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Abstract: Epilepsy is one of the most common brain diseases worldwide, having a huge burden in
society. The main hallmark of epilepsy is the occurrence of spontaneous recurrent seizures, having
a tremendous impact on the lives of the patients and of their relatives. Currently, the therapeutic
strategies are mostly based on the use of antiepileptic drugs, and because several types of epilepsies
are of unknown origin, a high percentage of patients are resistant to the available pharmacotherapy,
continuing to experience seizures overtime. Therefore, the search for new drugs and therapeutic targets
is highly important. One key aspect to be targeted is the aberrant adult hippocampal neurogenesis
(AHN) derived from Neural Stem Cells (NSCs). Indeed, targeting seizure-induced AHN may reduce
recurrent seizures and shed some light on the mechanisms of disease. The endocannabinoid system
is a known modulator of AHN, and due to the known endogenous antiepileptic properties, it is an
interesting candidate for the generation of new antiepileptic drugs. However, further studies and
clinical trials are required to investigate the putative mechanisms by which cannabinoids can be used
to treat epilepsy. In this manuscript, we will review how cannabinoid-induced modulation of NSCs
may promote neural plasticity and whether these drugs can be used as putative antiepileptic treatment.
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1. Introduction

Epilepsy, one of the oldest known neurological diseases [1] was, for centuries, associated
with a divine malady or demonic possession—and as such, exorcism was the only known therapy
for this pathology [2]. Hippocrates in 400 B.C. demystified epilepsy by arguing that it was a
medical problem that originated in the brain, instead of a problem of divine origin [1]. However,
the prevailing supernatural view remained rather unchanged until the 17th century, when the first
effective antiepileptic medicine, bromide, was introduced [3]. Antiepileptic drugs (AEDs), focal
epilepsy surgery, vagus nerve stimulation, and the ketogenic diet are the available therapies to treat
epilepsy. Nevertheless, the effectiveness of these therapies is highly affected by disease etiology
(reviewed in Reference [4]).

Mounting evidence has suggested that adult hippocampal neurogenesis (AHN) is altered in patient
and animal models of epilepsy [5,6], particularly during prolonged seizures, which acutely increase
AHN, depleting the pool of neural stem cells (NSCs) [6–8]. However, the functional implications of
this altered neurogenesis in epilepsy are still poorly understood.
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Cannabinoids, used as a supplement or as an alternative to conventional AEDs, have been shown
in multiple studies and reviews to have antiepileptic properties [9–11]. Enhanced by social networks
and media coverage, these compounds have sparked intense interest among patients and the scientific
community regarding the potential of medical-Cannabis to treat epilepsy.

Given the known role of cannabinoids in the regulation of AHN and their potential impact in
the treatment of epilepsy [11,12], the present manuscript aims to review the mechanisms by which
cannabinoids control epilepsy, specifically by looking at cannabinoid-induced modulation of NSCs.

2. Epilepsy and Epileptogenesis

Epilepsy is a common brain disease, affecting between 50 to 65 million people worldwide [13–16],
and is characterized as a long-lasting propensity to engender epileptic seizures. These are defined by
the International League Against Epilepsy (ILAE), as a transient occurrence of signs and/or symptoms,
due to abnormal excessive or synchronous neuronal activity in the brain [17]. The ILAE also describes
that patients with epilepsy, besides neurobiological problems, also face cognitive, psychological,
and social issues [17].

Epileptic seizures can be classified depending on the onset as: Focal, if limited to one hemisphere;
generalized, if rapidly spread bilaterally; or unknown, if the onset is unable to be determined, due to
lack of information [18,19]. Under this big umbrella, seizures can also be categorized as motor or
nonmotor, and they can be detailed depending on awareness (in case of focal seizures) [19]. In a
broad view, motor behavior may include loss of tone (atonic), sustained stiffening (tonic), rhythmic
jerks (clonic), irregular and brief jerks (myoclonic), flexion, or extension of arms, and flexion of
trunk (epileptic spasms). Generalized motor seizures can comprise more than one motor behavior.
Generalized non-motor seizures imply absence seizures. The type of epilepsy can also be classified as
focal, generalized, combined generalized and focal, or unknown. Besides seizure and epilepsy type,
diagnosis also comprises the recognition of epileptic syndromes (such as childhood absence epilepsy,
Lennox-Gastaut syndrome, or Dravet syndrome) [18].

It is also important to know the etiology of epilepsy to adequate the best treatment. Epilepsy can
be classified with different etiologies: Genetic, structural, infectious, metabolic, immune, unknown,
or with more than one etiology [18]. Genetic etiology refers to seizures caused by a genetic mutation,
such as in Dravet syndrome. Structural etiology implies the presence of acquired or abnormal genetic
structures, such as in the hippocampus or amygdala, often associated with mesial Temporal Lobe
Epilepsy (mTLE), which is the most common and studied form of epilepsy, and is frequently intractable.
An infectious etiology is related to an infection, like cerebral malaria or the Zika virus, resulting in
the appearance of seizures. A metabolic etiology is linked to metabolic disorders, such as porphyria.
Finally, an immune origin is usually associated with central nervous system (CNS) inflammation
mediated by autoimmune disorders (for example, autoimmune encephalitis) [18].

Epileptogenesis is when a physiological and functional brain develops recurrent and unprovoked
seizures, due to abnormal biological alterations (reviewed in References [20,21]). Epileptogenesis
encompasses: The moment a precipitating injury (such as stroke or traumatic brain injury) or event
(as status epilepticus (SE) or febrile seizure) occurs; the latent period between this epileptogenic insult
and a modified epileptic brain (having spontaneous unprovoked seizures); and the mechanisms that
occur during chronic epilepsy (reviewed in References [20,21]) (Figure 1). It is worth mention that
traditionally, the process of epileptogenesis was considered to stop at the time of the first spontaneous
seizure (reviewed in Reference [22]).
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Figure 1. The process of epileptogenesis. Epileptogenesis encompasses three phases: (1) The moment 
a precipitating injury or event occurs, (2) the latent period, which comprises the time between an 
epileptogenic insult on a physiological brain, and the generation of a modified epileptic brain with 
spontaneous seizures, and (3) the mechanisms that occur during established chronic epilepsy. Status 
epilepticus (SE) is a prolonged seizure or a period of repetitive seizures without returning to the 
physiological state. 

Using mainly experimental models of mTLE it was possible to start unveiling the typical 
alterations that are involved in epileptogenesis [20,22,23]. However, the mechanisms underlying 
epileptogenesis are not yet fully understood. It is still not known which mechanisms are responsible 
for the generation of epilepsy or which are secondary or compensatory mechanisms that intend to 
repair the brain. The most frequent alterations observed in experimental mTLE models are neuronal 
cell death, mainly of hippocampal pyramidal cells [24], but also of hilar mossy cells, which are 
excitatory neurons in the hilus of the dentate gyrus [24], and of inhibitory GABAergic interneurons 
[25]; reactive gliosis [26]; blood–brain barrier damage [27]; alterations in the expression of GABAA 
receptor subunit [28]; and changes in diverse signaling pathways, for example, brain-derived 
neurotrophic factor/tyrosine receptor kinase B (BDNF/TrkB), mammalian target of rapamycin 
(mTOR), or Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways 
[29] (reviewed in References [21,30–33]). Another important feature is the modifications in 
neurogenesis and associated-processes [24], which will be further detailed in this review.  

Despite that the knowledge about the epileptogenesis process has significantly increased, most 
of the current drugs for epilepsy are used to treat symptoms, meaning to stop the seizures. These 
drugs, named AEDs, do not prevent or cure epilepsy (reviewed in Reference [34]). Therefore, finding 
drugs that work as antiepileptogenic, interreacting with the process of epilepsy development, is 
fundamental. Current AEDs are mainly based on four mechanisms of action: (1) Modulation of 
voltage-gated ion channels (as valproic acid, phenytoin or carbamazepine); (2) enhancement of 
GABA-mediated inhibitory neurotransmission (like valproic acid, phenobarbital or tiagabine); (3) 
reduction of glutamate-mediated excitatory neurotransmission (as felbamate, perampanel or 
gabapentin) and (4) modulation of neurotransmitter release through presynaptic release machinery 
(as levetiracetam, gabapentin or pregabalin) (reviewed in References [32,34]). 

Given the fact that about 30% of patients with epilepsy remain resistant to pharmacotherapy, 
continuing to experience seizures (reviewed in References [35,36]), it is imperative to persist studying 
the mechanisms underlying epileptogenesis. Developing innovative antiepileptogenic therapies that 
can modify this process, instead of only diminishing or abolishing seizures, and can decrease 
epilepsy-related comorbidities after the clinical diagnosis of epilepsy, is critical. 

Experimental models, either in vivo or in vitro, mimic different types of epileptic seizures, 
syndromes, or specific aspects of the disease. In vivo animal models have been categorized into a 
different seizure or epilepsy models: Chemical or pharmacological (induced by pilocarpine, kainate 
or pentylenetetrazole (PTZ)); electrical stimulation (such as the kindling model or maximal 

Figure 1. The process of epileptogenesis. Epileptogenesis encompasses three phases: (1) The moment
a precipitating injury or event occurs, (2) the latent period, which comprises the time between
an epileptogenic insult on a physiological brain, and the generation of a modified epileptic brain
with spontaneous seizures, and (3) the mechanisms that occur during established chronic epilepsy.
Status epilepticus (SE) is a prolonged seizure or a period of repetitive seizures without returning to the
physiological state.

Using mainly experimental models of mTLE it was possible to start unveiling the typical
alterations that are involved in epileptogenesis [20,22,23]. However, the mechanisms underlying
epileptogenesis are not yet fully understood. It is still not known which mechanisms are responsible
for the generation of epilepsy or which are secondary or compensatory mechanisms that intend
to repair the brain. The most frequent alterations observed in experimental mTLE models are
neuronal cell death, mainly of hippocampal pyramidal cells [24], but also of hilar mossy cells,
which are excitatory neurons in the hilus of the dentate gyrus [24], and of inhibitory GABAergic
interneurons [25]; reactive gliosis [26]; blood–brain barrier damage [27]; alterations in the expression of
GABAA receptor subunit [28]; and changes in diverse signaling pathways, for example, brain-derived
neurotrophic factor/tyrosine receptor kinase B (BDNF/TrkB), mammalian target of rapamycin (mTOR),
or Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways [29] (reviewed
in References [21,30–33]). Another important feature is the modifications in neurogenesis and
associated-processes [24], which will be further detailed in this review.

Despite that the knowledge about the epileptogenesis process has significantly increased, most of
the current drugs for epilepsy are used to treat symptoms, meaning to stop the seizures. These drugs,
named AEDs, do not prevent or cure epilepsy (reviewed in Reference [34]). Therefore, finding
drugs that work as antiepileptogenic, interreacting with the process of epilepsy development,
is fundamental. Current AEDs are mainly based on four mechanisms of action: (1) Modulation
of voltage-gated ion channels (as valproic acid, phenytoin or carbamazepine); (2) enhancement
of GABA-mediated inhibitory neurotransmission (like valproic acid, phenobarbital or tiagabine);
(3) reduction of glutamate-mediated excitatory neurotransmission (as felbamate, perampanel or
gabapentin) and (4) modulation of neurotransmitter release through presynaptic release machinery
(as levetiracetam, gabapentin or pregabalin) (reviewed in References [32,34]).

Given the fact that about 30% of patients with epilepsy remain resistant to pharmacotherapy,
continuing to experience seizures (reviewed in References [35,36]), it is imperative to persist studying
the mechanisms underlying epileptogenesis. Developing innovative antiepileptogenic therapies
that can modify this process, instead of only diminishing or abolishing seizures, and can decrease
epilepsy-related comorbidities after the clinical diagnosis of epilepsy, is critical.

Experimental models, either in vivo or in vitro, mimic different types of epileptic seizures,
syndromes, or specific aspects of the disease. In vivo animal models have been categorized into a
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different seizure or epilepsy models: Chemical or pharmacological (induced by pilocarpine, kainate or
pentylenetetrazole (PTZ)); electrical stimulation (such as the kindling model or maximal electroshock
seizures (MES)); genetic (mutations related to dysfunction of ion channels, receptors, enzymes or
transporters); developmental (like the febrile seizures model) and trauma (as cortical undercut model)
(reviewed in References [37–39]). These models are classified as models of epilepsy or models of
seizures, depending on whether they result in chronic epilepsy or not, respectively [37].

The most commonly used models to mimic mTLE, are the pilocarpine (an acetylcholine receptor
agonist), kainate (a glutamate analogue), or kindling models (a process that triggers epileptic
seizures through repeated low-intensity electrical stimulation in a given brain region) (reviewed
in References [38,40]). Pilocarpine- and kainate-induced SE models are more similar with the epileptic
process occurring in humans than the kindling model, since they include an initial precipitating injury,
a latent period, and finally, spontaneous, recurrent chronic seizures (reviewed in Reference [37]). On the
other hand, the kindling model enhances seizure susceptibility, potentiating the generalization of
electrical-induced seizures to other areas of the brain and ultimately, promoting spontaneous seizures
(reviewed in Reference [38]).

In vitro models are mainly models of epileptogenesis, such as organotypic brain slices, or models
of epileptiform activity, in which the biological preparations, like neuronal cultures or acute brain
slices, are susceptible to chemoconvulsants, and therefore, epileptiform activity is acutely induced
(reviewed in Reference [41]).

3. Adult Neurogenesis and Neural Stem/Progenitor Cells

NSCs are capable of self-renewal and give rise to cells of the neural lineage (neurons,
astrocytes, and oligodendrocytes) (reviewed in Reference [42]). The process of generating functionally
integrated neurons originated from NSCs is called neurogenesis, which includes the proliferation and
differentiation of NSCs. In the adult mammalian brain, there are two well-known neurogenic niches:
The Subventricular Zone (SVZ), lining the lateral wall of the lateral ventricles, and the Subgranular
Zone (SGZ) of the hippocampal Dentate Gyrus (DG), a brain region highly affected in different types
of epilepsy (reviewed in Reference [43]). The DG is formed by three layers, from the outer to the
inner layer: Molecular layer (ML), granule cell layer (GCL), and hilus (also known as a polymorphic
layer) [44,45].

The SGZ niche (Figure 2), located between the GCL and the hilus, contains NSCs (also known as
Type 1 or radial glial-like precursor cells (RGLs)), which are maintained in a quiescent state, due to
the inhibition from GABAergic basket cells [46]. When NSCs exit this state, they start proliferating
and differentiating into Type 2 progenitor cells (also called intermediate progenitor cells, IPC) or into
astrocytes (reviewed in Reference [47]). Unlike NSCs, which have a radial morphology with one
apical dendrite projecting into the GCL and the ML, the Type 2 cells present few and short processes
that are oriented tangentially to the length of the SGZ (reviewed in Reference [47]). Type 2 cells are
known to receive GABAergic inputs from the hippocampal circuitry, which are excitatory and not
inhibitory [48]. Moreover, Type 2 cells can be subdivided (into Type 2a or 2b) depending on the
expression of certain markers and have a highly proliferative capacity, giving rise to Type 3 progenitor
cells (also called neuroblasts) (reviewed in Reference [47]). These cells, with lower proliferative capacity,
start migrating to the GCL where they slowly mature into immature neurons. These immature neurons
in the postmitotic stage express different markers (as calretinin, and doublecortin (DCX), and integrate
the GCL, extending their mossy fiber axons toward hippocampal CA3 pyramidal neurons and their
dendrites toward the ML (reviewed in Reference [47]). At this stage, immature neurons receive only
excitatory GABAergic inputs, which are important for maturation, synaptic integration, and dendritic
development [48,49]. Later, when neurons start forming synapses with cells from CA3 and ML,
GABAergic inputs begin to exert an inhibitory action instead of excitatory and glutamatergic inputs
start to emerge [48,49].
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Figure 2. Schematic structure of the hippocampus and of adult hippocampal neurogenesis. The 
hippocampal dentate gyrus (DG) is formed by three layers—the molecular layer (ML), granule cell 
layer (GCL), and hilus. NSCs (or Type 1 cells) can be found in the Subgranular Zone (SGZ) and divide 
asymmetrically to generate intermediate progenitor cells (or Type 2 cells, IPC). These IPCs have 
proliferative capabilities and differentiate into neuroblasts (or Type 3 cells, NB) that will mature into 
granule cells (MGC), integrating the GCL and making functional connections with pyramidal cells 
(PC) of the CA3 region of the hippocampus. Inhibitory inputs from GABAergic basket cells (GBC) 
maintain NSCs in a quiescent state. Mossy cells (MC) are the predominant type of cells found in the 
DG hilus. CA1 = Cornu Ammonis 1; CA3 = Cornu Ammonis 3; DG = Dentate Gyrus. 

After these developmental processes, NSC-derived immature GABAergic neurons culminate 
maturing into glutamatergic neurons expressing neuronal nuclei (NeuN) and calbindin. It is relevant 
to emphasize that just a small fraction of new neurons survive and integrate hippocampal circuitry 
and the remaining cells suffer apoptosis before establishing connections [50,51]. Importantly, the 
process of generation and maturation of new neurons has been implicated in hippocampus-
dependent spatial learning, formation, and integration of new memories, pattern separation, anxiety- 
and depressive-related behaviors (reviewed in References [43,52,53]). 

3.1. Neural Stem Cells in Epilepsy 

Given that the hippocampus is affected in different types of epilepsy, studying AHN in the 
context of epilepsy is vital. In fact, the tight regulation of immature and mature neurons by 
GABAergic cells can be disrupted by epileptic seizures (reviewed in Reference [54]). Data obtained 
from human patients and rodent models of mTLE, have shown that convulsive seizures induce 
several molecular and morphological abnormalities leading to aberrant neurogenesis [55–57]. 
Interestingly, although these alterations are more extensive when promoted by convulsive seizures, 
non-convulsive seizures may also induce these abnormalities [58]. 

Epileptic seizures promote an initial increase of AHN by inducing an excessive activation of 
NSCs in kainate-induced SE or epileptiform activity model [59] and cell proliferation in the DG in 
pilocarpine-induced SE or kindling model [55,60]. However, in the presence of an epileptic trigger, 
like kainate, NSC fate is modified, differentiating mainly into reactive astrocytes, costing the 
maintenance of the NSC pool [59]. Therefore, in the long term, the NSC pool is depleted by seizures, 
and a permanent decline of neurogenesis is observed in this context [59]. Furthermore, in 
pharmacological and kindling animal models, newly seizure-generated hippocampal neurons have 

Figure 2. Schematic structure of the hippocampus and of adult hippocampal neurogenesis.
The hippocampal dentate gyrus (DG) is formed by three layers—the molecular layer (ML), granule
cell layer (GCL), and hilus. NSCs (or Type 1 cells) can be found in the Subgranular Zone (SGZ) and
divide asymmetrically to generate intermediate progenitor cells (or Type 2 cells, IPC). These IPCs have
proliferative capabilities and differentiate into neuroblasts (or Type 3 cells, NB) that will mature into
granule cells (MGC), integrating the GCL and making functional connections with pyramidal cells (PC)
of the CA3 region of the hippocampus. Inhibitory inputs from GABAergic basket cells (GBC) maintain
NSCs in a quiescent state. Mossy cells (MC) are the predominant type of cells found in the DG hilus.
CA1 = Cornu Ammonis 1; CA3 = Cornu Ammonis 3; DG = Dentate Gyrus.

After these developmental processes, NSC-derived immature GABAergic neurons culminate
maturing into glutamatergic neurons expressing neuronal nuclei (NeuN) and calbindin. It is relevant
to emphasize that just a small fraction of new neurons survive and integrate hippocampal circuitry and
the remaining cells suffer apoptosis before establishing connections [50,51]. Importantly, the process
of generation and maturation of new neurons has been implicated in hippocampus-dependent
spatial learning, formation, and integration of new memories, pattern separation, anxiety- and
depressive-related behaviors (reviewed in References [43,52,53]).

3.1. Neural Stem Cells in Epilepsy

Given that the hippocampus is affected in different types of epilepsy, studying AHN in the context
of epilepsy is vital. In fact, the tight regulation of immature and mature neurons by GABAergic
cells can be disrupted by epileptic seizures (reviewed in Reference [54]). Data obtained from human
patients and rodent models of mTLE, have shown that convulsive seizures induce several molecular
and morphological abnormalities leading to aberrant neurogenesis [55–57]. Interestingly, although
these alterations are more extensive when promoted by convulsive seizures, non-convulsive seizures
may also induce these abnormalities [58].

Epileptic seizures promote an initial increase of AHN by inducing an excessive activation of
NSCs in kainate-induced SE or epileptiform activity model [59] and cell proliferation in the DG in
pilocarpine-induced SE or kindling model [55,60]. However, in the presence of an epileptic trigger, like
kainate, NSC fate is modified, differentiating mainly into reactive astrocytes, costing the maintenance of
the NSC pool [59]. Therefore, in the long term, the NSC pool is depleted by seizures, and a permanent
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decline of neurogenesis is observed in this context [59]. Furthermore, in pharmacological and
kindling animal models, newly seizure-generated hippocampal neurons have altered morphological
properties with an abnormal generation of basal dendrites extended toward the hilus, called hilar
basal dendrites, which make anomalous synapses with mossy fiber axons [55,61,62]. The mossy fiber
axons from immature and mature neurons can also start sprouting aberrantly, targeting the apical
dendrites of granule cells in the ML, thus, promoting non-physiological connections, as observed in
the pilocarpine-induced SE model [55,63].

Another striking seizure-induced alteration is the incorrect migration and integration of
differentiating cells in the GCL. In fact, seizures induce the appearance of ectopic granule cells
in the hilus and the consequent dispersion of the GCL, either in the pilocarpine-induced SE model or in
human patients with mTLE (reviewed in Reference [55]). Pathologic proliferation of neuroblasts or the
loss of reelin, a protein involved in neuronal migration, may be on the basis of the atypical migration
in pharmacological models of epilepsy [64,65]. Albeit these ectopic granule cells receive typical inputs
from the perforant path [66], they also fired synchronously with CA3 pyramidal cells, which may
contribute to the generation of spontaneous seizures [67] in pharmacological models of epilepsy.

The above-described abnormal neurogenesis, from the incorrect differentiation of NSCs to the
development of atypical neuronal processes and their migration, originating hilar-ectopic granule
cells, dramatically disturbs physiological synaptic transmission within the hippocampal network.
The development of new synapses of mossy fiber axons with basal dendrites in the inner layer of the
DG and the synchronization of misplaced granule cells with CA3 pyramidal cells lead to a recurrent
excitatory loop, most probably causing hippocampal-dependent memory impairments [68–70].

It is not completely clear whether aberrant neurogenesis is a contributing factor for epilepsy
or the cognitive deficits, which often manifests in patients with epilepsy, or if it is a compensatory
mechanism of the brain in an attempt to self-repair. Some reports demonstrate that seizure-generated
granule cells exhibit reduced excitability, while inhibition of AHN did not affect or enhance excitability
in the kindling model [71–73]. However, the theory that AHN blockade may reduce seizures and
cognitive impairment is gaining strong evidence and is starting to be widely accepted [68,74–76].
In 2004, an antimitotic agent infused in epileptic rats decreased the development of spontaneous
recurrent seizures and reduced the number of ectopic granule cells in the hilus and astrocytes in CA1,
although mossy fiber sprouting was not shown to be altered [74]. These same positive effects were
also demonstrated in the presence of the anti-inflammatory Celecoxib, a selective cyclooxygenase-2
(COX-2) inhibitor, in the pilocarpine-induced SE model [75]. Concomitantly, Celecoxib inhibited NSC
proliferation, prevented neuronal death and microglia activation [75,77]. Later, in 2007, Jessberger and
colleagues showed that a widely used antiepileptic, valproic acid, normalized the seizure-induced cell
proliferation and generation of new neurons, while decreasing the formation of hilar basal dendrites,
thus, blocking aberrant neurogenesis in epileptic rats [68]. Moreover, valproic acid prevented the
hippocampus-dependent memory impairment associated with seizures [68]. Furthermore, in 2015,
the genetic ablation of adult-generated granule neurons was shown to reduce spontaneous recurrent
seizures and prevent aberrant neurogenesis-related processes, such as cell proliferation and ectopic
granular cell formation, in addition to preserving hippocampus-dependent memory [76].

One aspect that needs further research is the impact of the administration of AEDs on embryonic
and postnatal neurogenesis. In recent years, studies done in vitro and in vivo with rodent models of
epilepsy and in humans have highlighted some of the consequences [78–80]. A study performed in
pregnant mice treated with valproic acid has shown that, in the offspring, embryonic neurogenesis is
untimely upregulated, leading to an increase in cell proliferation, which in the adult, will consequently
deplete the NSC pool and decrease the levels of adult neurogenesis in the hippocampus. This study
also reported abnormal morphology and activity of hippocampal neurons [78]. In vitro, rat NSCs
treated with ethosuximide, an AED used for absence epilepsy, were shown to have increased cell
proliferation and neuronal differentiation [79]. Importantly, embryonic exposure to AEDs has worse
outcomes than exposure in adulthood, with most animals presenting impaired spatial memory and
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cognitive deficits, resulting from neuronal death and structural changes in the rodent brain (reviewed
in References [81,82]). However, translating this knowledge into humans has several limitations.
Nevertheless, using magnetic resonance imaging (MRI), Ikonomidou and colleagues managed to
indirectly measure neurogenesis by finding structural changes and significant decreases of grey matter
volumes in the brains of adults that, in utero, were exposed to AEDs. These structural changes also
resulted in a significant decrease in the IQ of adults that were prenatally exposed to AEDs when
compared to control subjects [80]. A common conclusion from these experiments is that some AEDs
impact embryonic and adult neurogenesis, whether by increasing or decreasing NSC proliferation or
by delaying maturation and differentiation of neurons, as well as by influencing different processes in
the context of brain morphogenesis and network formation [81,83].

3.2. Neural Stem Cell Therapies for Epilepsy

Seizure-induced neurogenesis may be a potential therapeutic target to attenuate the development
of epilepsy and to prevent or rescue cognitive impairment in epilepsy. Given its importance in
physiological conditions, AHN should not be completed inhibited. Therefore, strategies to prevent or
block aberrant neurogenesis must be developed, to maintain the beneficial effects of newly generated
neurons in cognitive functions. Many studies have great pre-clinical value showing the contribution of
aberrant neurogenesis to epilepsy and cognitive impairment. However, the strategies applied are still
not yet translatable to humans [84]. In this review, we focus on potential therapeutic approaches using
NSCs in epilepsy that may be translated into clinical practice in the future (Table 1).

Table 1. Neural Stem Cell therapies for epilepsy. Modulating miRNA, grafting human-induced
pluripotent stem cells (hiPSC)-derived medial ganglionic eminence (MGE) cells in the hippocampus,
and specific delivery of extracellular vesicles derived from mesenchymal stem cells (MSC) are potential
therapies to be used as a treatment for epilepsy.

Neural Stem Cell Therapies for Epilepsy

Modulating miRNA Grafting Medial Ganglionic
Eminence (MGE) Cells Extracellular Vesicles Delivering

n ↑miR-22:
↓ Seizure severity

n Silencing miR-134:
↓ Seizure severity
↓ Neuronal death in CA3
↓Mossy fiber sprouting

n Inhibiting miR-135a:
↓ Seizure severity
Restores the age-associated
reduction of adult neurogenesis

n hiPSC-derived MGE:
↓ Seizure severity
↓Mossy fiber sprouting
↓ Ectopic hilar granule cells
Preserved reelin+ neurons
and interneurons
↑ New-born cells
↓ Cognitive impairments
↓Mood dysfunction

n EVs:
↓ Loss of neurons and
interneurons in DG and CA1
↓ Number of ectopic
new-born neurons
Prevented cognitive
impairment and
pattern separation

An approach using microRNAs (miRNAs) has been developed to modulate a few key aspects of
aberrant neurogenesis and decrease seizures. miR-22 inhibition in a mouse model of epilepsy
exacerbated the ectopic migration of new-born neurons [85] and promoted epileptic seizures,
while impairing cognitive performance [86]. However, this cognitive impairment, tested through
the novel object re-location test, could be related to the fact that epileptic mice injected with the
miR-22 inhibitor (antagomir-22) were more anxious. Consistent with miR-22 suppressing aberrant
neurogenesis, mice injected with this miRNA also demonstrated an anti-seizure effect [86]. Silencing
miR-134 reduced CA3 pyramidal neuronal death and dendrite spine density and diminished aberrant
mossy fiber sprouting [87,88]. Albeit the observed decrease in seizure severity, the impact of miR-134 on
cognition was not tested [87,88] or was not changed [89]. Also, miR-135a controls hippocampal neuronal
morphology and synaptic function [90]. Antagonizing this particular miRNA reduced spontaneous
recurrent seizures; nevertheless, the impact in memory and learning processes is still not known [90].
Conversely, miR-135a inhibition in healthy mice stimulated neural precursor cell proliferation and
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differentiation into neurons without promoting astrogliogenesis [91]. Also, its inhibition was sufficient
to restore the age-associated reduction of adult neurogenesis [91]. However, whether the potentiation
of neurogenesis reduced by epilepsy would be beneficial and improve cognitive functions has yet
to be revealed. Using miRNAs as a therapeutic approach has gained value overtime, and in fact,
an RNA-based therapy has already been approved by the FDA as a treatment for polyneuropathy [92].

Another strategy that can be applied as a potential therapy for epilepsy is grafting medial
ganglionic eminence (MGE) cells in the hippocampus (reviewed in References [93,94]). These cells
are present in embryonic and fetal stages and differentiate into GABAergic interneurons. Given the
evidence that seizure-induced neuronal loss is mainly from inhibitory GABAergic interneurons, this cell
therapy would overcome this hallmark of epilepsy and help reducing seizures. In fact, multiple studies
have already shown that MGE-grafts originate GABAergic interneurons, which are incorporated in
the hippocampal network, prompting inhibitory synaptic neurotransmission by decreasing recurrent
spontaneous seizures [95]. MGE cells derived by either human embryonic/fetal stem cells or from
human-induced pluripotent stem cells (hiPSCs) appears to alleviate spontaneous seizures [95,96].
Nonetheless, there are ethical issues to consider when using embryonic/fetal stem cells in clinical trials
(reviewed in Reference [93]). Using hiPSCs-derived cells also raises some concerns, mainly due to their
instability and possibility to suffer epigenetic alterations or their high proliferative rate (reviewed in
Reference [93]).

In a recent study, grafting of hiPSCs-derived MGE cells in the hippocampus of epileptic rats has
shown that it not only reduced seizures, but also decreased mossy fibers sprouting and ectopic hilar
granule cells generation, which preserves reelin-positive neurons and other interneurons, and increases
the number of newly born neurons in the SGZ-GCL [96]. Moreover, this approach alleviated cognitive
and memory impairments and mood dysfunction, another comorbidity associated with epilepsy [96].
It is worth noting that cognitive impairment recovery was also achieved with human embryonic
stem cells [95]. Although safety concerns are associated with a grafting approach, clinical translation
has already started, as clinical trials using hiPSC have been approved to treat age-related macular
degeneration or Parkinson’s Disease [97,98]. The great advantage of using hiPSC is the fact that they
derive from the patient’s somatic cells and are autologously transplanted after reprogramming [94].
Thus, it makes sense to continue to put efforts in cell therapy research to understand its impact on
modulating neurogenesis and enhance cognition, besides decreasing seizures.

Both the miRNAs approach and the MGE cell therapy could reduce the number of cases with
refractory epilepsy. Although these therapies may function as antiepileptic agents by modulating
stages of neurogenesis and diminishing seizures, their impact on cognition impairment requires more
attention, and their long-term effect also needs further studies.

A potentially less invasive therapy has also been studied for the treatment of epilepsy (reviewed
in References [99,100]). Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSC)
and delivered intranasally in mice can revert the epileptogenic processes [101]. EVs, specifically A1
exosomes, secreted by human bone marrow-derived MSC were administered intranasally twice over
24h after pilocarpine-induced SE termination. These EVs reached the hippocampus within 6h and
exerted neuroprotective and anti-inflammatory actions. After SE, delivered EVs diminished the loss
of neurons and interneurons in the DG and the CA1 regions and recovered neurogenesis. Animals
that received EVs after SE showed, six weeks later, a rescue of the number of immature neurons and
dentate hilar neurons positive for reelin and decreased the number of ectopic new-born neurons,
when compared to animals without EVs after SE. In addition, EVs were able to prevent SE-induced
impairment in memory, cognition, and pattern separation. Furthermore, the administration of these
vesicles reduced both microglia activation and proinflammatory cytokines levels, while increasing
anti-inflammatory cytokines. Albeit the great impact of these vesicles on neurogenesis, cognition,
and inflammation, thus, reversing the epileptogenic processes, the actual effect on seizures is not
known. EVs were not administered during SE, so the ability of this approach to ameliorate spontaneous
seizures remains to be determined. However, these EVs may work as an adjuvant therapy to AEDs,
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thus, having a synergistic antiepileptogenic and antiepileptic action. In addition, further studies are
needed to confirm these abovementioned evidence and to evaluate the impact of EVs on mossy fiber
sprouting and basal dendrites formation and to assess the long-term effects of this approach [101].

4. Cannabinoids and the Endocannabinoid System

Cannabis is a genus of plants indigenous to Central Asia where three species have been phylogenetic
identified: Cannabis sativa, Cannabis indica, and Cannabis ruderalis. These plants have been widely
used throughout History, due to its broad variety of applications, ranging from therapeutic and
recreational use, religious purposes, to produce food for livestock, and for its fibers, to manufacture
clothing [102,103]. According to the World Drug Report 2019, Cannabis-derived products (dried
leaves, flowers, stems, seeds, and oils) are consumed by 3.8% of the world population (≈188 million
people), a trend that, despite having increased in the past decade, has remained stable in the last years.
This makes Cannabis one of the most consumed drugs, after alcohol, tobacco, or caffeine [104].

More than 560 phytocannabinoids (naturally occurring cannabinoids) have now been identified
as constituents of the Cannabis plant. The most abundant cannabinoid present in the Cannabis
plant is delta-9-tetrahydrocannabinol (∆9-THC) [105]. The psychotomimetic effects of cannabinoid
consumption include euphoria, appetite stimulation, sedation, altered perception, impairments in
motor control, and memory deficits [106]. These effects are almost exclusively related to ∆9-THC, which
was first isolated in its pure form and structurally described in 1964 by Mechoulam and colleagues [107].
Regardless of its psychotomimetic effects, ∆9-THC has therapeutic value and unique applications [108].

A growing body of scientific data has been attesting the immense potential of these cannabinoids
to ameliorate symptoms of several pathologies. Indeed, medical-Cannabis is being used or proposed
to treat glaucoma, depression, neuralgia, neurodevelopmental forms of refractory epilepsy, and
cancer [103,109–117]. Particularly, Cannabis usage has been helping patients suffering from multiple
sclerosis-associated neuropathic pain and tremors, ameliorating tremors and bradykinesia in
Parkinson’s disease patients, relieving neuropsychiatric symptoms shown by most individuals with
Alzheimer’s disease and in anxiety/mood disorders [118–123].

Moreover, ∆9-THC has been used to alleviate symptoms associated with several conditions,
such as muscular spasticity, eating disorders, nausea, and vomiting after chemotherapy treatments,
and weight-loss related to Acquired Immunodeficiency Syndrome (AIDS) [103,124–128]. Besides
∆9-THC, there are also non-psychotomimetic cannabinoids with several therapeutic functions,
such as cannabichromene (CBC), cannabidiol (CBD), cannabidivarin (CBDV), cannabigerol (CBG),
cannabinol (CBN), cannabivarin (CBV), delta-8-tetrahydrocannabinol (∆8-THC), and delta-9-
tetrahydrocannabivarin (∆9-THCV) [105,129].

Notwithstanding, the chronic consumption of Cannabis has been correlated with detrimental
health effects. Heavy and prolonged Cannabis use is associated with cognitive and memory
impairments, increased probability of developing schizophrenia-spectrum disorders, acute psychosis,
and mania [130–134]. When inhaled, Cannabis abuse can result in chronic bronchitis and impaired
respiratory function [103,135]. Therefore, one of the challenges of Cannabis research is to find ways to
prevent negative side-effects associated with Cannabis-based medicines [103].

4.1. The Endocannabinoid System in Physiological Conditions

The Endocannabinoid System (ECS) is a biological phylogenetic conserved system that can
be found in both vertebrate and invertebrate organisms [136,137]. The ECS is comprised of the
endocannabinoids (eCB), which are endogenous lipid-based neurotransmitters, their synthetizing
and degrading enzymes, the cannabinoid receptors 1 and 2 (CB1R and CB2R), the endocannabinoid
membrane transporter (EMT), and the CB1R interacting protein 1a [103]. Importantly, despite being
considered part of the ECS, a putative EMT has yet to be identified (reviewed in References [138,139]).

The two best known, characterized, and studied eCBs are the N-arachidonoylethanolamine
(anandamide, AEA) and 2-arachidonoglycerol (2-AG) [103], being AEA less abundant than
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2-AG [140,141]. eCBs are synthesized “on demand” mainly from phospholipid precursors in cell
membranes, and unlike classical neurotransmitters, are not stored in vesicles [103]. In fact, membrane
glycerophospholipids can be cleaved by phospholipase C (PLC), forming diacylglycerol, which
by action of diacylglycerol lipase (DAGL), synthesizes 2-AG. Alternatively, phospholipase A1
(PLA1), releases an sn-1 lysophospholipid from the membrane, which is cleaved by lyso-PLC
to generate 2-AG [140]. AEA, on the other hand, is synthesized when calcium-dependent
trans-acylases (NAT) act on glycerophospholipids and phosphatidylethanolamine, forming an
N-arachidonoyl-phosphatidyl ethanolamine (NarPE) which is cleaved by calcium-dependent NAPE
(N-acyl- phosphatidylethanolamine)-specific phospholipases D (NAPE-PLD) [140]. Hydrolysis of
2-AG and AEA occurs pre- and postsynaptically, respectively (Figure 3).
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Figure 3. Pharmacology of Endocannabinoids. Anandamide (AEA) and 2-arachidonoglycerol (2-AG)
are lipid-based neurotransmitters mainly synthesized postsynaptically and released “on demand”
to the synaptic cleft, where they bind to the cannabinoid receptors (CB1R and CB2R) to modulate
synaptic transmission.

2-AG is hydrolyzed by monoacylglycerol lipase (MAGL) into arachidonic acid and glycerol. AEA
is hydrolyzed via fatty acid amide hydrolase (FAAH) into arachidonic acid and ethanolamine [140].
When released to the synaptic cleft, eCBs act mainly retrogradely modulating presynaptic glutamatergic
or GABAergic signaling by binding to CB1R or CB2R [103]. Additionally, AEA and 2-AG have different
affinities for the cannabinoid receptors, with AEA having more affinity to CB1R than to CB2R,
while 2-AG displays the same level of affinity for both receptors [103]. AEA works as a partial agonist
for CB1R, whereas 2-AG binds with low affinity but works as a full agonist [142,143].

eCB release can take place either phasically (in an activity-dependent manner), or tonically
(under basal conditions) [144,145]. Interestingly, there are also reports suggesting that eCB signaling
can also occur in a non-retrograde mode, via postsynaptically located CB1Rs or via autocrine signaling,
by direct activation of transient receptor potential vanilloid receptor type 1 (TRPV1), which belongs to
the endovanilloid system, in which AEA is known to act as a full agonist [146–148].

Throughout the central and peripheral nervous system (PNS), eCBs modulate a broad range
of physiological functions, such as the regulation of intestinal motility, fertility, circulatory system,
myocardial function, myogenic, adipogenic, and osteo- and chondrogenic differentiations, metabolism,
and inflammation [149–155]. These actions are mediated by the activation of the G protein-coupled
domain receptors (GPCR) CB1R and CB2R [156].

Originally, these receptors were thought to be exclusively associated with Gi or Go dependent
inhibition of adenylyl cyclase activity. However, recent data has pointed out that coupling with both Gs

and Gq can occur for CB1R, but not for CB2R [156–158]. Cannabinoid receptors activation has also been
linked to the modulation of synaptic activity by transiently suppressing transmitter release (short-term
depression, STD) or persistently (long-term depression, LTD) [145]. Importantly, eCBs modulate both
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inhibitory (depolarization-induced suppression of inhibition, DSI) and excitatory synaptic transmission
(depolarization-induced suppression of excitation, DSE) [159,160]. CB1R and CB2R have also been
linked to neuroprotection by controlling excessive excitatory transmission and calcium release, thus,
preventing excitotoxity [161].

In summary, cannabinoid receptors can be considered to have few “intrinsic” signaling properties,
and the physiological effects mediated by their activations are largely dependent on cell type, location,
functional state, and temporal constraints (reviewed in References [157,162]). All these variables can
affect the action of endo, phyto, and synthetic cannabinoids.

4.2. Cannabinoid Pharmacology and Actions in Physiological Conditions

Immunohistochemical and mRNA analysis of CB1R and CB2R, identified CB1R as the most
abundant cannabinoid receptor in the CNS, and although CB2R has higher expression in peripheral
tissues, such as the immune and digestive systems, new in situ hybridization and RT-PCR techniques
identified CB2R in the CNS (Figure 4 and Supplementary Table S1).

Figure 4. Expression of cannabinoid receptors in the CNS and peripherical tissues. The cannabinoid
receptors display a differential expression pattern dependent on the tissue. CB1R (dark blue) has
higher expression on the CNS than in the periphery. CB2R (light blue), although predominantly
expressed in the periphery is also expressed in the CNS. A = Amygdala; BS = Brainstem; CA1 = Cornu
Ammonis 1; CA3 = Cornu Ammonis 3; Cbr = Cerebellum; DG = Dentate Gyrus; EC = Entorhinal córtex;
EN = Entopeduncular nucleus; GP = Globus Pallidus; Hipp = Hippocampus; Hyp = Hypothalamus;
NA = Nucleus accumbens; OB = Olfactory Bulb; SN = Substantia Nigra; STR = Striatum.

Excitingly, CB2R levels can be enhanced in microglia and astrocytes following specific insults
(such as neuroinflammation), and in certain conditions, like stroke. Importantly, the lack of
psychotomimetic effect associated with CB2R modulation, is slowly attracting this receptor as a
promising therapeutic target [163–166].

The abundance of cannabinoid receptors in different areas of the brain is a very strong
indicator of the importance of the ECS on a variety of physiological functions [137,167]. ∆9-THC,
the “classical cannabinoid”, exhibits a very distinct pattern of symptoms, known as the Tetrad
Symptoms—hypothermia, analgesia, hypoactivity, and catalepsy. These have been the basis and have
set the standard of cannabinoid research in a clinical setting [168,169]. ∆9-THC presents a mixed
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agonist-antagonist profile when binding to CB1R and CB2R varying according to cell type, concentration,
receptor expression, and presence of other endo- and exo-cannabinoids acting as full agonists [170,171].
Because of the higher expression of CB1R (compared to CB2R) in the CNS, this receptor is currently
thought to be responsible for the psychotomimetic effects of exogenous cannabinoids. This is supported
by the fact that, by using selective CB1R antagonists, the cannabinoid-induced tetrad effects of
cannabinoids can be effectively abolished [116,172]. Interestingly, ∆9-THC can also bind to other
receptors, such as GPR55, serotonin, opioid, glycine, and peroxisome proliferator-activated receptor
gamma (PPARγ) receptors. All of these receptors may also account for some of the effects described
for this phytocannabinoid [105]. Conversely, evidence shows that while ∆9-THC has been shown to
have no effect for TRPV1, it acts on another transient receptor potential (TRP) channels, such as TRPV2
and TRPA1 [105,173].

CBD is another cannabinoid very well described and studied, being devoid of psychotomimetic
effects. These effects have been shown to result from its anti-inflammatory, antioxidant, antiepileptic,
antirheumatic, anxiolytic, and analgesic properties, having therefore high medical value [174].
When used in conjunction with ∆9-THC, CBD positively modifies ∆9-THC induced-psychoactivity,
increasing its clinical efficacy and duration of beneficial effects, such as reducting congestion, nausea,
and promoting neuroprotection [108,175]. Ligand-binding assays have shown that CBD has a low
affinity for both cannabinoid receptors, exhibiting agonistic activity for TRPV1 and for GPR55 [176–178].
It has been suggested that CBD can act as a non-competitive antagonist or even as an inverse agonist [179].
This behavior is heavily influenced by the dose of CBD administered, which may account for the
variety of actions modulated in different tissues [179] (reviewed in Reference [180]). Therefore, CB1R
and CB2R pharmacological action of CBD is still controversial, and further research is needed to reach
scientific consensus.

Some authors have suggested that cannabinoids exert an “entourage effect” on the organism,
meaning that besides ∆9-THC, other cannabinoids present in the Cannabis plant may act synergistically
to modulate the systemic psychotomimetic effects of the plant [181]. This effect, however promising it
may be, has nonetheless been questioned. Recently, Cogan [182], showed that clinical data suggest
a lack of support of the “entourage effect” as a reliable phenomenon that is predictive of beneficial
outcomes of Cannabis exposure.

4.3. The Endocannabinoid System in Epilepsy

Evidence from multiple animal models of epilepsy has shown that the ECS is dynamically altered
following acute and chronic seizures [183]. In both kainate and pilocarpine models of induced-SE,
the endogenous levels of AEA and 2-AG are increased [184–187], suggesting that an on-demand release
of eCBs may trigger a neuroprotective action against seizure-induced neurotoxicity.

Cannabinoid receptors have been shown to be involved in the severity of induced seizures.
Studies with CB1R conditional mutant mice (lack expression of the CB1R in principal forebrain neurons
but not in GABAergic interneurons) have been used to study excitotoxicity and the involvement of
CB1R in synaptic activity in epilepsy. When injected with kainate, these mutant mice displayed an
increase in both gliosis and apoptosis and displayed excessive seizures in vivo [188]. Additionally,
using this conditional CB1R knockout mice in the kindling paradigm, mice presented a lower seizure
susceptibility and, a pharmacological blockade of TRPV1 had no effect on the duration of behavioral
or electrophysiological seizure activity, showing the involvement of the ECS rather than of the
endovanilloid system. Conversely, deletion of CB1R from GABAergic forebrain interneurons had no
impact on either initial after discharge thresholds or post-kindling thresholds, again with no apparent
involvement of the endovanilloid system [189].

Taken together, these findings suggest that CB1R expression is an important regulator of seizure
duration, which is dependent on neuronal subpopulation expression. On the other hand, overexpression
of CB1R in pyramidal neurons of the hippocampus promoted a reduction of induced-seizure severity
and cell death [190].
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After an acute seizure event, CB1R expression levels have been shown to be altered in both humans
and in the pilocarpine mouse model of epilepsy. In patients, CB1R is shown to be downregulated
in glutamatergic synapses [191]. On the other hand, mice subjected to the pilocarpine-induced SE
show different expression levels based on whether they were classified as “weak” or “strong” animals.
This classification is based on behavioral signs that, according to the modified Racine scale [192,193],
separates animals according to their seizure activity. “Weak” animals, which develop mild seizures,
showed a control-like phenotype, with no major changes in the distribution and density of CB1R
in the hippocampus [194,195]. Contrastingly, “strong” animals (where seizures show intense motor
symptoms), present a decrease in the expression of CB1R in the hippocampus [195].

In chronic epilepsy, when hippocampal sclerosis is present in patients (meaning shrinking and
atrophy of hippocampal CA1 and CA3 regions, with increased cell death in CA1 area), data regarding
CB1R expression is contradictory, with data suggesting both an increase [194] or a decrease [191]
of CB1R expression in the hippocampal region. Interestingly, data that suggests an increase in the
expression CB1R agrees with data from animal models in which, in the chronic stage of epilepsy
(1–2 months after pilocarpine model induction), “strong” animals show an increase in the levels of
CB1R throughout the hippocampus when compared to control mice [194,195].

Additionally, data from patients with epilepsy suggested that an increase in CB1R was negatively
correlated with a latency in the frequency of seizures. Thus, it has been proposed that CB1R modulation
may prove to be a disease modifier acting as antiepileptogenic by providing a protective mechanism
for neurons against hyperexcitability and seizure activity, or contributing to the overall process of
epileptogenesis, or both [196].

These dynamic changes in the expression of CB1R limit neuronal network disinhibition, allowing
elevated neuronal excitability during prolonged epileptiform events [194]. Taken together, the observed
changes in CB1Rs and eCBs in epilepsy, in both acute and chronic events, suggest that they may be
related to the etiology of seizures or associated with developmental problems [197,198], hinting to a
putative primary impairment of the ECS in epilepsy which may promote pharmacoresistant epilepsy.

More recently, CB2R has also been shown to be systemically activated to modulate immune-
mediated symptoms associated with seizure-induced-neuroinflammation [199,200] (reviewed in
References [201,202]). Interestingly, CB2R knockout mice exhibited an increased susceptibility to
induced seizures [203]. Likewise, in the pilocarpine rat model, CB2R expression was upregulated in the
hippocampus following SE [204]. Taken together, both these studies suggest a putative neuroprotective
action of eCBs via CB2R in epilepsy [203,204].

Besides the abovementioned changes in the cannabinoid receptors, the production of eCBs in
patients with epilepsy is also affected, as the levels of AEA, and of the cannabinoid synthesizing enzymes
DAGL and MAGL are reduced, suggesting a pivotal role of cannabinoid tone in this disease [191,205].

Neuronal hyperexcitability in the hippocampus during SE has also been linked to the activation
of TRPV1, which was also shown to be overexpressed [206]. In fact, recent data for both human
patients with mTLE and animal models of epilepsy supported an increased TRPV1 expression in
the temporal cortex and hippocampus [207–209]. Interestingly, TRPV1 expression was found to
co-localize with CB1R in post-synaptic neurons in the hippocampus [210]. Capsazepine, a TRPV1
antagonist, when co-administered with CB1R/CB2R agonist WIN 55,212-2, managed to potentiate WIN
antiepileptic effects, suggesting an interplay between the endocannabinoid and vanilloid systems in
the regulation of hyperexcitability [208].

4.4. Cannabinoids and Neural Stem Cells

Studies taking advantage of transgenic animals for the cannabinoid receptors and their
pharmacological manipulation with agonists and antagonists have put in evidence that the ECS
modulates both embryonic and postnatal neurogenesis [12,211–215]. This system acts upon neural
progenitor proliferation, differentiation, and the survival of adult NSCs, commitment, and maturation.
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It regulates the migration of cortical neurons and interneurons, and is a key player in axon guidance,
pathfinding, and synaptogenesis [216–221].

Embryonically, eCBs have a crucial role in the creation of correct brain architecture and
circuit wiring [222]. In fact, perinatally, eCB signaling, through CB1R and CB2R, promotes cell
proliferation in the embryonic ventricular and subventricular zones [223]. Interestingly, cannabinoid
receptor expression is quite low on neuronal progenitors and gradually increases with a neural
commitment [217,224]. Radial migration of postmitotic neurons and tangential migration of immature
interneurons to their final position in the cortical plate is also tightly regulated by eCBs [225,226].
Type-specific neuronal identification, synaptic button sprouting, and axonal migration are CB1R
dependent [227]. All of these mechanisms can be abruptly disturbed and altered by phytocannabinoids,
as these can pass the placental barrier [228]. In this critical developmental period, changes in eCB
signaling can have an impact on cognition and behavior in the adult (reviewed in References [229,230]).
In fact, maternal use of Cannabis during pregnancy induced an increase in susceptibility of neonatal
problems, namely, preterm birth, pre-eclampsia, and neonatal intensive care [231,232], while later
children display cognitive deficits, namely, in executive function, working memory tasks, sustained
attention and learning, as well as psychiatric disorders [233,234] (reviewed in Reference [228]).

Postnatally, and similar to the effects seen embryonically, endo- and exogenous cannabinoids act
on NSCs in the SVZ and SGZ niches. Studies using CB1R or CB2R-KO animals have put in evidence a
regulatory role of these receptors in adult neurogenesis [214,235]. Pharmacological action using CB1R
and CB2R agonists suggested that activation of these receptors may not only represent a pro-neuronal
differentiation signal, but also induce proliferation and self-renewal of NSCs [211,212,236].

In pathological conditions, where neurogenesis has been found to be disrupted, such as epilepsy,
Alzheimer’s, or Parkinson’s Diseases, disturbances associated with ECS homeostasis were also
found [203,237–241] (reviewed in References [113,242–244]). Thus, it may be proposed that an interplay
between the rise of symptomatology of these disorders may be originated from a combined early
impairment in neural development or aberrant adult neurogenesis with deficiencies in the ECS. In fact,
genetic studies have put in evidence that several genes are heavily implied in different brain disorders
(like HTT, SNCA, or PSEN1), and which directly influence the modulation of neurogenesis [245–247],
also modulate the ECS [248–250]. Therefore, changes associated with these genes will most probably
impact the ontogeny of these disorders.

How cannabinoids modulate neurogenesis in physiological, epileptic, and other pathological
conditions (in both in vitro and in vivo) is further reviewed in References [43,243,251,252].

4.5. Current Cannabinoid Therapies for Epilepsy

Although there are several pieces of evidence showing that the activation of CB1R can ameliorate
seizure outcome, due to its psychotomimetic effects, its use has been limited. Therefore, CB2R
and other non-psychotomimetic receptors, such as TRPV1, may prove an alternative efficient target.
In fact, epidemiological data and case reports have increasingly depicted the overall positive effects of
cannabinoid administration using a high ratio of CBD:THC in the management of pharmacoresistant
epilepsy (reviewed in References [10,253,254]). In an elegant review by Rosenberg and colleagues, there
are currently 181 animal models of epilepsy, 111 acute models of seizures and epilepsy, and 70 chronic
models of epileptogenesis, which have been subject to cannabinoid pre-clinical testing and research [255].
These have been divided according to their effects as modulators of the ECS, CB1R/CB2R agonists and
antagonists, the action of ∆9-THC and CBD/CBDV.

eCBs can be increased by inhibiting degrading enzymes. In fact, inhibition of FAAH by the
synthetic blocker URB597, which promotes an increase in the endogenous levels of AEA, can result in
reduced seizure severity, duration, and amplitude in animal models of epilepsy, as well as protecting
hippocampal neurons against damage [184,256–258]. However, these effects have been shown to
be AEA-dose dependent. When AEA is exogenously administered to PTZ-induced seizure mice,
higher doses have been shown to be pro-convulsant and low doses anti-convulsant. These contrasting
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responses were revealed as being TRPV1-dependent, as at higher doses, AEA is able to activate this
receptor [259]. In the presence of capsazepine (TRPV1 antagonist), AEA had anti-convulsant effects even
at high doses, whilst in the presence of AM251 (CB1R antagonist), AEA potentiated TRPV1-mediated
responses, namely, decreasing the latencies to the onset of PTZ-induced seizures [259]. Contrastingly,
in the mouse MES and PTZ models, the MAGL inhibitor SAR127303, which promotes an increase in the
endogenous levels of 2-AG, produced no protective activity against seizures. Nonetheless, repeated
exposure to SAR127303 in the kindling mouse model slowed down epileptogenesis, as seizure severity
proved to be significantly lower as compared to control animals [260]. However, in the PTZ mouse
model, seizure incidence and severity decreased by increasing 2-AG levels by blocking the 2-AG
degrading enzyme ABHD6 with WWL123 [261].

As mentioned in previous chapters, neurogenesis is compromised in epilepsy. Combined therapies
with cannabinoids and AEDs have been tested to assess the potential benefits of a conjoint treatment.
Arachidonyl-2′-chloroethylamide (ACEA) has been tested with the AEDs valproic acid, levetiracetam,
ethosuximide, lacosamide, or C11 (a new hybrid compound made from levetiracetam, ethosuximide,
and lacosamide) in different models of induced-seizures, and were able to recover proliferation of
NSCs and to promote neuronal differentiation [262–267] (Figure 5). Treatment with WIN 55,212-2
was shown to prevent chronic epileptic hippocampal damage in rat [268,269] and mouse [270,271]
models by attenuating the severity and frequency of spontaneous recurrent seizures. This compound
also increased the antiepileptic effects of AED, such as valproic acid, carbamazepine, phenobarbital,
phenytoin, lamotrigine, pregabalin, and topiramate [272,273]. Similar results were obtained with the
CB1R agonist ACEA [274], which also increased the seizure threshold [275]. Interestingly, the ACEA
antiepileptic effects can be potentiated by nitric oxide (NO) precursor L-arginine and blocked by nitric
oxide synthase (NOS) inhibitor L-NAME or selective neuronal NOS inhibitor 7-NI [276].

CB1R antagonists displayed pro-epileptic effects in pre-clinical seizure models [277]. Additionally
to the pharmacological modulation of cannabinoid receptors, studies using conditional CB1R KO
models have demonstrated that ECS signaling, depending on the neuronal subpopulation, plays an
important role in the termination of epileptic activity, whereas having no impact in the initiation of
hyperexcitability [189]. While most studies seem to point for antiepileptic properties of CB2R activation
(reviewed in Reference [168]), there are studies that also suggest that CB2R may have pro-epileptic
effects. One study showed that activation of CB2R alone with AM1241 agonist increased the severity
and frequency of seizures in rats subjected to the PTZ paradigm [278]. Curiously, CB2R antagonist
AM630 alone had no effect on PTZ induced-seizure rats [279].

∆9-THC has a more complex mode of action than synthetic cannabinoids since it acts as a
partial CB1R/CB2R agonist, and it also activates TRP channels. Indeed, data regarding ∆9-THC in
epilepsy is contradictory, and its effects appear to be dose and model-dependent being either anti- and
pro-epileptic [270,280–282]. Remarkably, administration of ∆9-THC on pregnant female mice during
embryonic days 12.5 through 16.5, which are critical days for cortical neurogenesis and migration of
neurons, reduced seizure latency in the offspring [283]. A similar experimental setting but performed in
rats showed profound alterations in GABAergic and glutamatergic transmission, as well as disruptions
in the uptake and expression of transporters of these neurotransmitters [284,285]. Disruptions in
GABAergic and glutamatergic systems have already been extensively reported and implicated in
epilepsy (reviewed in Reference [5]).

CBDV, a recent rediscovered non-psychotomimetic cannabinoid, has been capturing the interest
of researchers, due to the variety of functions it can modulate. It has been shown to reduce seizure
severity and mortality, to decrease neuronal loss and astrocyte reactivity, and to potentiate AEDs,
such as valproic acid and ethosuximide [286–288].
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Figure 5. The effect of antiepileptic drugs (AEDs) and cannabinoids in physiological conditions
and epilepsy. In physiological conditions (left), SGZ NSCs divide and ultimately differentiate into
mature granule cells (MGC) that are able to make functional connections with the CA3 region of
the hippocampus. NSCs can also generate astrocytes (Ast). AEDs, such as VPA, LEV, and LCM,
decrease NSC proliferation and diminishes the maturation of MGC. Differentiation into astrocytes is
blocked by VPA, LEV, and ETS. In epilepsy (right), NSCs fails to divide correctly and generate
abnormal NSCs (AbNSC). On the other way, SGZ NSCs can ultimately convert into reactive
astrocytes (Rast). The uncontrolled and excessive production of IPCs will translate into defective
aberrant neuroblasts (AbNB) and new aberrant neurons (AbGC) with altered morphological and
electrophysiological properties. The proliferative capacity of normal NSCs is compromised, leading
to a depletion of the NSC population, resulting in diminished neurogenesis overtime. ACEA,
when combined with VPA and LEV, restores to normal levels, NSC proliferation and promotes
maturation of MGC. CBD inhibits proliferation and differentiation of Rasts, while CBDV decreases
their reactivity. ACEA = arachidonyl-2′-chloroethylamide; C11 = hybrid antiepileptic compound;
CBD = cannabidiol; CBDV = cannabidivarin; ETS = ethosuximide; IPC = Intermediate progenitor
cells; LCM = lacosamide; LEV = levetiracetam; MGC = Mature Granule cell; ML = Molecular layer;
NB = Neuroblast; NSCs = Neural Stem Cells; SGZ = Subgranular Zone; VPA = valproic acid.

CBD primarily displays antiepileptic effects [289]. These properties have been explained, due to
the low affinity to CB1R/CB2Rs and to being able to activate other non-canonical cannabinoid receptors,
such as GPR55 [178]. Besides its antiepileptic effects, CA3 cell death, a hallmark of epilepsy pathology,
was shown to be significantly reduced after CBD administration [290]. Importantly, hippocampal
interneuron functions can be restored, and the aberrant reactive astrocytes can be inhibited with
CBD [291,292]. The anti-inflammatory effect of CBD has also been associated with potential synergistic
crosstalk between cannabinoid receptors and adenosine type 1/2A receptors (A1R and A2AR) [293–296].
In fact, a crosstalk between the endocannabinoid and the adenosinergic systems has been hinted in
epilepsy [297,298]. Indeed, the cannabinoid-adenosine-mediated anti-inflammatory properties have
been described to involve A2AR-CB2R heteromers in microglia [299]. Crosstalk between microglia and
neurons has also been suggested to regulate synaptic transmission, which is critical for the development
of spontaneous seizures [300,301] (reviewed in References [302,303]).

Currently, there are four clinical trials involving cannabinoids and epilepsy, focusing mainly on
the use of CBD as a therapeutic agent for pediatric epilepsy [304]. All of them agree that CBD is an
effective alternative drug with no apparent side-effects, when combined with conventional AEDs,
in pharmacoresistant patients. However, this needs to be further supported with long-term double-blind,
randomized placebo-controlled trials [305]. Furthermore, because it interacts pharmacokinetically
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with a wide range of other therapeutic substances, the precise mechanism of action of CBD remains
unclear and needs to be more deeply investigated.

5. Cannabinoids, Neural Stem Cells and Epilepsy: Perspectives and Concluding Remarks

In the present manuscript, we have reviewed how the ECS and AHN have their physiological
functions jeopardized during epileptogenesis. Compromised neurogenesis has been extensively
reported and reviewed in both patients and animal models of epilepsy, in which aberrant neurogenesis
is observed and where the premature loss of NSCs occurs [54,55,306].

Current available AEDs are not effective for all types of epilepsy, as some patients exhibit strong
pharmacoresistance. These patients can benefit from cannabinoid-derived drugs to ameliorate from
epileptic symptoms when all other conventional therapies (e.g., AEDs) have failed. In fact, most patients
report a significant reduction (between 50–90% less) in the frequency of seizures when under a combined
cannabinoid-AED therapy [307]. Cannabinoids have been used as a therapy to treat seizures since the
early 1800s, and although they have been used for other pathologies for millennia, the development
of cannabinoid-based drugs has been very slow. This is mainly due to the psychotomimetic effects
associated with Cannabis consumption. However, with the growing existence of several plant-derived
and synthetic cannabinoids that have little or no psychotomimetic properties, the ECS harbors an
immense uncovered potential to be used as a therapeutic agent for several neurological disorders,
especially when combined with stem cell therapy [10,216,218,308–310].

The current pre-clinical data fail to completely explain the precise mechanisms by which
cannabinoids and ECS modulation interact with AEDs, as it is difficult establishing coherent clinical
trials. None of the current clinical trials for epilepsy are presently assessing the potential role
of modulation of neurogenesis via the ECS. Concomitantly, choosing the best cannabinoid-based
compound with the safest clinical effects is difficult, due to the wide array of cannabinoid actions in
the organism.

Cannabinoid-based stem cell therapies come as a “secondary effect” of co-administration of
cannabinoids with AEDs, as there is evidence that cannabinoids not only potentiate AEDs, but seem
to inhibit the negative impact on neurogenesis caused by them. There are nonetheless some key
aspects that need further studies, mainly whether the aberrant neurogenesis found in epilepsy is a
consequence of the disease as a compensatory mechanism or is actually pathological and exacerbates
the symptoms [311]. Notwithstanding, the promising results mentioned in this review suggest that
NSC modulation by cannabinoids can be a potential therapeutic target in epilepsy.

The impact of cannabinoids on society is pushing more and more countries to legalize the use
of cannabinoids for medicinal purposes, encouraging drug developers and the pharma industry to
do more pre-clinical and clinical studies in the future. Certainly, combining both cannabinoid and
NSC therapy will bring new knowledge in this field over the upcoming years, yielding a translational
power with the potential to be impactful in both clinic and society. Therefore, innovative ideas that
can place cannabinoids as one of the leading pharmacotherapeutic options to treat brain pathologies
is imperative.
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