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Machine learning classifiers do not improve prediction of hospital-
ization > 2 days after fast-track hip and knee arthroplasty compared 
with a classical statistical risk model
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Background and purpose — Prediction of postoperative 
outcomes and length of hospital stay (LOS) of patients is 
vital for allocation of healthcare resources. We investigated 
the performance of prediction models based on machine-
learning algorithms compared with a previous risk stratifica-
tion model using traditional multiple logistic regression, for 
predicting the risk of a LOS of > 2 days after fast-track total 
hip and knee replacement.

Patients and methods — 3 different machine learning 
classifiers were trained on data from the Lundbeck Centre 
for Fast-track Hip and Knee Replacement Database (LCDB) 
collected from 9,512 patients between 2016 and 2017. The 
chosen classifiers were a random forest classifier (RF), a 
support vector machine classifier with a polynomial kernel 
(SVM), and a multinomial Naïve-Bayes classifier (NB).

Results — Comparing performance measures of the clas-
sifiers with the traditional model revealed that all the models 
had a similar performance in terms of F1 score, accuracy, 
sensitivity, specificity, area under the receiver operating 
curve (AUC), and area under the precision-recall curve 
(AUPRC). A feature importance analysis of the RF classi-
fier found hospital, age, use of walking aid, living alone, and 
joint operated on to be the most relevant input features. None 
of the classifiers reached a clinically relevant performance 
with the input data from the LCDB.

Interpretation — Despite the promising prospects of 
machine-learning practices for disease and risk prediction, 
none of the machine learning models tested outperformed 
the traditional multiple regression model in predicting which 
patients in this cohort had a LOS > 2 days.

Prediction of postoperative morbidity and requirement for 
hospitalization is important for the allocation of healthcare 
resources. With regards to the common surgical procedures of 
primary total hip and knee arthroplasty (THA and TKA), the 
introduction of enhanced-recovery or fast-track programs has 
led to a significant reduction in postoperative length of stay 
(LOS) to about median 2 days in 2017, as well as in-house 
morbidity (1). However, despite this progress, a clinically sig-
nificant portion of patients still have a LOS > 2 days, poten-
tially indicating a need for intensified postoperative care (2). 
Consequently, the results of many efforts have been published 
to predict LOS and morbidity preoperatively using traditional 
risk factors such as age, preoperative cardio-pulmonary dis-
ease, anemia, diabetes, frailty, etc. (3–7). These efforts have 
been based on traditional statistical methods including mul-
tiple regression analyses, where mathematical equations are 
used to describe the relationships between variables. Disap-
pointingly, the conventional risk-factor estimations from these 
methods have had a limited effect in predicting potentially 
preventable morbidity and LOS after fast-track THA and 
TKA, and essentially conclude that it is “better to be young 
and healthy than old and sick” (6). 

More recently, artificial intelligence (AI) or machine-learn-
ing methods have been introduced with success in several 
areas of healthcare, and where preliminary data suggest that 
they may improve surgical risk prediction compared with 
traditional risk calculation, due to better model performance 
(8). However, whether machine-learning algorithms depend-
ing on only simple preoperative characteristics may improve 
identification of patients with prolonged LOS within a well-
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established fast-track THA and TKA protocol, compared with 
traditional logistic regression, is uncertain. Consequently, 
this study is a secondary analysis to investigate whether a 
machine-learning model improves prediction of LOS > 2 days 
within a well-established fast-track protocol.

Patients and methods

Data were extracted from the Lundbeck Foundation Centre 
for Fast-track Hip and Knee Replacement Database (LCDB), 
which is a prospective database registry on preoperative patient 
characteristics registered on clinicaltrials.gov (NCT01515670). 
These data are subsequently crossed with the Danish National 
Patient Registry (DNPR) and discharge records with regards to 
LOS, 90-day readmissions, and mortality (1). DNPR registers 
all admissions to Danish hospitals and as registration is man-
datory in order to receive reimbursement, accuracy is > 99% 
(9). Patients included had a primary unilateral total hip or knee 
arthroplasty. Data on the perioperative setup including surgi-
cal technique, anesthesia and analgesia, and postoperative care 
regimes is detailed in previous publications (1,2).

Data description
The dataset contained 10,709 patients having surgery between 
January 2016 to August 2017 of whom 10,576 (99%) were 
registered in the LCDB (Figure 1). 9 separate departments 
currently report data to the LCDB, all of which have dedicated 
arthroplasty units with similar fast-track protocols. The data 
is composed of 22 binary or categorical attributes of patient 
characteristics and a binary output vector of LOS longer or 
shorter than 2 days (Table 1). The primary outcome was a 
LOS > 2 days and was chosen based on previously published 
data for a successful fast-track THA/TKA course (2). A previ-
ously published paper from the same dataset found the most 
influential attributes to be use of walking aid, preoperative 
potent anticoagulant use, anemia, psychiatric disorders, and 
pulmonary disease (2). The dataset has an imbalance where 
17% of the patients had a LOS > 2 days. 

Data preprocessing 
The 22 input attributes will be considered as a vector for each 
patient, and the LOS as a binary output. Continuous data 
such as age, BMI, and place of surgery had been categorized 
previously. To ease machine learning practices, 1,064 (10%) 
patients with incomplete information on specific attributes 
were removed. The training set was oversampled, achiev-
ing an equal class distribution, using a random oversampling 
technique to account for the imbalance in the data. To deter-

Total number of procedures in DNPR
January 2010 – August 2017

n = 41,292

Procedures performed January 2016 – August 2017
n = 10,576

Procedures performed January 2016 – August 2017
included in the previously published multicenter

regression analysis on risk factors for LOS > 2 days
n = 9,987

Procedures performed January 2016 – August 2017
included in the machine learning models on risk 

factors for LOS > 2 days
n = 9,512

Primary elective THA/TKA in the DNPR
n = 41,292

In the LCDB
n = 36,935

Excluded (n = 3,348):
– fractures, non-elective procedures or previous 
  surgery on the same joint within 90 days, 2,319
– severe congenital disorders, infection or cancer, 172
– simultaneous or staged bilateral procedures within 
   90 days, 816
– other (e.g., non-Danish citizens, revision surgeries, 
   and hemiarthroplasty), 41

Excluded
Not in the LCDB

n = 1,009

Excluded
Prior to 2016
n = 26,359

Figure 1. Tthe study population. DNPR: Danish National Patient Reg-
istry, THA: Total hip arthroplasty, TKA: Total knee arthroplasty, LCDB: 
The Lundbeck Foundation Centre for Fast-track Hip and Knee replace-
ment Database, LOS: Length of hospital stay.

Table 1. The 22 patient characteristics used as an input vector for 
the binary classification and the clinical outcome of length of stay > 
2 days. Values are count (%) unless otherwise specified

 
Factor No. of patients Missing

Mean age [SD] 68 [10] 0 (0)
Mean BMI [SD] 28 [5] 100 (1)
Female sex 6,213 (59) 0 (0)
Walking aid 2,391 (23) 195 (2)
Living alone 3,632 (34) 80 (1)
In institution 75 (1) 
Smoking 1,347 (13) 89 (1)
Alcohol > 24g/day 790 (8) 91 (1)
Total knee arthroplasty  4,448 (42) 0 (0)
Psychiatric disease 1,520 (14) 0 (0)
Cardiac disease 1,439 (14) 106 (1)
Pulmonary disease 945 (9) 64 (1)
Hypertension 5,911 (56) 0 (0)
Non-insulin-dependent diabetes mellitus 925 (9) 61 (1)
Insulin-dependent diabetes mellitus 199 (2) 
Anticoagulants 821 (28) 0 (0)
Preoperative anemia 2,552 (24) 155 (2)
Hypercholesterolemia 3,102 (29) 76 (1)
Previous cerebral attack 582 (6) 158 (2)
Previous thromboembolism 737 (7) 140 (1)
Cancer 328 (3) 98 (1)
Kidney disease 176 (2) 244 (2)
LOS > 2 days 1,863 (18) 0 (0)

Characteristics are expressed in a vector for each patient when per-
forming the binary classification. Values are represented as a count 
of patients carrying each attribute unless specified otherwise.
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mine the oversampling technique 2 methods were compared, 
SMOTE and a random oversampler. SMOTE re samples using 
a k-nearest neighbors’ method. Preliminary testing showed 
similar results in terms of accuracy and F1 score of the models; 
the SMOTE method even increased the accuracy and F1 score 
of the random forest (RF) classifier. However, while accuracy 
was increased, the sensitivity decreased drastically, result-
ing in the choice of random oversampling. Machine-learning 
methods were applied using Python 3.8 as a programming 
language.

Machine-learning models and training methods
The goal of the research was to design a binary classifier with 
a class of LOS ≤ 2 or LOS > 2 days. 3 models were investi-
gated: (i) a RF classifier with optimized hyperparameters, (ii) 
a support vector machine classifier (SVM) with a polynomial 
kernel, and (iii) a multinomial Naïve-Bayes classifier (NB).

RF and SVM classifiers have been shown to deliver promis-
ing predictive results of disease outcomes based on electronic 
health data (10,11), and a 2016 review article found that NB 
classifiers consistently showed promising results for dis-
ease classification (12). Different versions of these 3 models 
were tested using 20% hold-out cross-validation before the 3 
models showing the most promising results in terms of accu-
racy and F1 score were chosen. The equation to calculate the 
F1 score is the following:

 precision × recall             TP
F1 = 2 ×  =
 precision + recall  TP + 1/2(FP + FN)
where TP are the true positives or where the model correctly 

predicts the positive class. The FP are the false positives or 
where the model incorrectly predicts the positive class. The 
FN are the false negatives, where the model fails to predict the 
positive class. The highest possible F1 score is 1.0, indicating 
perfect precision and recall. 

An RF classifier is an ensemble method that is composed 
of multiple decision-tree classifiers. The RF classifier fits a 
number of decision-tree classifiers on a variety of sub-sam-
ples, with the maximum number of patients of a sub-sample 
given as its maximum depth. It uses averaging to improve 
its predictions and control over-fitting. The best feature and 
threshold are selected based on a cost function, and we grow 
each tree. The final output of the RF model is decided based 
on majority voting over all the decision-tree classifiers. For 
the RF classifier in this study, optimal hyperparameters of 
400 decision-tree classifiers, maximum depth of 20, with 
entropy as a split criterion, a minimum of 3 samples per leaf, 
and bootstrap, were chosen using grid search and 10-fold 
cross-validation. Another RF classifier was run based on the 
most important variables, according to a feature importance 
algorithm.

The objective of the SVM classifier is to find an optimal 
hyperplane that separates the data into categories and maxi-
mizes the boundary. The SVM used here has a homogeneous 

third-degree polynomial kernel. The SVM has a decision 
function that determines the prediction for each subject. 

The NB classifier is based on the Bayes probability theorem 
and uses the assumption that the variables are independent. 
The multinomial component of the classifier calculates the 
probability of an event, based on its frequency in the dataset

The final models were trained using a shuffled 10-fold 
cross-validation and oversampling of the training partitions. 
The 10-fold cross-validation trains the model on 90% of the 
data and tests on the remaining 10%, repeating for a total 
of 10 folds. The performance parameters of accuracy, F1 
score, sensitivity, specificity, area under the receiver operat-
ing (ROC) curve (AUC), and area under the precision-recall 
curve (AUPRC), were averaged over the 10 folds. Confidence 
intervals of the AUC were calculated and expressed with 
95% confidence using Student’s t-distribution. The perfor-
mance parameters of the 3 classifiers were compared with the 
accuracy (0.83), AUC (0.70; CI 0.69–0.72), F1 score (0.36), 
sensitivity (0.36), and specificity (0.87) from a previously 
published traditional multiple logistic regression analysis. 
The previous publication ran a multiple regression on 10,129 
patients to determine LOS > 2; they found 635 to be true posi-
tives, 1,139 to be false positives, 533 were false negatives, and 
7,302 were true negatives (2).

Ethics, registration, funding, and potential conflicts of 
interest
By reason of this being a non-interventional study, ethical 
approval was waived, but permission to collect and store 
data was obtained from the Danish Patient Safety Authority 
(3-3013-56/2/EMJO) and the Danish Data Protection Agency 
(2012-58-0004). The LCDB is registered on clinicaltrials.gov 
(NCT01515670) as an ongoing registry study. There is no 
funding and no conflicts of interest to report.

Results

9,512 (90%) of the 10,576 subjects were included in the train-
ing of the machine-learning models (Figure 1). Mean age of 
the included subjects was 68 years of which 59% were females, 
42% had TKA, and 18% had a LOS > 2 days (Table 1). 

The performance of the 3 models can be found in detail 
in Table 2. The SVM with a polynomial kernel showed the 
highest F1 score (0.62), the RF closely followed (0.61), and, 
finally, the multinomial NB classifier had a considerably lower 
score (0.56). Compared with the multiple logistic regression, 
the RF had lower accuracy (0.74) and specificity (0.81), but 
a higher AUC (0.72; CI 0.70–0.73), F1 score, and sensitivity 
(0.45) (Table 2). A similar distribution could be seen for the 
SVM, but with increased sensitivity (0.57) but lower speci-
ficity (0.74). When analyzing the performance of the RF and 
SVM, they shared the highest performance measures. The 
RF had higher accuracy and specificity, while the SVM had 
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a higher sensitivity and F1 score. The AUC of the ROC was 
equal between SVM and RF (0.71), and the AUPRC was simi-
lar (0.34 and 0.33), while the NB had a lower value for both 
(Figure 2). 

For the feature importance algorithm of the RF classifier, it 
took 18 variables of the 22 input variables to reach 95% impor-
tance. The most important variables were hospital (16%), age 
group (15%), BMI (10%), use of walking aid (6%), living 
alone, and joint operated on (5%), as well as sex, anemia, 
hypertension, hypercholesterolemia, and cancer (4%). The 
RF was run using these 18 variables with no change in AUC 
(0.71; CI 0.70–0.72).

Discussion

The 3 machine-learning approaches did not result in better 
performance for preoperative identification of patients with a 
LOS > 2 days than the previous logistic regression analysis (2). 
The class imbalance and lack of patients with LOS > 2 in the 
original data (17% with LOS > 2 days) is likely to be the cause 
of the inaccuracy despite the oversampling of the training par-
titions. We tested different proportions of the random overs-
ampling with little effect on the accuracy of the results. The 
principal for binary classification is to find a decision bound-
ary that separates the 2 classes of data in the multidimensional 

Table 2. Results of training a random forest classifier, a support vector machine classifier, and a multinomial 
Naïve-Bayes classifier using 10-fold cross-validation, compared with a traditional risk calculation method of 
multiple logistic regression.

Type Accuracy AUC (95% CI)   AUPRC   Sensitivity Specificity F1 score

Random forest classifier 0.75 0.71 (0.70–0.73) 0.33 0.44 0.82 0.61
Support vector machine classifier 0.73 0.71 (0.69–0.72) 0.34 0.52 0.78 0.62
Multinomial Naïve-Bayes classifier 0.64 0.66 (0.65–0.68) 0.23 0.60 0.64 0.56
Multiple logistic regression 0.83 0.70 (0.69–0.72) N/A 0.36 0.87 0.36 a

 a Calculated from previously published results (6).
AUC: Area under the curve.
AUPRC: Area under the precision-recall curve.
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Figure 2. Receiver operating curves (ROC) and precision-recall curves of the three classification models: the 
random forest classifier (RF), the support vector machine (SVM) classifier with a polynomial kernel, and a mul-
tinomial Naïve-Bayes (NB) classifier. The lines represent the mean ROC and the mean precision-recall curve.
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space. Based on the nature of the data and the lack of perfor-
mance improvement with the classifiers, there is a high likeli-
hood of there being overlap between the LOS classes in the 
multidimensional space. It has been shown that class overlap 
results in a larger degradation of sensitivity, compared with 
class imbalance, meaning that the effect of class imbalance is 
dependent on class overlap (13). As there is a class imbalance 
in our data, we can assume that class overlap also influences 
the performance of our classifiers. Indirectly we can view the 
performance as a measure of the overlap in the data. 

An assumption made in the NB model is that all predictors 
have an equal effect on the outcome, which is not the case 
for this dataset. An analysis of the RF showed that the fea-
tures in fact have different effects on the outcome with age, 
hospital, and BMI having the most impact. The difference 
in feature importance has also been illustrated in previously 
published work from the LCDB (6). This assumption could 
explain why the NB classifier has the lowest performance of 
the 3 classifiers. 

One shortcoming of the study is the selection of the 10 
folds for the 10-fold cross-validation, as this selection was 
somewhat arbitrary and based on common machine-learning 
practices. Clinical validation was not performed on the clas-
sifiers as the performance was not high enough for clinical 
standards. 

In machine-learning applications like these, there is a high 
probability of the chosen features being a limiting factor, e.g., 
because of the unavailability of all relevant variables. The 
choice of features always results in a particular distribution 
of the 2 classes, which we want to separate. There is no way 
of resolving the overlap of the 2 classes as we have a selec-
tion of features that create a set boundary and therefore a set 
amount of overlap. In hopes of improving performance in the 
future input features can be added or substituted, or one could 
even change the 2-day LOS boundary. However, the use of 
LOS > 2 days as primary outcome may limit prediction based 
only on preoperative characteristics, as LOS has been found 
to correlate strongly with peri- and postoperative factors such 
as operating time and adverse events, which naturally cannot 
be included in this preoperative machine-learning algorithm 
(14,15). Also, other preoperative patient-related factors such 
as patient expectations and cognitive appraisal, which have 
been shown to influence 3-month outcome scores, could 
potentially affect LOS (16). However, our preoperative ques-
tionnaire is meant to reflect typical clinical information and 
collection of detailed cognitive appraisal or large amounts 
of additional information may not be feasible in a routine 
clinical setting. More complex machine-learning algorithms 
could also be explored, such as neural networks, or a cost 
function added to the oversampling that adds a higher penalty 
to misclassifications. Improving the performance opens the 
possibility for clinical use of the prediction model to allo-
cate resources to high-risk patients and provide treatment of 
modifiable risk factors.

In conclusion, the prediction of LOS is an important link in 
the allocation of hospital resources to those who need it most. 
Even though machine-learning practices are a promising tool 
in disease or risk prediction, the current study showed that 
using 3 established machine-learning methodologies did not 
outperform a statistical risk model based on regression anal-
yses in successfully predicting which patients in the LCDB 
cohort had a LOS > 2 days. All 3 models performed similarly, 
except for the NB classifier, which performed worse. The 
more complex models did not improve preoperative predic-
tion of LOS using the LCDB data. 

Supplementary data
An appendix with description of the chosen machine learning 
models is available as supplementary data.
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APPENDIX
A more detailed and mathematical description of the chosen 
machine learning models.

The learning or information gain of each tree in the RF 
model is calculated as the entropy decreases.

Gain(t,x) = Entropy(t) – Entropy(t,x)

Where the t is the target variable, x is the feature to be split 
on, and Entropy(t, x) is the entropy after the data is split on 
feature x. The entropy cost function is calculated as

Entropy = ∑i=1 – fi log(fi)

Where N is the number of unique labels, and fi is the fre-
quency of label, i, at a splitting node.  For our binary classifi-
cation the i represents 1 for LOS >2 and 0 otherwise.

The SVM used in the present study has a homogeneous 
third-degree polynomial kernel defined in the following way

K(x,y) = (xTy + r)d

where x and y are input vectors, d is the degree of the poly-

nomial, and r is a constant trading of the influence of higher-
order versus lower-order terms, r is equal to zero in our case 
making the kernel homogeneous.  

The decision function of the SVM classifier is defined by

sgn(∑i=1 yi αi K(xi,x)+ρ)

where the xi are training vectors in 2 classes, y is a vector 
∈{1,-1}n, α is a regularization parameter, K the kernel, and ρ 
is the bias term. When the output of the decision function is 
equal to +1 its argument is positive (LOS > 2) and –1 other-
wise.  

For the Multinomial NB the likelihood of observing a fea-
ture vector in a given class is

P(xi⎢y) = θyi =  (Nyi+α)/(Ny+αn)

where Nyi = ∑x∈T xi is the number of times feature i appears 
in a sample of class y in the training set T and, Ni = ∑i=1Nyi  is 
the total count of all features for class y. Again the class of y 
represents 0 or 1 for our classification. 
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