versus “non-food”
in Experiment 3 might be due to the association
between color and object’s category. When color is
removed, observers might rely more on other low-level
cues and object’s shape to judge its category. How an
observer associates color with material category might
depend on their experiences and cultural backgrounds
as well. Previous work has hinted color affects object

recognition (Tanaka, Weiskopf, & Williams, 2001).
However, the complex relation among color, shape,
object identity, and material categorization remains to
be investigated.

Another pathway is through low-level image cues.
Previous work suggested color-related image statistics,
such as saturation, might affect the perception of
translucency and wetness (Fleming & Bülthoff,
2005; Sawayama et al., 2017). Inspired by earlier
observations (Nakano, Takeuchi, Motoyoshi, Li,
Adelson, & Nishida, 2009; Xiao, Gkioulekas, Dunn,
Zhao, Adelson, Zuckler, et al., 2012), we notice that
manipulating the Pearson correlation between the
luminance and saturation affects the translucent
appearance of some materials. In the case of the wax
cube image shown in Figure 14, the center of the cube
looks deeply yellow because light passes through a
greater distance, but it looks pale yellow when light
passes through the thin edges. This attenuation effect is
manifested in the saturation dimension. For translucent
materials, this variation of saturation at thin and
thick parts of an object can be an important cue for
the translucent appearance. The spatial variation of
saturation can be negatively correlated with that of
luminance in translucent object. According to the
optical extinction process in a translucent medium, a
decrease in radiance due to a large amount of light
extinction should be accompanied by an increase
in color saturation. Previous work has shown that
manipulating the correlation statistics between color
and lightness can impact image translucency transfer
(Todo, Yatagawa, Sawayama, Dobashi, & Kakimoto,
2019).

Figure 14 shows the effect of manipulating the
correlation between CIE u’v’ saturation and luminance
on the appearance of images. The correlations for
two original translucent images (“baby’s feet” and
“microcrystalline wax”) show negative correlations
(“Original” in Figure 14). When we manipulate
the saturation distribution to decrease the negative
correlation between saturation and luminance, the
translucent appearance on the “baby’s feet” image
drastically reduced (center and right in Figure 14),
consistent with the notion of previous literature
(Fleming & Bülthoff, 2005; Xiao et al., 2012). In
contrast, when we manipulate the correlation for the
“microcrystalline wax” image, both the negative and
positive correlations show translucent appearance.
Specifically, the negative correlation makes the edge of
the wax cube appear diluted in color, therefore giving
an impression of “icy” translucence. On the other hand,
the positive correlation makes the center of the cube
more yellowish and gives an impression of “glow.”
Therefore, the image with the positive correlation
appears “glow” or “warm” translucence. This finding is
also mentioned in earlier translucency work by Fleming
et al. (Fleming & Bülthoff, 2005), indicating the positive
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Figure 14. Correlation between saturation and luminance. The images of baby’s feet and wax (“original” in the figure) were
transformed by manipulating the correlation between CIE u’v’ saturation and luminance. The scatter plot under each image indicates
pixel values of u’v’ saturation and luminance for the region pointed by the white square on the original image. The Pearson correlation
coefficient (r) of the distribution is shown on the top of each image. The transformation has been applied only to the saturation
distribution, not the luminance distribution. Specifically, the pixel saturation has been modulated by linearly blending normalized
distributions of saturation and luminance. When the weighting of luminance distribution increases, the output saturation changes to
the direction of positive correlation. The mean and standard deviation of the original saturation distribution are kept constant.

correlation between the saturation and luminance is
also plausible. The correlation between saturation and
luminance might play a role in translucency perception,
but the way is complex.

We also notice that the Chroma channel provides
important cues for translucent appearance. Figure
15 shows some examples of label flipped images
from the binary translucency classification task in
CIELCh color space. For some images whose label

flipped from translucent to opaque, such as the pink
wax, the gradient in the Chroma channel varies
significantly from the center to the sharp edges, creating
an impression of glow from the inner area of the
object. This gradient is less obvious in the Lightness
channel. On the other hand, for some images whose
label flipped from opaque to translucent, such as the
grapefruit, the image of the Chroma channel appears
to capture the light reflection layer of the image
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Figure 15. The Lightness and Chroma channels of the “label flipped” images selected from Figure 3II. Left: Examples of “translucent to
opaque.” Right: Examples of “opaque to translucent.” For each example, the original RGB images are converted to the CIELCh color
space, and the Lightness and Chroma channels are extracted.

and by itself looks more opaque than the Lightness
channel.

Individual differences

We discover that there are substantial individual
differences in our tasks, which we believe reflect the
underlying uncertainty of the observers’ decisions
in the experiments. We find converting images to
grayscale results in more individual variability in both
Experiment 1 (see Figure 4 II) and Experiment 3 (see
Figure 12). Previous works in material perception have
not systematically investigated individual difference
as those in color vision (Brainard & Hurlbert, 2015;
Mollon, Bosten, Peterzell, & Webster, 2017) except a
recent work on translucency perception (Gigilashvili et
al., 2020), which discusses the challenges of ambiguity
in the concept of translucency perception. In our
experiments, individual difference can potentially
emerge at various processing stages. We summarize as
the following:

• Individual difference in the high-level understanding
of translucency. We discover that there is individual
difference in binary classification experiment,
especially when the materials are physically
translucent. It is possible the interobserver
differences we observed in the binary classification
might be attributed to the subjective understanding
of what translucency means. Some observers

might not be fully aware of the physical process
of subsurface scattering and tend to label most
objects as opaque, whereas others might use their
knowledge of the physical process of scattering
in the judgments. This might result in semantic
ambiguity in the binary translucency classification.
We mitigate this by seeking a perceptual space using
translucency related semantic attributes. We find
that even though there are still individual variability
in the ratings, individual observers’ own ratings
are correlated with their binary classification
results. This shows that although observers might
have different semantic-level understanding of
translucency, there is commonality in how their
material attribute rating, a mid-level representation,
is related to their binary translucency classification.
• Individual difference in prior experience of
interacting with materials. We find individual
differences in material categorization even in the
color condition, especially in judging “food” versus
“non-food” of translucent objects (see Figure
11). One reason might be that observers have
different experiences and knowledge of certain
materials (e.g. Asian observers might be more
familiar with mochi and mooncake). Future work
is needed to understand how life experience and
cultural background affect recognition of material
categories and explore the plausibility of their
relationship to translucency perception.
• Individual difference in low-level perception.
Difference in the low-level perception, such as
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which image regions observers attend to and
what local image cues observers use, might affect
observers’ judgments (Nagai et al., 2013). This type
of individual difference might be enlarged when we
use photographs of real-life objects as stimuli. This
information sampling factor can be investigated
by measuring and controlling observers’ gaze or
attention in the future. In addition, further work
is needed to investigate the relationship between
individual difference in low-level perception and
that in high-level semantic understanding of
material classes and perceptual attributes.

In this work, we present the possibility of “true”
individual difference in perceiving translucency, which
might be the result of each observer’s information
sampling, their unique knowledge about physical
process of translucency, life experiences, and cultural
backgrounds. However, we need further studies to tear
apart the “individual difference from data,” which
could arise from real differences between individuals,
but also from measurement error in the visual judgment
task (Mollon et al., 2017). Nevertheless, the individual
difference we described in this study can indicate the
level of ambiguity of the stimuli and relate to the
level of information processing, which is important to
be considered in building computational models of
material perception.

The role of image data set

In this study, we include 300 images from various
material categories, including fruits, meat, crystals,
wax, soap, metal, etc., and do not intentionally balance
the number of images within each category. In order
to analyze individual observers’ performances across
tasks, we need a balance between image categories and
the number of trials such that the experiment will be
finished in a reasonable time frame. In addition, we also
do not control lighting and photography style in the
images, which might shift some of the rating results. In
general, we believe our image data set is representative
of the real world but it has limitations in both diversity
and scale. In the future, we would like to scale up the
current experiment with a more balanced image data
set, and to extend the study of individual and group
differences across cultural backgrounds, languages, and
ages through crowd-sourcing platforms.

In our study, we segment the objects and place
them against a uniform background because nearby
objects in the background might bias our results,
such as providing additional cues of object identity
and lighting environment. For example, having the
background of a kitchen table with other food items
might significantly affect how observers categorize the
target object as food or non-food. Here, we intentionally

exclude the background to allow the observers to
focus only on the object itself. In this way, we can
isolate the effect of color on material categorization
and property estimation. But we acknowledge the lack
of background might increase ambiguity of material
identity and associated semantic attributes’ judgment.
We will systematically investigate how the background
context affect translucent perception in future studies.

Limitation of online study

Due to COVID-19, we held the experiments sessions
online, and could not fully control the device used by
the participants other than asking everyone to use a
laptop with at least 13 inches of display and set the
monitor to maximum brightness. We recognize using
different devices might affect results, but we still find
systematic effect of color conditions in our experiments,
suggesting the effect of the device is not significant.

Conclusion

Using a diverse data set of photographs of real
objects, we discover that color plays significant roles
on translucency perception using three tasks, binary
classification, semantic attribute rating, and material
categorization. In binary classification and material
categorization, converting images to grayscale results
in disagreements among observers, therefore, flips
the translucency classification label for some images.
Removing color also leads to substantial changes in
the distribution of semantic attribute ratings for a
small proportion of images. At the level of individuals,
semantic attribute ratings can be used to predict
observers’ own binary classification results in both color
and grayscale conditions. In the material classification
task, we show that removing color alters observers’
perception of material categories for some images.
In particular, observers tend to misjudge images of
food as non-food and vice versa in grayscale. Together,
our findings reveal a significant but complex role of
color on material perception of translucent objects
in multiple tasks. On the methodological level, our
findings highlight the importance of considering
individual differences in material perception.

Keywords: material perception, color, translucency,
individual difference
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