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Abstract 

Background: In recent years, the average abundance function has attracted much attention as it reflects the degree 
of cooperation in the population. Then it is significant to analyse how average abundance functions can be increased 
to promote the proliferation of cooperative behaviour. However, further theoretical analysis for average abundance 
function with mutation under redistribution mechanism is still lacking. Furthermore, the theoretical basis for the cor-
responding numerical simulation is not sufficiently understood.

Results: We have deduced the approximate expressions of average abundance function with mutation under 
redistribution mechanism on the basis of different levels of selection intensity ω (sufficiently small and large enough). 
In addition, we have analysed the influence of the size of group d, multiplication factor r, cost c, aspiration level α on 
average abundance function from both quantitative and qualitative aspects.

Conclusions: (1) The approximate expression will become the linear equation related to selection intensity when 
ω is sufficiently small. (2) On one hand, approximation expression when ω is large enough is not available when r is 
small and m is large. On the other hand, this approximation expression will become more reliable when ω is larger. 
(3) On the basis of the expected payoff function π(�) and function h(i,ω) , the corresponding results for the effects of 
parameters (d,r,c,α ) on average abundance function XA(ω) have been explained.
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Background
Literature review for average abundance function
It is well known that aspiration rule reflects the charac-
teristics of self-learning. Furthermore, individuals will 
compare their own payoff with aspiration level which 
reflects the concept of “satisfaction”. Generally speaking, 
the discussion on aspiration rule contains three parts: (1) 

the research on average abundance function under differ-
ent mechanisms; (2) the research on average abundance 
function when aspiration level is a complex function; (3) 
the comparison between aspiration rule and imitation 
rule.

The research on average abundance function 
under different mechanisms
On one hand, Zhang et al. [1] authenticated that suitable 
aspiration level can improve cooperative behavior and 
the evolution time series show the so-called “ping-pong 
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effect” for aspiration levels. Chen et al. [2] demonstrated 
that average abundance function increases with pay-
off weight coefficient. Zeng et  al. [3] corroborated that 
risk-adaptation mechanism based on aspiration level can 
make average abundance function reach the maximum 
value. Liu et al. [4] affirmed that the effects of aspiration 
level is non monotonic.

On the other hand, Perc et  al. [5] affirmed that inter-
actions among humans often involve group interactions, 
and they also involve a larger number of possible states 
even for the most simplified description of reality. Szol-
noki et al. [6] demonstrated that a moderate fraction of 
cooperators can prevail even at very low multiplication 
factors if the critical mass is minimal.

It should be noted that Chen et al. [7] affirmed that the 
random WSLS mechanism and local weight coefficient 
can improve average abundance function. Perc et al. [8] 
analyzed the basic characteristics of public goods game, 
reviewed recent advances in the study of evolutionary 
dynamics of group interactions on top of structured pop-
ulations and compared these results with those obtained 
on well-mixed populations. Liu et  al. [9] corroborated 
that the modified WSLS mechanism based on aspiration 
level can promote average abundance function and this 
effect has nothing to do with the initial distribution.

In addition, Matsen et al. [10] demonstrated that WSLS 
mechanism can greatly improve average abundance func-
tion. Chen et  al. [11] authenticated that moderate aspi-
ration level can improve average abundance function. 
Du et  al. [12] affirmed that the effect of redistribution 
on cooperative promotion under different aspiration 
distributions varies with the proportion of redistribu-
tion. Zhou et  al. [13] investigated how heterogeneity in 
the rules for behavior updating alters the evolutionary 
outcome.

Moreover, Peng et  al. [14] corroborated that the 
influence of the payoff of betrayal strategy on average 
abundance function can be ignored when migration 
mechanism is taken into account. Lin et al. [15] affirmed 
that the migration of individuals with low aspiration level 
can improve average abundance function. Yang et  al. 
[16] authenticated that appropriate aspiration level can 
promote the migration of collaborators. In addition, this 
kind of migration promotes the formation of clusters and 
improves average abundance function.

The research on average abundance function 
when aspiration level is a complex function
It is well known that aspiration level is not always fixed. 
Moreover, many scholars have studied the properties of 
average abundance function when aspiration level is a 
complex function. Furthermore, aspiration level of each 
stage is a complex function related to the corresponding 

coefficients of the previous stage. On the basis of this 
finding, it can be deduced that aspiration level is closely 
related to evolutionary time.

On one hand, Platkowski et al. [17] demonstrated that 
average abundance function decreases with the size of 
population. Platkowski et al. [18] affirmed that the criti-
cal condition to ensure the maximization of average 
abundance function is independent of initial distribu-
tion and group size when aspiration level is at an appro-
priate level. Feng et  al. [19] corroborated that the cost 
can led to the bidirectional effects of aspiration rule on 
average abundance function. Tang et  al. [20] authenti-
cated that appropriate aspiration level improves average 
abundance function when cost-benefit ratio is at the suit-
able level. In addition, the suitable level is related to the 
maximum Laplacian eigenvalue of the network. Wu et al. 
[21] demonstrated that evolutionary outcomes under 
heterogeneous aspiration level is the same as those under 
homogeneous aspiration level.

On the other hand, Rong et al. [22] corroborated that 
low aspiration level promotes the coexistence of differ-
ent strategies and appropriate aspiration level improves 
the average abundance function of generous strategy. 
Wu et  al. [23] demonstrated that the effects of aspira-
tion level on average abundance function under synchro-
nous updating is different from that under asynchronous 
updating. Wakano et al. [24] affirmed that average abun-
dance function becomes more stable when learning coef-
ficient based on aspiration level increases. Platkowski 
et  al. [25] affirmed that average abundance function 
increases when global aspiration level is taken into con-
sideration. Roca et  al. [26] corroborated that average 
abundance function increases with greediness. However, 
it decreases when greediness is too high.

The comparison between aspiration rule and imitation rule
The essence of aspiration rule lies in the comparison 
between payoff and aspiration level. In addition, the 
essence of imitation rule lies in the comparison between 
own success and another individual’s success. It is well 
known that many scholars study the influence of differ-
ent rules on evolutionary results based on the previous 
analysis.

On one hand, Du et al. [27] also demonstrated that the 
sustainable time of public resources under aspiration rule 
is longer than that under imitation rule. Zhang et al. [28] 
demonstrated that aspiration level leads to the negative 
feedback effect. In addition, aspiration level promotes the 
heterogeneity distribution of node degree. Du et al. [29] 
deduced the dominant condition for average abundance 
function under aspiration rule. Perc et  al. [30] affirmed 
that heterogeneity in aspirations may be key for the sus-
tainability of cooperation in structured populations.
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On the other hand, Li et  al. [31] demonstrated that 
high aspiration level leads to the disappearance of the 
coexistence of different strategies. In addition, average 
abundance function increases with interaction coef-
ficient. Du et al. [32] affirmed that the effects of aspira-
tion level on average abundance function in structured 
population under weak selection intensity is similar to 
that in well-mixed population. Li et al. [33] corroborated 
that the combination of aspiration rule and modified self-
questioning mechanism leads to the increasing of average 
abundance function.

Moreover, Xu et  al. [34] demonstrated that average 
abundance function reaches the highest value when both 
interaction coefficient and aspiration level are at appro-
priate level. Xuesong Liu [35] affirmed that the combina-
tion of aspiration rule and imitation rule is conducive to 
the increasing of average abundance function. Chen et al. 
[36] corroborated that the suboptimal selection based 
on aspiration level is beneficial for average abundance 
function.

Main work
Firstly, we analyze the basic properties of the multi-player 
threshold public goods evolutionary game model under 
redistribution mechanism and we obtain the the intuitive 
expression of average abundance function with mutation. 
Secondly, we deduce the approximate expression of aver-
age abundance function when selection intensity is suf-
ficient small and selection intensity is large enough. At 
last, we analyze the influence of different parameters on 
average abundance function.

Methods

Model for multi‑player threshold public goods 
evolutionary game model
The research on multi‑player threshold public goods 
evolutionary game model
The multi‑player evolutionary game model
In a finite well-mixed population of size N, i is the num-
ber of A players. In this population, groups of size d are 
assembled randomly. The focal player can be of type A, 
or B, and encounter a group containing k other players of 
type A, to receive the pay-off ak or bk . The multi-player 
game [37–49] payoff matrix is defined as Table 1.

The expected payoff for any A, or B in a population of 
size N, with i players of type A and (N − i) players of type 
B, are defined by πA(i) and πB(i) . Based on Table 1, the 
general expression of expected payoff function can be 
defined as follows: 

The multi‑player threshold public goods evolutionary game 
model under redistribution mechanism
It is well known that c is an initial endowment given to 
every individual. The cooperator will provide c to the com-
mon pot. If the number of cooperators is smaller than m, 
all pay-offs will be zero. In addition, if the number of coop-
erators is not smaller than m, the total amount of funds in 
the common pool will be multiplied by the multiplication 
factor r [50–56] and it will be shared equally for all mem-
bers. Based on the above discussions, the expressions of the 
corresponding matrix elements ak and bk in Table 1 can be 
obtained: 

Furthermore, a redistribution mechanism [57–61] is 
introduced into this model. At a fixed proportion τ , every 
individual in the group is required to hand in part of pay-
off. In addition, this kind of compulsory expenditure is 
called second-order payment. The second-order payment 
of every individual in the group will be aggregated and it 
will be redistributed to everyone in the group uniformly.
The expressions of the corresponding matrix elements ak 
and bk in Table 1 can be easily deduced based on the above 
discussions:

(1a)

πA(i) =

d−1
∑

k=0

PA(k , d; i,N )ak =

d−1
∑

k=0

Ck
i−1C

d−1−k
N−i

Cd−1
N−1

ak

(1b)

πB(i) =

d−1
∑

k=0

PB(k , d; i,N )bk =

d−1
∑

k=0

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

bk

(1c)ak =

{

0 k < m− 1
k+1
d

rc k ≥ m− 1
(m ≥ 1)

(1d)bk =

{

0 k < m
k
d
rc + c k ≥ m

(m ≥ 1)

(2)ak =

{

0 k < m− 1
k+1
d (r − τ)c + τc k ≥ m− 1

(3)bk =

{

0 k < m
k+1
d (τ − τ)c + c k ≥ m

Table 1 The multi-player game payoff matrix

d − 1 ... k ... 0

A ad−1 ... ak ... a0

B bd−1 ... bk ... b0
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The research on average abundance function 
with mutation
Game behaviors of aspiration dynamics
The game behavior has been studied by many scholars 
[62–67]. Furthermore, the transition probability equa-
tion of the evolutionary process can be deduced based on 
above analysis:

The ω represents selection intensity [68, 69] and α rep-
resents aspiration level which reflects the satisfaction of 
individuals in formulas (4)–(6).

The characteristics of average abundance function 
with mutation
The proportion of individuals choosing strategy A (which 
can be defined as jN  ) in the population is a random vari-
able based on the transition probability equation defined 
by formulas (4)–(6). In addition, the probability distri-
bution of j

N  can be defined as ϑj(ω) . Thus, the expected 
value of the proportion of individuals choosing strategy A 
[70–73] in the population is called the average abundance 
function XA(ω):

Furthermore, the intuitive expression of the average 
abundance function can be obtained through theoretical 

(4)T+
i =(1− δ)

N − i

N

1

1+ e−ω(α−πB(i))
+ δ

N − i

N

(5)T−
i =(1− δ)

i

N

1

1+ e−ω(α−πA(i))
+ δ

i

N

(6)T 0
i =1− T+

i − T−
i

(7)XA(ω) =

N
∑

j=0

j

N
ϑj(ω)

deduction when the detail balance condition is taken as 
the breakthrough point.

Proposition 2-2       When the transition probability 
equation of evolutionary state is defined by formulas (4)–
(6), the intuitive expression of average abundance func-
tion is as follows: 

Based on formula (1a), the expression of πA(i + 1) and 
πB(i) in formula (7b) can be easily obtained: 

The deduction process of formula (7a) can be found in 
related article [74]. On the whole, the establishment of 
formula (7a) lays a foundation for further analytical anal-
ysis and numerical simulation.

Results
The approximate expression of average abundance 
function when selection intensity is sufficient small
Proposition 3-1      The approximate expression of aver-
age abundance function with mutation of multi-player 
threshold public goods evolutionary game model under 
redistribution mechanism when selection intensity is suf-
ficient small can be defined as follows:

(7a)XA(ω) =
1

N

N
∑

j=1

j
j−1
∏

i=0

h(i,ω)

1+
N
∑

j=1

j−1
∏

i=0

h(i,ω)

(7b)
h(i,ω) =

N − i

i + 1
×

1+ e−ω(α−πA(i+1))

1+ e−ω(α−πB(i))
×

1+ δe−ω(α−πB(i))

1+ δe−ω(α−πA(i+1))

(7c)πA(i + 1) =

d−1
∑

k=0

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

ak

(7d)πB(i) =

d−1
∑

k=0

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

bk

(8)

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

m(r − τ )+ dτ

r − τ + dτ
C
m−1

d−1
+

d−1
∑

k=m

C
k

d−1

)

(r − τ + dτ ) −d

d−1
∑

k=m

C
k

d−1

]
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Proof

Many scholars [75] have deduced the approximation 
expression of average abundance function when ω → 0:

By inserting formulas (2)–(3) into formula (9), we can 
get:

(9)XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

d−1
∑

k=0

Ck
d−1(ak − bk)

(10)

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

d−1
�

k=0

Ck
d−1(ak − bk) =

1

2
+ ω

1− δ

1+ δ

1

2d+2
×





m−2
�

k=0

Ck
d−1 × 0+

m−1
�

k=m−1

Ck
d−1

�

k + 1

d
(r − τ )c + τc

�

+

d−1
�

k=m

Ck
d−1

�

k + 1

d
(r − τ )c + τc −

k

d
(r − τ )c − c

�

�

=
1

2
+ ω

1− δ

1+ δ

1

2d+2

�

Cm−1
d−1

�m

d
(r − τ )c + τc

�

+

d−1
�

k=m

Ck
d−1

�

1

d
(r − τ )c + τc − c

�

�

=
1

2
+ ω

1− δ

1+ δ

1

2d+2
c
�

Cm−1
d−1

�m

d
(r − τ )+ τ

�

+

d−1
�

k=m

Ck
d−1

�

1

d
(r − τ )+ τ − 1

�

�

=
1

2
+ ω

1− δ

1+ δ

1

2d+2
c
�

Cm−1
d−1

�m

d
(r − τ )+ τ

�

+

d−1
�

k=m

Ck
d−1

� r

d
−

τ

d
+ τ

�

−

d−1
�

k=m

Ck
d−1

�

=
1

2
+ ω

1− δ

1+ δ

1

2d+2
c

�

1

d
(m(r − τ )+ dτ )Cm−1

d−1

+
1

d
(r − τ + dτ )

d−1
�

k=m

Ck
d−1 −

d−1
�

k=m

Ck
d−1

�

=
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

��

m(r − τ )+ dτ

r − τ + dτ
Cm−1
d−1

+

d−1
�

k=m

Ck
d−1

�

(r − τ + dτ)

−d

d−1
�

k=m

Ck
d−1

�

Based on the discussions above, we can obtain formula 
(8). �

In addition, formula (8) will play a significant role when 
analyzing the results of the numerical simulation.

The approximate expression of average abundance 
function when selection intensity is large
We have already deduced the approximation expres-
sion of average abundance function with mutation when 
selection intensity is sufficient small. Naturally, how to 
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obtain the corresponding approximation expression 
when selection intensity is large becomes a problem wor-
thy of attention. In this section, the approximate expres-
sion of average abundance function when the selection 
intensity is large will be obtained based on the charac-
teristics of expected payoff function πA(i + 1) and πB(i) . 
Furthermore, we will have a deeper understanding of the 
properties of average abundance function with mutation 
when selection intensity is large based on this approxi-
mation expression.

It can be deduced from formula (7a) that the main dif-
ficulty in obtaining the approximate expression of aver-
age abundance function is how to simplify the 
1+δe−ω(α−πB(i))

1+δe−ω(α−πA(i+1)) in function h(i,ω) . In the beginning, by 
inserting formulas (2)–(3) into formula (1a), it can be 
deduced that: 

Then, if both πA(i + 1) and πB(i) increase to very high 
level, the following inequalities will be established:

In addition, because of the establishment of formula (11) 
and (12), function h(i,ω) will gradually degenerate to the 
following expression:

(10a)

πA(i + 1) =

d−1
∑

k=m−1

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

(

k + 1

d
(r − τ )c + τc

)

(10b)πB(i) =

d−1
∑

k=m

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

(

k

d
(r − τ )c + c

)

(11)e−ω(α−πA(i+1)) ≫1, e−ω(α−πB(i)) ≫ 1

(12)δe−ω(α−πA(i+1)) >1, δe−ω(α−πB(i)) > 1

(13)

h(i,ω) ≈
N − i

i + 1
×

e−ω(α−πA(i+1))

e−ω(α−πB(i))
×

1+ δe−ω(α−πB(i))

1+ δe−ω(α−πA(i+1))

=
N − i

i + 1
×

1+ δe−ω(α−πB(i))

1+ δe−ω(α−πA(i+1))
× e−ω(πB(i)−πA(i+1))

By substituting formula (13) into formula (7a), the follow-
ing proposition can be obtained:

Proposition 4-1   When both formula (11) and (12) are 
available, the approximate expression of average abun-
dance function with mutation is as follows: 

It can be deduced that the foremost factor of approxi-
mate expression of average abundance function with 
mutation is function 
ha(i,ω) =

N−i
i+1

× 1+δe−ω(α−πB(i))

1+δe−ω(α−πA(i+1))
× e−ω(πB(i)−πA(i+1))  . 

Furthermore, function ha(i,ω) can be divided into three 
parts. The first part N−i

i+1
 essentially reflects that individu-

als are in neutral drift state. The second part 
1+δe−ω(α−πB(i))

1+δe−ω(α−πA(i+1)) is the inference term caused by mutation. 
The third part e−ω(πB(i)−πA(i+1)) reflects the comparison 
between πA(i + 1) and πB(i).

Verification the practicability of approximate 
expression (13a)
The approximate expression of average abundance func-
tion with mutation is defined as formula (13a) in proposi-
tion 4-1. Furthermore, we will verify the practicability of 
approximate expression (13a) in this section. It is worth 
noting that r and m will play an important role in deter-
mining whether strategy A is favoured by selection 
( XA(ω) > 1/2 ) or not ( XA(ω) < 1/2 ). In addition, the 
practicability of approximate expression is closely related 
to whether XA(ω) > 1/2 or XA(ω) < 1/2 . Therefore, the 
r and m should be taken into consideration carefully.

In the beginning, we have already deduced that the 
approximation expression of average abundance function 
when ω → 0 can be defined as follows:

(13a)XA(ω) =
1

N

N
∑

j=1

j
j−1
∏

i=0

ha(i,ω)

1+
N
∑

j=1

j−1
∏

i=0

ha(i,ω)

(13b)
ha(i,ω) =

N − i

i + 1
×

1+ δe−ω(α−πB(i))

1+ δe−ω(α−πA(i+1))
× e−ω(πB(i)−πA(i+1))

(14)

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

m(r − τ )+ dτ

r − τ + dτ
Cm−1
d−1

+

d−1
∑

k=m

Ck
d−1

)

(r − τ + dτ)

−d

d−1
∑

k=m

Ck
d−1

]
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Based on formula (14), it can be deduced that the critical 
condition should satisfy:

Then, on the basis of formula (15), the critical condition 
is defined as follows:

Moreover, it can be deduced that strategy A is favoured 
by selection ( XA(ω) > 1/2 ) if 

r >
(m−d)τCm−1

d−1
+(τ−dτ+d)

d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

 . Then the curves 

describing the relationship between r and m based on 
formula (16) will be obtained (Fig. 1). In this condition, 
we set d = 15 . It can be seen from Fig. 1 that strategy A is 
not favoured by selection if r and m are in the shaded 
area of Fig. 1. Otherwise, strategy A is favoured by selec-
tion. Then the corresponding analysis can be carried out 
based on whether strategy A is favoured by selection or 
not.

Strategy A is favoured by selection
Small r and large m
On the basis of formula (16) and Figure  5-1, it can be 
deduced that there are two conditions to ensure that 
strategy A is favoured by selection ( XA(ω) > 1/2 ). The 
first condition is small r and large m. The second condi-
tion is medium r and medium m. Both conditions must 

satisfy the premise that r >
(m−d)τCm−1

d−1
+(τ−dτ+d)

d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

.

At this time the first condition is considered. In the 
beginning, we set the basic parameters as: d = 15 , r = 3 , 
c = 1 , τ = 0.25 , α = 1 , m = 12 , N = 100 . It should be 

noted that r = 3 >

(m−d)τCm−1
d−1

+(τ−dτ+d)
d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

= 0.21 . 

Then, we can obtain the curves (Fig.  2) describing how 
average abundance function changes with selection 

(15)

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

m(r − τ )+ dτ

r − τ + dτ
Cm−1
d−1

+

d−1
∑

k=m

Ck
d−1

)

(r − τ + dτ)

−d

d−1
∑

k=m

Ck
d−1

]

=
1

2

(16)r =

(m− d)τCm−1
d−1

+ (τ − dτ + d)
d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

intensity ω under different mutations δ ( δ = 0 , δ = 0.003 
or δ = 0.03 ). On the basis of Fig. 2 , two corollaries can be 

obtained:

Corollary 4.1.1 At first, average abundance function 
remains unchanged. Then, it increases. Finally, it remains 
unchanged when δ = 0 or δ = 0.003.

Corollary 4.1.2 At first, average abundance function 
remains unchanged. Then, it increases very slowly when 
δ = 0.03.

On the basis of two corollaries, it can be deduced that 
approximation formula (13a) is insignificance when 
δ = 0.03 . Then one property can be given as follows:

Property 4.1 The approximation formula (13a) is 
meaningless if r is small, m  is large, , 

r >
(m−d)τCm−1

d−1
+(τ−dτ+d)

d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

 , and δ = 0.03.

Medium r and medium m
At present the second condition is taken into account. In 
the beginning, we set the basic parameters as: d = 15 , 
r = 8 , c = 1 , τ = 0.25 , α = 1 , m = 8 , N = 100 . It should 
be noted that 

r = 8 >

(m−d)τCm−1
d−1

+(τ−dτ+d)
d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

= 2.02 . Then, we 

can obtain the curves (Fig.  3) describing how average 
abundance function changes with selection intensity ω 
under different mutations δ ( δ = 0 , δ = 0.003 or 
δ = 0.03 ). On the basis of Fig.  3, two corollaries can be 
obtained:

Corollary 4.1.3 At first, average abundance function 
increases rapidly. Then, it basically remains unchanged 
when δ = 0.

Corollary 4.1.4 At first, average abundance func-
tion increases. Then, it decreases. Finally, it remains 
unchanged when δ = 0.003 or δ = 0.03.
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On the basis of two corollaries, it can be deduced that 
approximation formula (13a) is practicable when 
δ = 0.003, 0.03 . Moreover, it can be concluded that 
approximation formula (13a) is available if r is medium, 

m is medium, r >
(m−d)τCm−1

d−1
+(τ−dτ+d)

d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

 , and 

δ = 0.003, 0.03.
Furthermore, based on the discussions above, we can 

obtain the curves describing average abundance function 
with mutation XA(ω) based on preliminary formula (7a) 
and approximation formula (13a) (Fig.  4). In this situa-
tion, we set the basic parameters as:d = 15 , r = 8 , c = 1 , 
τ = 0.25 , α = 1 , m = 8 , N = 100 , δ = 0.03 . It should be 
noted that the curves in Fig. 4 are based on different for-
mulas. The red curve represents XA(ω) based on prelimi-
nary formula (7a). The blue curve represents XA(ω) based 
on approximate formula (13a). In addition, the insert 
represents XA(ω) when 0 ≤ ω ≤ 2 . On the basis of Fig. 4, 
two properties can be obtained:

Property 4.1.1 The blue curve based on approximation 
formula (13a) is close to the red line based on preliminary 
formula (7a) when 0 ≤ ω ≤ 2 . The difference between the 
two curves is slight but not negligible.

Property 4.1.2 The blue curve based on approxima-
tion formula (13a) nearly coincides with the red curve 
based on original formula (7a) when ω > 2 . The difference 
between the two curves is tiny and can be ignored.

On the basis of the two properties, it can be con-
cluded that approximation formula (13a) will become 
more reliable when ω is larger.

Strategy A is not favoured by selection
Large r and small m
On the basis of formula (16) and Fig.  5-1, it can be 
deduced that there are two conditions to ensure that 
strategy A is not favoured by selection ( XA(ω) < 1/2 ). 
The first condition is large r and small m. The second 
condition is medium r and medium m. Both conditions 
must satisfy the premise that 

r <
(m−d)τCm−1

d−1
+(τ−dτ+d)

d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

.

At this time the first condition is considered. In the 
beginning, we set the basic parameters as: d = 15 , 
r = 10 , c = 1 , τ = 0.25 , α = 1 , m = 2 , N = 100 . It 
should be noted that 

r = 10 <

(m−d)τCm−1
d−1

+(τ−dτ+d)
d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

= 11.48 . Then, 

we can obtain the curves (Fig. 5) describing how aver-
age abundance function changes with selection inten-
sity ω under different mutations δ ( δ = 0 , δ = 0.003 or 
δ = 0.03 ). On the basis of Fig. 5, two corollaries can be 
obtained:

Corollary 4.2.1 At first, average abundance function 
decreases rapidly. Then, it remains unchanged basically 
when δ = 0.

Corollary 4.2.2 At first, average abundance func-
tion decreases. Then, it increases. Finally, it remains 
unchanged when δ = 0.003 or δ = 0.03.

On the basis of two corollaries, it can be deduced that 
approximation formula (13a) is practicable when 
δ = 0.003, 0.03 . Moreover, it can be concluded that 
approximation formula (13a) is available if r is large ,m 

is small, r <
(m−d)τCm−1

d−1
+(τ−dτ+d)

d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

 , and 

δ = 0.003, 0.03.
Furthermore, based on the discussions above, we 

can obtain the curves describing average abundance 
function XA(ω) based on preliminary formula (7a) and 
approximation formula (13a) (Fig. 6). In this situation, 
we set the basic parameters as: d = 15 , r = 10 , c = 1 , 
τ = 0.25 , α = 1 , m = 2 , N = 100 , δ = 0.03 . The corre-
sponding analysis is similar to Fig. 4-4. While, it should 
be noted that the insert in Fig.  5  6 represents XA(ω) 
when 0 ≤ ω ≤ 1.5 . On the basis of Fig. 6, two properties 
can be obtained:

Property 4.2.1 The blue curve based on approximation 
formula (13a) is close to the red line based on preliminary 
formula (7a) when 0 ≤ ω ≤ 1.5 . The difference between 
the two curves is slight but not negligible.

Property 4.2.2 The blue curve based on approximation 
formula (13a) nearly coincides with the red curve based 
on original formula (7a) when ω > 1.5. The difference 
between the two curves is tiny and can be ignored.

On the basis of the two properties, it can be con-
cluded that approximation formula (13a) will become 
more reliable when ω is larger.
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Medium r and medium m
At present the second condition is taken into account. 
In the beginning , we set the basic parameters as: 
d = 15 , r = 5 , c = 1 , τ = 0.25 , α = 1 , m = 5 , N = 100 . 
It should be noted that 

r = 5 <

(m−d)τCm−1
d−1

+(τ−dτ+d)
d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

= 8.48 . Then, we 

can obtain the curves (Fig.  7) describing how average 
abundance function changes with selection intensity ω 
under different mutations δ ( δ = 0,δ = 0.003 or 
δ = 0.03 ). On the basis of Figs.  5, 6, 7, two corollaries 
can be obtained:

Corollary 4.2.3 At first, average abundance function 
decreases rapidly. Then, it remains unchanged basically 
when δ = 0.

Corollary 4.2.4 At first, average abundance func-
tion decreases. Then, it increases. Finally, it remains 
unchanged when δ = 0.003 or δ = 0.03 .

On the basis of two corollaries, it can be deduced that 
approximation formula (13a) is practicable when 
δ = 0.003, 0.03 . Moreover, it can be concluded that 
approximation formula (13a) is available if r is medium, 

m is medium, r <
d

d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

 , and δ = 0.003, 0.03.

Furthermore, based on the discussions above, we can 
obtain the curves describing average abundance function 
XA(ω) based on preliminary formula (7a) and approxi-
mation formula (13a) (Fig.  8). In this situation, we set 
the basic parameters as: d = 15 , r = 5 , c = 1 , τ = 0.25 , 
α = 1 , m = 5 , N = 100 , δ = 0.03 . The corresponding 
analysis is similar to Fig. 6. While, it should be noted that 
the insert in Fig. 5-8 represents XA(ω) when 0 ≤ ω ≤ 4 . 
On the basis of Fig. 8, two properties can be obtained:

Property 4.2.3 The blue curve based on approximation 
formula (13a) is close to the red line based on preliminary 
formula (7a) when 0 ≤ ω ≤ 4 . The difference between the 
two curves is slight but not negligible.

Property 4.2.4 The blue curve based on approxima-
tion formula (13a) nearly coincides with the red curve 
based on original formula (7a) when ω > 4 . The difference 
between the two curves is tiny and can be ignored.

On the basis of the two properties, it can be concluded 
that approximation formula (13a) will become more reli-
able when ω is larger.

Brief Summary
Combined with the above discussions, three inferences 
can be obtained:

Inference 4.1 Approximation formula (13a) is not avail-
able when r is small, m is large, and δ = 0.03 . Approxima-
tion formula (13a) is available in other cases.

Inference 4.2 Approximation formula (13a) will become 
more reliable when ω is larger.

Inference 4.3 The feasibility of approximate formula 
(13a) is the highest when r is large and m is small.

Then we carry on the research on Inference 4.3. It can 
be deduced from the above discussions that approxima-
tion formula (13a) will be reliable if ω > 2 when r is 
medium, m is medium, and 

r >
(m−d)τCm−1

d−1
+(τ−dτ+d)

d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

 . In addition, it will be 

reliable if ω > 1.5 when r is large, m is small, and 

r <
(m−d)τCm−1

d−1
+(τ−dτ+d)

d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

 . Moreover, it will be 

reliable if ω > 4 when r is medium, m is medium, and 

r <
(m−d)τCm−1

d−1
+(τ−dτ+d)

d−1
∑

k=m

Ck
d−1

mCm−1
d−1

+
d−1
∑

k=m

Ck
d−1

.

On the whole, it can be concluded that the practica-
bility of approximate formula (13a) is most remarkable 
when r is large and m is small. The reason lies in the fact 
only ω > 1.5 is needed in this condition while ω > 2 or 
ω > 4 is needed in other cases.

Moreover, the inference 4.3 can be explained based on 
expected payoff function π(�) defined by formula (10a). 
On the basis of formula (10a) , it can be deduced that 
both πA(i + 1) and πB(i) will increase with r and decrease 
with m. Thus it can be concluded that π(�) under the 
condition of large r and small m will be larger than those 
under the other two conditions.

In addition, based on the discussions in section 4, it can 
be deduced that the most important premise to ensure 
the establishment of approximation formula (13a) is con-
dition (11) and (12):

On the basis of (11) and (12), it can be deduced that: 

e−ω(α−πA(i+1)) ≫1, e−ω(α−πB(i)) ≫ 1

δe−ω(α−πA(i+1)) >1, δe−ω(α−πB(i)) > 1

(16a)ω[π(�)− α] ≫ 0
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Then, it can be deduced that even small ω can guaran-
tee the establishment of formulas (16a) and (16b) if π(�) is 
large enough. Furthermore, it can be obtained that even 
small ω can guarantee the approximate formula (13a) if 
π(�) is large enough. Combined with the above discus-
sions, inference 4.3 can be explained.

Moreover, it has been deduced that the approximation 
expression of average abundance function when ω → 0 is 

XA(ω) =
1
2
+ ω 1−δ

1+δ
1

2d+2

d−1
∑

k=0

Ck
d−1

(ak − bk) when selec-

tion intensity ω is sufficient small(ω → 0 ). On the whole, 
by combing this conclusion with proposition 4-1, it can 
be concluded that:

Proposition 5-1 Approximate expression of average 
abundance function XA(ω) can be defined as follows:

   

On the basis of proposition 5-1, it can be obtained 
that we have obtained the approximate expression of 
average abundance function XA(ω) under different lev-
els of selection intensity ω.

Numerical simulation on average abundance 
function
It can be seen from the above discussions that different 
parameters will have different effects on average abun-
dance function. Furthermore, this is a problem worthy of 
discussion. By numerical simulation, we can explore the 
influence of parameters on average abundance function 
based on multi-player threshold public goods evolution-
ary game model under redistribution mechanism.

At the beginning, we will consider the specific value 
of parameters. The basic parameters are set as: d = 15 , 

(16b)ω >
ln

(

1
δ

)

π(�)− α

(16c)XA(ω) ≈































1
2
+ ω 1−δ

1+δ
1

2d+2

d−1
�

k=0

Ck
d−1

(ak − bk) when ω is small enough

1
N

N
�

j=1

j
j−1

�
i=0

ha(i,ω)

1+
N
�

j=1

j−1

�
i=0

ha(i,ω)

when ω is large enough

(16d)
ha(i,ω) =

N − i

i + 1
×

1+ δe−ω(α−πB(i))

1+ δe−ω(α−πA(i+1))
× e−ω(πB(i)−πA(i+1))

r = 8 , c = 1 , τ = 0.25 , α = 1 , δ = 0.03 , N = 100 . It 
should be noted that the most important parameter in 
threshold public goods model is the threshold m. On 
one hand, the threshold m plays an important role in 
determining whether strategy A is favoured by selection 
( XA(ω) > 1/2 ) or not ( XA(ω) < 1/2 ). On the other hand, 
the threshold m affect the influence of d,r,c,α on average 
abundance function XA(ω) . So the influence of threshold 
m should be taken into consideration carefully.

We will draw curves describing how average abun-
dance function changes with threshold m (see Fig.  9). 
Then based on the analysis of Fig. 9, two properties can 
be obtained:

Property 5.1 When ω = 0.5 , average abundance func-
tion will increase with  m  if 
m ≤ int

{

d

4(r−τ)

[

r − 2τ − 1+
√

(r − 2τ + 3)2 + 8(τ − 1)

]}

+ 1  
and it will decrease with m if 
m > int

{

d

4(r−τ)

[

r − 2τ − 1+
√

(r − 2τ + 3)2 + 8(τ − 1)

]}

+ 1  . 
Furthermore, average abundance function will reach the 
maximum value when 

m = int

{

d

4(r−τ)

[

r − 2τ − 1+
√

(r − 2τ + 3)2 + 8(τ − 1)

]}

+ 1.

Property 5.2 When ω = 4 and ω = 9 , average abun-
dance function will increase with  m.

The deduction for property 5.1 is a little long and it is 
placed in Appendix A. Furthermore, based on for prop-
erty 5.1, we will consider the characteristics of average 
abundance function when two special value of m are 
set: m = 1 and m = 14 . We have already deduced that 
the approximate expression of XA(ω) when ω is small 
can be defined as follows:

On one hand, when m = 1 ,the formula (17) can be sim-
plified as follows:

(17)

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

m(r − τ )+ dτ

r − τ + dτ
C
m−1

d−1
+

d−1
∑

k=m

C
k

d−1

)

(r − τ + dτ ) −d

d−1
∑

k=m

C
k

d−1

]
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By inserting the values of parameters into formula (18), it 
can be deduced that:

Then we can obtain that XA(ω) ≈ 0.4863 when m = 1.
On the other hand, when m = 14 , the formula (17) can 

be simplified as follows:

It can be deduced that the second item on the right 
side of formula (20) will → 0 because r−τ+dτ

2d+2 → 0 and 
1

2d+2 → 0 . So there will be XA(ω) ≈ 0.5 when m = 14.
Furthermore, it can be concluded that XA(ω) ≈ 0.4863 

when m = 1 and XA(ω) ≈ 0.5 when m = 14 . It should 
be noted that this conclusion is very close to the corre-
sponding values in Fig. 9.

Moreover, we can obtain m = 9 by inserting the basic 
parameters into formula 
m = int

{

d

4(r−τ)

[

r − 2τ − 1+
√

(r − 2τ + 3)2 + 8(τ − 1)

]}

+ 1 . 
Then, it can be deduced that when ω = 0.5 , average 
abundance function will increase with m if m ≤ 9 and it 
will decrease with m if m > 9 . Furthermore, average 
abundance function will reach the maximum value when 
m = 9 . These conclusions are consistent with the 
information revealed in Fig.  9. Combining the above 

(18)

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

(r − τ)+ dτ

r − τ + dτ
C0
d−1 +

d−1
∑

k=1

Ck
d−1

)

(r − τ + dτ)

−d

d−1
∑

k=1

Ck
d−1

]

=
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

1+ 2d−1 − 1

)

(r − τ + dτ)− d
(

2d−1 − 1

)]

=
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[

2d−1(r − τ + dτ)− d
(

2d−1 − 1

)]

≈
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[

2d−1(r − τ + dτ − d)
]

=
1

2
+ ω

1− δ

1+ δ

1

8

c

d
(r − τ + dτ − d)

(19)XA(ω) ≈ 0.4863

(20)

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

14(r − τ )+ dτ

r − τ + dτ
C13
14 +

14
∑

k=14

Ck
14

)

(r − τ + dτ)

−d

14
∑

k=14

Ck
14

]

=
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

14 ×
14(r − τ)+ dτ

r − τ + dτ
+ 1

)

(r − τ + dτ)− d

]

=
1

2
+ ω

1− δ

1+ δ
c

[(

14 ×
14(r − τ)+ dτ

r − τ + dτ
+ 1

)

r − τ + dτ

2d+2d
−

1

2d+2

]

discussions , it can be concluded that property  5.1 is 
reliable.

Based on the intrinsic characteristics of threshold m, 
the property 5.2 can be explained. The increase of thresh-
old m means that there must be more collaborators in the 
group to ensure that threshold public goods game will go 
on. So average abundance function XA(ω) will increase 
with m.

Based on the discussions above, we set m = 4 and 
m = 10 . On one hand, the m = 4 corresponds to the situ-
ation that average abundance function is in an upward 
trend when ω = 0.5 . The m = 10 corresponds to the 
situation that average abundance function is on a down-
ward trend when ω = 0.5 . On the other hand, the m = 4 
represents that strategy A is not favoured by selection 
( XA(ω) < 1/2 ). The m = 10 represents that strategy A is 
favoured by selection(XA(ω) > 1/2).

Furthermore, the numerical simulation will be carried 
out after the value of threshold m is selected. In order to 
study the trend of average abundance function under dif-
ferent levels of selection intensity ω , we select ω = 0.5 , 
ω = 4 and ω = 9 . In addition, it should be noted that 
we will analyze the trend of average abundance function 
when d, r, c, α changes respectively. It means that when 



Page 12 of 28Xia  BMC Ecol Evo          (2021) 21:152 

we analyze the effect of a particular parameter (such as 
d), the other parameters (r, c, α ) will remain unchanged. 
Other analyses are similar. Moreover, it should be noted 
that both the situation when m = 4 and the situation 
when m = 10 will be taken into consideration. Then, we 
can obtain the curves describing how average abundance 
function changes with parameters.

The influence of d on average abundance function
It should be noted that 1 < m < d in multi-player thresh-
old public goods evolutionary game model. Furthermore 
it can be concluded that d ≥ 5 when m = 4 and d ≥ 11 
when m = 10 . Then, we can obtain Fig.  10 describing 
how average abundance function changes with d. Moreo-
ver, four corollaries can be obtained from the analysis of 
Fig. 10.

Corollary 5.1.1 If m = 4, average abundance function 
will decrease at first and then remain stable at 1/2 with 
the increase of d when ω = 0.5.

Corollary 5.1.2 If m = 10, average abundance function 
will increase at first and then decrease with the increase of 
d when ω = 0.5.

Corollary 5.1.3 If m = 4, average abundance function 
will decrease at first and then remain stable at 1/2 with 
the increase of d when ω = 4 and ω = 9.

Corollary 5.1.4 If m = 10, average abundance func-
tion will decrease at first and then get close to 1/2 with the 
increase of d when ω = 4 and ω = 9.

Corollary 5.1.5 The average abundance function 
when m = 10 is larger than the average abundance 
function when m = 4 if ω = 4 or ω = 9. In other words, 
XA(ω)|m=10 > XA(ω)|m=4 if ω = 4 or ω = 9.

The explanation for Corollary 5.1.1
The corollary 5.1.1 when m = 4 can be explained by sim-
plifying the formula (17) as:

Based on formula (21), it is easy to deduce that average 
abundance function will decrease with d:

(21)

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[

(m(r − τ)+ dτ)Cm−1
d−1

+(r − τ + dτ − d)

d−1
∑

k=m

Ck
d−1

]

Based on formula (22), it can be deduced that average 
abundance function will decrease with the increase of d.

Moreover, a lot of individuals choosing strategy B will 
turn to choose strategy A because of mutation when d is 
large enough(d > 14 ). Furthermore, the combination of 
these two conditions leads to the fact that the proportion 
of individuals choosing strategy A and the proportion 
of individuals choosing strategy B reach a equilibrium. 
Therefore average abundance function remains stable at 
1/2 when d increases to a very high level(d > 14).

The explanation for Corollary 5.1.2
On one hand, based on formula (21), it can be deduced 
that when d < 14 , the average abundance function will 
increase with d: 

On the other hand, based on formula (21), it can be 
deduced that when d > 15 , the average abundance func-
tion will decrease with d:

(22)

XA(ω)
∣

∣

d+1 − XA(ω)|d

= ω
1− δ

1+ δ

1

2d+2

{

c

d + 1

[

(4(r − τ )+ dτ + τ)C3
d

+(r − τ + dτ + τ − d − 1)

d−1
∑

k=4

Ck
d

]}

− ω
1− δ

1+ δ

1

2d+2

{ c

d

[

(4(r − τ )+ dτ)C3
d−1

+(r − τ + dτ − d)

d−1
∑

k=4

Ck
d−1

]}

< 0

(23a)

XA(ω)
∣

∣

d+1 − XA(ω)|d

= ω
1− δ

1+ δ

1

2d+2

{

c

d + 1

[

(10(r − τ)+ dτ + τ )C9
d

+(r − τ + dτ + τ − d − 1)

d−1
∑

k=10

Ck
d

]}

− ω
1− δ

1+ δ

1

2d+2

{ c

d

[

(10(r − τ)+ dτ)C9
d−1

+(r − τ + dτ − d)

d−1
∑

k=10

Ck
d−1

]}

> 0
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Based on formula (23a) and (23b), it can be deduced 
that average abundance function will increase at first and 
then decrease with the increase of d.

The explanation for Corollary 5.1.3
The main point of analysis lies in the fact that individu-
als will become more rational when selection intensity 
ω is large(ω = 4 and ω = 9 ). In other words, more indi-
viduals in the group will choose strategy B when selec-
tion intensity ω becomes larger. Then, it can be deduced 
that the proportion of individuals choosing strategy A in 
the group will decrease with the increase of d. Therefore, 
average abundance function will decrease.

Moreover, a lot of individuals choosing strategy B will 
turn to choose strategy A because of mutation when d is 
large enough(d > 8 ). Furthermore, the combination of 
these two conditions leads to the fact that the proportion 
of individuals choosing strategy A and the proportion 
of individuals choosing strategy B reach a equilibrium. 
Therefore average abundance function remains stable at 
1/2 when d increases to a very high level(d > 8).

The explanation for Corollary 5.1.4
The reason for corollary 5.1.4 is similar to the reason for 
corollary  5.1.3. However, it should be noted that aver-
age abundance function will get close to 1/2 (not remain 
unchanged at 1/2) when d increases to a very high 
level. Furthermore, getting close to 1/2 is different from 
remaining unchanged at 1/2. This difference is closely 
related to the intrinsic characteristics of threshold. When 
m increases, there must be more collaborators in the 
group to ensure that threshold public goods game can 
continue. Therefore, average abundance function when 

(23b)

XA(ω)
∣

∣

d+1 − XA(ω)|d

= ω
1− δ

1+ δ

1

2d+2

{

c

d + 1

[

(10(r − τ)+ dτ + τ )C9
d

+(r − τ + dτ + τ − d − 1)

d−1
∑

k=10

Ck
d

]}

− ω
1− δ

1+ δ

1

2d+2

{ c

d

[

(10(r − τ)+ dτ)C9
d−1

+(r − τ + dτ − d)

d−1
∑

k=10

Ck
d−1

]}

< 0

m = 10 is larger than average abundance function when 
m = 4 when ω = 4 and ω = 9 . On the whole, it can be 
deduced that the increase of threshold m will slow down 
the decreasing of average abundance function. Then it 
can be deduced that the rate of decline when m = 10 is 
lower than the rate of decline when m = 4 . Then aver-
age abundance function will get close to 1/2 rather than 
remain unchanged at 1/2 when m = 10.

The explanation for Corollary 5.1.5
Based on the intrinsic characteristics of threshold, cor-
ollary  5.1.5 can be explained. The increase of thresh-
old means that there must be more collaborators in the 
group to ensure that threshold public goods game will go 
on. So it can be deduced that the increase of threshold 
m ( m = 4 increases to m = 10 ) will inhibit the downward 
trend of average abundance function. In other words, 
the decreasing rate of average abundance function when 
m = 4 will be faster than that when m = 10 . So there will 
be XA(ω)|m=10 > XA(ω)|m=4.

The influence of r on average abundance function
We can obtain Fig. 11 describing how average abundance 
function changes with r. Moreover, three corollaries can 
be obtained from the analysis of Fig. 11.

Corollary 5.2.1 If m = 4, average abundance function 
will increase with r when ω = 0.5. The trend for the situa-
tion when m = 10 is similar to this. However, the trend for 
the former is close to linear change while the trend for the 
latter is not.

Corollary 5.2.2 If m = 4 , average abundance function 
will decrease at first, and then increase, at last remain 
unchanged at 1/2 with the increase of r when ω = 4 or 
ω = 9.

Corollary 5.2.3 If m = 10 , average abundance function 
will increase at first, and then decrease with the increase 
of r when ω = 4 or ω = 9.

The explanation for Corollary 5.2.1
The corollary  5.2.1 when ω = 0.5 and m = 4 can be 
explained based on formula (17):
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Based on formula (17), it can be deduced that:

So average abundance function will increase with r when 
ω = 0.5 . In addition, the trend is close to linear change.

The reason why average abundance function will increase 
with r when ω = 0.5 if m = 10 is similar to the situation 
when m = 4 . But it should be noted the corresponding 
trend is not linear change. Furthermore, it can be deduced 
that the applicability of formula (17) is limited when 
m = 10 . It indicates that the complete applicability of for-
mula (17) requires that m should be smaller (at lest m < 10

).

The explanation for Corollary 5.2.2
First of all, we will try to explain why average abundance 
function will decrease with r when r < 3 . Based on the 
characteristics of πA(i + 1) and πB(i) , it can be deduced 
that the inequality πB(i) > πA(i + 1) holds in most cases 
when r < 3 . This means that in the process of the increase 
of r, the πB(i) will become larger than aspiration level α 
soon, while the πA(i + 1) is still smaller than aspiration 
level α at the same time. In other words, πB(i) > α and 
πA(i + 1) < α . Therefore, more individuals will choose 
strategy B. So average abundance function will decrease 
with r when r < 3.

Then, we will try to explain why average abundance func-
tion will increase with r when r > 3 . Based on the expected 
payoff function π(�) defined by formula (10a) and the func-
tion h(i,ω) defined by formula (7a), this phenomenon can 
be explained.

Based on formula (10a), we can obtain the derivative of 
πA(i + 1) and πB(i) with respect to r. In addition, we can 
compare the derivative of πA(i + 1) with the derivative of 
πB(i) : 

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

m(r − τ)+ dτ

r − τ + dτ
Cm−1
d−1

+

d−1
∑

k=m

Ck
d−1

)

(r − τ + dτ)

−d

d−1
∑

k=m

Ck
d−1

]

(24)

∂XA(ω)

∂r
= ω

1− δ

1+ δ

1

2d+2

c

d

[

mCm−1
d−1

+

d−1
∑

k=m

Ck
d−1

]

(24a)

∂πA(i + 1)

∂r
=

∂

[

d−1
∑

k=m−1

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

(

k+1
d (r − τ)c + τc

)

]

∂r

=

d−1
∑

k=m−1

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

k + 1

d
c

Based on formula (24a), it can be concluded that both 
πA(i + 1) and πB(i) will increase with r. In addition, the 
increasing rate of πA(i + 1) will be higher than that of πB(i)

.
Based on the discussions above, it can be deduced that 

both πA(i + 1) and πB(i) will become larger than aspira-
tion level α when r increases to a very high level ( r > 3 ). 
In other words, πA(i + 1) > α , πB(i) > α . In addition, the 
increasing rate of πA(i + 1) with respect to r is larger than 
that of πB(i) . So average abundance function will increase 
with r when r > 3.

Furthermore, we will consider the situation when r > 4 . 
On the basis of formula (10a),it can be deduced that both 
πA(i + 1) and πB(i) will increase to very high level when 
r > 4 . Moreover, both δe−ω(α−π(�)) and e−ω(α−π(�)) will 
increase to very high level when r > 4 . It can be seen from 
the above discussions that the following inequalities will be 
established: 

Then, on the basis of formula (24d), function h(i,ω) will 
gradually degenerate to the following expression:

(24b)
∂πB(i)

∂r
=

∂

[

d−1
∑

k=m

Ck
i C

d−1−k
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(

k
d (r − τ)c + c

)

]
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=

d−1
∑

k=m

Ck
i C
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N−i−1

Cd−1
N−1

k

d
c

(24c)
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Ck
i C
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N−i−1

Cd−1
N−1

k + 1

d
c

>

d−1
∑
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Ck
i C
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N−i−1
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N−1

k + 1

d
c

>

d−1
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k=m

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

k

d
c

=
∂πB(i)

∂r

(24d)e−ω(α−π(�)) >> 1

(24e)δe−ω(α−π(�)) >> 1
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On the basis of formula (25), it can be deduced that the 
corresponding average abundance function will basi-
cally remain unchanged at 1/2 when r > 4 . It can be seen 
from the above analysis that average abundance function 
will decreases when r < 3 . In addition, it increases when 
3 < r < 4 and basically remains unchanged at 1/2 when 
r > 4.

The explanation for Corollary 5.2.3
Based on the characteristics of πA(i + 1) and πB(i) ,it 
can be deduced that the inequality πB(i) < πA(i + 1) 
holds in most cases when m = 10 . This means that 
in the process of the increase of r, the πA(i + 1) will 
become larger than aspiration level α and the πB(i) is 
still smaller than aspiration level α at the same time. In 
other words, πA(i + 1) > α and πB(i) < α . Therefore, 
more individuals will choose strategy A. So average 
abundance function will increase with r.

Furthermore, we will consider the situation when r 
keeps increasing ( r > 4 ). On the basis of formula (10a), 
it can be deduced that both πA(i + 1) and πB(i) will 
increase to very high level when r > 4 . Moreover, both 
δe−ω(α−π(�)) and e−ω(α−π(�)) will increase to very high 
level when r > 4 . It can be seen from the above discus-
sions that the following inequalities will be established: 

Then, on the basis of formula (25a), function h(i,ω) 
will gradually degenerate to the following expression:

On the basis of formula (26), it can be deduced that the 
corresponding average abundance function will get close 
to 1/2 when r > 4 . In addition, we have already deduced 
that average abundance function is larger than 1/2 when 

(25)











h(i,ω) =
N − i

i + 1
×

1+ e−ω(α−πA(i+1))

1+ e−ω(α−πB(i))
×

1+ δe−ω(α−πB(i))

1+ δe−ω(α−πA(i+1))

e−ω(α−π(�)) ≫ 1, δe−ω(α−π(�)) ≫ 1

⇒ h(i,ω) ≈
N − i

i + 1
×

e−ω(α−πA(i+1))

e−ω(α−πB(i))
×

δe−ω(α−πB(i))

δe−ω(α−πA(i+1))
=

N − i

i + 1

(25a)e−ω(α−π(�)) >> 1

(25b)δe−ω(α−π(�)) >> 1

(26)











h(i,ω) =
N − i

i + 1
×

1+ e−ω(α−πA(i+1))

1+ e−ω(α−πB(i))
×

1+ δe−ω(α−πB(i))

1+ δe−ω(α−πA(i+1))

e−ω(α−π(�)) ≫ 1, δe−ω(α−π(�)) ≫ 1

⇒ h(i,ω) ≈
N − i

i + 1
×

e−ω(α−πA(i+1))

e−ω(α−πB(i))
×

δe−ω(α−πB(i))

δe−ω(α−πA(i+1))
=

N − i

i + 1

r < 4 . Based on the above analysis, we can see that aver-
age abundance function will decrease (and get close to 
1/2) when r > 4.

It can be seen from the above analysis that average 
abundance function will increases when r < 4 . Moreo-
ver, it will decrease (and get close to 1/2) when r > 4.

The influence of c on average abundance function
We can obtain Fig.  12 describing how average abun-
dance function changes with c. Moreover, three corol-
laries can be obtained from the analysis of Fig. 12.

Corollary 5.3.1 If m = 4 , average abundance function 
will decrease with c when ω = 0.5.

Corollary 5.3.2 If m = 10 , average abundance function 
will increase with c when ω = 0.5.

Corollary 5.3.3 If m = 4 , average abundance function 
will basically remain stable with the increase of c when 
ω = 4 or ω = 9

Corollary 5.3.4 If m = 10 , average abundance function 
will decrease (and get close to 1/2) with the increase of c 
when ω = 4 and ω = 9.

The explanation for Corollary  5.3.1–5.3.4 is a little 
long and it is placed in Appendix B.

The influence of α on average abundance function
We can obtain Fig.  13 describing how average abun-
dance function changes with α . Moreover, four corol-

laries can be obtained from the analysis of Fig. 13.

Corollary 5.4.1 If m = 4 , average abundance function 
will basically remain stable with α when ω = 0.5.
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Corollary 5.4.2 If m = 10 , average abundance function 
will decrease with α when ω = 0.5.

Corollary 5.4.3 If m = 4 , average abundance func-
tion will remain unchanged at 1/2 at first. Then it will 
decrease. After that it will increase. At last it will remain 
unchanged at 1/2 with the increase of α when ω = 4 and 
ω = 9.

Corollary 5.4.4 If m = 10 , average abundance func-
tion will increase at first. Then it will decrease. At last it 
will remain unchanged at 1/2 with the increase of α when 
ω = 4 and ω = 9.

The explanation for Corollary  5.4.1-5.4.4 is a little 
long and it is placed in Appendix C.

Brief summary
We have analyzed the influence of multiple parameters 
(d,r,c , α ) on average abundance function with mutation 
XA(ω) from both quantitative and qualitative aspects. 
Then we can obtain the following inferences:

Inference 5.1 The threshold m plays an important role 
in determining whether XA(ω) < 1/2 or XA(ω) > 1/2 . 
In addition, the m will affect the influence of d,r,c,α on 
XA(ω).

Inference 5.2 The influence of parameters d, r, c , α on 
average abundance function when selection intensity ω is 
small is slight.

Inference 6.3a If m = 4,average abundance function will 
decrease at first and then remain unchanged at 1/2 with 
the increase of d.

Inference 6.3b If m = 10,Average abundance function 
will decrease and get close to 1/2 with the increase of d.

Inference 6.4a   If m = 4,average abundance function 
will decrease at first ,and then increase,at last remain 
unchanged at 1/2 with the increase of r.

Inference 6.4b If m = 10,average abundance function 
will increase at first ,and then decrease with the increase 
of r.

Inference 6.5a If m = 4,average abundance function will 
basically remain stable with the increase of c.

Inference 6.5b If m = 10,average abundance function 
will decrease (and get close to 1/2) with the increase of c.

Inference 6.6a If m = 4,average abundance function will 
remain unchanged at 1/2 at first.Then it will decrease.
After that it will increase.At last it will remain unchanged 
at 1/2 with the increase of α.

Inference 6.6b If m = 10,average abundance function 
will increase at first.Then it will decrease.At last it will 
remain unchanged at 1/2 with the increase of α.

Conclusions

The main research findings and prospects
The main research findings of this article
The influences of cooperation and competition on social 
activities is becoming more and more important. This 
promotes the application of evolutionary game theory in 
real society and provides a good social background for us 
to study evolutionary game theory deeply.

Based on the study of literatures, the imitation rule, fixa-
tion probability, and structured population have been widely 
concerned and many results have been obtained. Relatively 
speaking, the research about the approximate expression 
of the average abundance function under different level of 
selection intensity deserves further discussion. Also how to 
use the theoretical deduction of average abundance func-
tion to explain the corresponding data simulation results is 
a field worth exploring. These will provide relevant research 
contents and research direction for this article. The main 
research findings are summarized as follows:

Conclusion 1 The approximate expression of average 
abundance function XA(ω) when selection intensity ω is 
sufficient small ( ω → 0 ) can be defined as follows:

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

m(r − τ )+ dτ

r − τ + dτ
Cm−1
d−1

+

d−1
∑

k=m

Ck
d−1

)

(r − τ + dτ)

−d

d−1
∑

k=m

Ck
d−1

]
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Conclusion 2 The approximate expression of average 
abundance function XA(ω) when selection intensity ω is 
large can be defined as follows:

On one hand, approximation formula is not available 
when r is small and m is large. On the other hand, the 
approximation formula will become more reliable when 
ω is larger. In addition, the feasibility of approximate for-
mula is the highest when r is large and m is small. Fur-
thermore, function ha(i,ω) can be divided into three 
parts. The first part N−i

i+1
 essentially reflects that individu-

als are in neutral drift state. The second part 
1+δe−ω(α−πB(i))

1+δe−ω(α−πA(i+1)) is the inference term caused by mutation. 
The third part e−ω(πB(i)−πA(i+1)) reflects the comparison 
between πA(i + 1) and πB(i).

Conclusion 3 We analyze the effects of parameters 
(d,r,c,α ) on average abundance function XA(ω) by numer-
ical simulation and obtain Inference 6.1–6.6. In addition, 
the corresponding results have been explained based on 
the expected payoff function π(�) and function h(i,ω).

Research prospects
The characteristics of the average abundance function 
have been analyzed and some conclusions have been 
obtained in this article. However, the research work in 
this article is a preliminary exploration. It is necessary to 
conduct more research to improve the depth and breadth 
of this research. Further research can be carried out in 
the following aspects: 

(1) Based on conclusion 1, we can obtain the approxi-
mate expression of average abundance function 

XA(ω) =
1

N

N
∑

j=1

j
j−1
∏

i=0

ha(i,ω)

1+
N
∑

j=1

j−1
∏

i=0

ha(i,ω)

ha(i,ω) =
N − i

i + 1
×

1+ δe−ω(α−πB(i))

1+ δe−ω(α−πA(i+1))
× e−ω(πB(i)−πA(i+1))

XA(ω) defined by formula (8) when selection inten-
sity ω is sufficient small ( ω → 0 ). Then we can ana-
lyze the applicability of formula (8) in the future 
research.

(2) Based on conclusion 2, we can obtain the approxi-
mate expression of average abundance function 
XA(ω) based on whether strategy A is favoured by 
selection or not when selection intensity ω is not 
too small. On the basis of formula (16), it can be 
concluded that r, m, d, and τ will play an important 
role in determining whether strategy A is favoured 
by selection or not. In the analysis of this article, we 
set the value of d and τ as fixed value and analyze 
the different values of r and m. This means we can 
analyze the effect of different values of r, m, d, and τ 
in the future research.

(3) Based on conclusion 3, we analyze the effects of 
parameters (d,r,c,α ) on average abundance func-
tion XA(ω) and obtain Inference 6.1-6.6. However, 
we only analyze the influence of single parameter 
in this situation. The joint influence of multiple 
parameters is still lacking. On the other hand, the 
sensitivity analysis of parameters is not enough. It 
means the above two fields should be taken seri-
ously in the further study.

(4) In addition, we have studied the characteristics of 
the average abundance function based on aspiration 
rule in finite well-mixed population. Correspond-
ing analysis is still lacking for the research on other 
types of population (such as structured popula-
tion) or other evolutionary rules (such as imitation 
rule). It means other types of population should be 
considered and other evolutionary rules should be 
taken into account.

Appendix
Appendix A    The proof for property 5.1
We have already deduced that the approximate expres-
sion of average abundance function when selection inten-
sity is sufficient small can be defined as follows:

(27)
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In addition, on the basis of formula (27), it can be 
deduced that:

Inside the formula (28):

Then, it can be deduced that the condition 0 < m < d 
holds in multi-player threshold public goods evolutionary 
game model. Therefore, it can be deduced that whether 
formula (29) is positive or negative depends on function 
g(m).In other words,whether XA(ω)|m+1 − XA(ω)|m is 
positive or negative will be determined by function g(m).

Moreover, it can be deduced that function g(m) is a 
monadic quadratic equation related to m. The two roots 
of this equation can be defined as follows: 

On the basis of condition r > 1 , it can be deduced that: 
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(29)g(m) = −2(r − τ )m2 + (r − 2τ − 1)dm+ d2

(30a)
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d
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(30b)
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Combined with the above analysis, we can see that 
m1 < 0 and 0 < m2 < d . Furthermore, the m1 will be 
discarded and m2 will be retained because the condition 
0 < m < d should be satisfied in threshold public goods 
evolutionary game model.

Then, on the basis of the properties of monadic quad-
ratic equation, it can be deduced that function g(m) is 
larger than 0 when 0 < m < m2 . On the other hand, 
function g(m) is smaller than 0 when m2 < m < d . In 
addition, function g(m) will be equal to 0 when m = m2 . 
Combined with the above analysis, we can see that:

It has been deduced that whether XA(ω)|m+1 − XA(ω)|m 
is positive or negative will be determined by function 
g(m) . Then it can be deduced that:
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d

4(r − τ)

[

r − 2τ − 1+
√

9r2 − 12rτ + 4τ 2 + 6r − 4τ + 1

]

=
d

4(r − τ)
[r − 2τ − 1+ 3r − 2τ + 1]

=
d

4(r − τ)
[4r − 4τ ] = d

(31)g(m) =







> 0, 0 < m < m2

= 0, m = m2

< 0, m2 < m < d
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On the basis of formula (32), it can be deduced that 
XA(ω) increases with m when 0 < m < m2 . On the other 
hand, XA(ω) decreases when m2 + 1 < m < d . In addi-
tion, XA(ω) will reach the maximum value if m = m2 or 
m = m2 + 1.

Moreover, it can be deduced that m2 is a decimal. How-
ever, m must be an integer. On the basis of this finding, it 
can be deduced that XA(ω) will reach the maximum value 
when m = int

{

d

4(r−τ)

[

r − 2τ − 1+
√

(r − 2τ + 3)2 + 8(τ − 1)

]}

+ 1

.

Appendix B    The explanation for Corollary 5.3.1‑5.3.4
The explanation for Corollary 5.3.1
The corollary  5.3.1 can be explained based on formula 
(17):

Based on formula (17), it can be deduced that:

When m = 4 , by inserting the values of parameters into 
the ∂XA(ω)

∂c  , it can be deduced that:

Based on the properties of permutation and combination 
function, the following inequality will hold:

(32)

XA(ω)|m+1 − XA(ω)|m =







> 0, 0 < m < m2

= 0, m = m2

< 0, m2 < m < d

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

m(r − τ )+ dτ

r − τ + dτ
Cm−1
d−1

+

d−1
∑

k=m

Ck
d−1

)

(r − τ

+dτ )− d

d−1
∑

k=m

Ck
d−1

]

(33)

∂XA(ω)

∂c

= ω
1− δ

1+ δ

1

2d+2

1

d

[(

m(r − τ )+ dτ

r − τ + dτ
Cm−1
d−1

+

d−1
∑

k=m

Ck
d−1

)

(r − τ

+dτ )− d

d−1
∑

k=m

Ck
d−1

]

= ω
1− δ

1+ δ

1

2d+2

1

d

[

(m(r − τ )+ dτ)Cm−1
d−1

+ (r − τ + dτ − d)

d−1
∑

k=m

Ck
d−1

]

(34)

(m(r − τ )+ dτ)C
m−1

d−1
+ (r − τ + dτ − d)

d−1
∑

k=m

C
k

d−1
=

139

4
C
3

14
−

14

4

14
∑

k=4

C
k
14

Based on formulas (33)–(35), it can be deduced that 
∂XA(ω)

∂c < 0 . So average abundance function will decrease 
with c when ω = 0.5 . In addition, the trend is close to lin-
ear change.

The explanation for Corollary 5.3.2
When m = 10 , by inserting the values of parameters 
into the ∂XA(ω)

∂c  , it can be deduced that:

Based on the properties of permutation and combination 

function, the following inequality will hold:

Based on formulas (36)–(37), it can be deduced that 
∂XA(ω)

∂c > 0 . So average abundance function will increase 
with c when ω = 0.5.

It should be noted the corresponding trend is not 
linear change when m = 10 . Furthermore, it can be 
deduced that the applicability of formula (17) is lim-
ited when m = 10 . It indicates that the complete 

(35)14

14
∑

k=4

Ck
14 > 612C3

14 > 139C3
14

(36)

(m(r − τ )+ dτ)C
m−1

d−1
+ (r − τ + dτ − d)

d−1
∑

k=m

C
k

d−1
=

325

4
C
9

14
−

14

4

14
∑

k=10

C
k
14

(37)14

14
∑

k=10

Ck
14 < 11C9

14 < 325C9
14
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applicability of formula (17) requires that m should be 
smaller (at lest m < 10).

The explanation for Corollary 5.3.3
The main point of analysis lies in the expected pay-
off function π(�) defined by formula (10a) and function 
h(i,ω) defined by formula (7a).

On the basis of formula (10a), the derivative of 
πA(i + 1) and πB(i) with respect to c can be defined as 
follows: 

Then,on the basis of formula (B.6), it can be deduced 
that both πA(i + 1) and πB(i) will increase with c. In addi-
tion, by analyzing the characteristics of πA(i + 1) and 
πB(i) , it can be deduced that both πA(i + 1) and πB(i) will 
increase to very high level when r is large(r = 8).

Combined with the above discussion, we can see that 
both πA(i + 1) and πB(i) are larger than aspiration level α . 
In other words, πA(i + 1) > α , πB(i) > α . Furthermore, 
both δe−ω(α−π(�)) and e−ω(α−π(�)) will increase to very 
high level. It can be seen from the above discussions that 
the following inequalities will be established: 

Then, on the basis of formula (B.7), function h(i,ω) will 
gradually degenerate to the following expression:

On the basis of formula (38), it can be deduced that the 
corresponding average abundance function will basically 

(37a)

∂πA(i + 1)

∂c
=

∂

[

d−1
∑

k=m−1

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

(

k+1
d (r − τ)c + τc

)

]

∂c

=

d−1
∑

k=m−1

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

(

k + 1

d
(r − τ)+ τ

)

(37b)
∂πB(i)

∂c
=

∂

[

d−1
∑

k=m

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

(

k
d (r − τ)c + c

)

]

∂c

=

d−1
∑

k=m

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

(

k

d
(r − τ)+ 1

)

(37c)e−ω(α−π(�)) >> 1

(37d)δe−ω(α−π(�)) >> 1

(38)











h(i,ω) =
N − i

i + 1
×

1+ e−ω(α−πA(i+1))

1+ e−ω(α−πB(i))
×

1+ δe−ω(α−πB(i))

1+ δe−ω(α−πA(i+1))

e−ω(α−π(�)) ≫ 1, δe−ω(α−π(�)) ≫ 1

⇒ h(i,ω) ≈
N − i

i + 1
×

e−ω(α−πA(i+1))

e−ω(α−πB(i))
×

δe−ω(α−πB(i))

δe−ω(α−πA(i+1))
=

N − i

i + 1

remain unchanged at 1/2 when r > 4 . It can be seen from 
the above analysis that average abundance function basi-
cally remains unchanged at 1/2.

The explanation for Corollary 5.3.4
Similar to the analysis for corollary 5.3.3, it can be con-
cluded that average abundance function will get close to 
1/2 when m = 10.

However, it can be concluded that there must be more 
collaborators in the group to ensure that threshold pub-
lic goods game can continue when m increase(m = 4 
increases to m = 10 ). Therefore, average abundance 
function when m = 10 is larger than average abundance 
function when m = 4 . Then it can be seen from the above 
analysis that average abundance function is larger than 
1/2 when m = 10.

We have already deduced that average abundance func-
tion will get close to 1/2. In addition, average abundance 
function is larger than 1/2. Furthermore, it can be con-
cluded that average abundance function will decrease 
(and get close to 1/2) with the increase of c when m = 10.

Appendix C    The explanation for Corollary 5.4.1‑5.4.4
The explanation for Corollary 5.4.1
The corollary  5.4.1 can be explained based on formula 
(17):

Based on formula (17), it can be deduced that ∂XA(ω)
∂α

= 0 . 
So average abundance function will basically remain sta-
ble with the increase of α when ω = 0.5 if m = 4.

The explanation for Corollary 5.4.2
It should be noted that average abundance function will 
decrease with α when ω = 0.5 if m = 10 . This phenom-
enon is inconsistent with the conclusion that ∂XA(ω)

∂α
= 0 . 

Furthermore, it can be deduced that the applicability of 
formula (17) is limited when m = 10 . It indicates that the 
complete applicability of formula (17) requires that m 

should be smaller (at lest m < 10).

XA(ω) =
1

2
+ ω

1− δ

1+ δ

1

2d+2

c

d

[(

m(r − τ)+ dτ

r − τ + dτ
C
m−1

d−1
+

d−1
∑

k=m

C
k

d−1

)

(r − τ +dτ)− d

d−1
∑

k=m

C
k

d−1

]
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The explanation for Corollary 5.4.3
The main point of analysis lies in the expected pay-
off function π(�) defined by formula (10a) and function 
h(i,ω) defined by formula (7a).

On the basis of formula (10a), the derivative of 
πA(i + 1) and πB(i) with respect to α can be defined as 
follows: 

Then, on the basis of formula (C.1), it can be deduced 
that neither πA(i + 1) nor πB(i) is related to α.

At first, we will consider the situation when α < 2.66 . 
It can be deduced that when α is small ( α < 2.66 ), both 
πA(i + 1) and πB(i) are larger than aspiration level α . In 
other words, there will be πB(i) > α and πA(i + 1) > α 
when α < 2.66 . Moreover, both δe−ω(α−π(�)) and 
e−ω(α−π(�)) will increase to very high level when α < 2.66 . 
It can be seen from the above discussions that the follow-
ing inequalities will be established: 

Then, on the basis of formula (C.2), function h(i,ω) will 
gradually degenerate to the following expression:

On the basis of formula (39), it can be deduced that the 
corresponding average abundance function will basically 
remain unchanged at 1/2 when α < 2.66.

Then, we will consider the situation when α > 2.66 . 
It has been deduced that neither πA(i + 1) nor πB(i) is 
related to α . In addition, by analyzing the characteristics 
of πA(i + 1) and πB(i) , it can be deduced that the inequal-
ity πB(i) > πA(i + 1) holds in most cases when m = 4.

On the whole, it can be deduced that when α keeps 
increasing ( α > 2.66 ), the πA(i + 1) will become smaller 

(38a)

∂πA(i + 1)

∂α
=

∂

[

d−1
∑

k=m−1

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

(

k+1
d (r − τ )c + τc

)

]

∂α
= 0

(38b)

∂πB(i)

∂α
=

∂

[

d−1
∑

k=m

Ck
i C

d−1−k
N−i−1

Cd−1
N−1

(

k
d (r − τ)c + c

)

]

∂α
= 0

(38c)e−ω(α−π(�)) >> 1

(38d)δe−ω(α−π(�)) >> 1

(39)











h(i,ω) =
N − i

i + 1
×

1+ e−ω(α−πA(i+1))

1+ e−ω(α−πB(i))
×

1+ δe−ω(α−πB(i))

1+ δe−ω(α−πA(i+1))

e−ω(α−π(�)) ≫ 1, δe−ω(α−π(�)) ≫ 1

⇒ h(i,ω) ≈
N − i

i + 1
×

e−ω(α−πA(i+1))

e−ω(α−πB(i))
×

δe−ω(α−πB(i))

δe−ω(α−πA(i+1))
=

N − i

i + 1

than aspiration level α , while the πB(i) is still larger 
than aspiration level α at the same time. In other words, 
there will be πA(i + 1) < α and πB(i) > α when α keeps 
increasing. Therefore, average abundance function will 
decrease when α > 2.66.

In addition, we will consider the situation when 
α > 3.3 . It can be deduced that both πA(i + 1) and 
πB(i) will become smaller than aspiration level α when 
α increases to high level ( α > 3.3 ). In other words, 
πA(i + 1) < α , πB(i) < α . It can be seen from the 
above discussions that the following inequalities will be 
established: 

Then, on the basis of formula (C.4), function h(i,ω) will 
gradually degenerate to the following expression:

On the basis of formula (41), it can be deduced that the 
corresponding average abundance function will get close 
to 1/2 when α > 3.3 . In addition, we have obtained that 
average abundance function is smaller than 1/2 when 
α < 3.3 . Based on the above analysis, we can see that 
average abundance function will increases (and get close 
to 1/2) when α > 3.3.

At last, it can be easily deduced that average abundance 

function will reach 1/2 when α keeps increasing to very high 
level(α > 5.22 ). Furthermore, there is a balance between the 
proportion of individuals choosing strategy A and the pro-
portion of individuals choosing strategy B at this time.

It can be seen from the above analysis that aver-
age abundance function will remain unchanged at 
1/2 when α < 2.66 . In addition, it will decrease when 
2.66 < α < 3.3 . Moreover, it will increase when 
3.3 < α < 5.22 . At last, it will remain unchanged at 1/2 
when α > 5.22.

(40a)e−ω(α−π(�)) << 1

(40b)δe−ω(α−π(�)) << 1

(41)

{

h(i,ω) = N−i
i+1

× 1+e−ω(α−πA(i+1))

1+e−ω(α−πB(i))
× 1+δe−ω(α−πB(i))

1+δe−ω(α−πA(i+1))

e−ω(α−π(·)) << 1, δe−ω(α−π(·)) << 1

⇒ h(i,ω) ≈
N − i

i + 1
×

1

1
×

1

1
=

N − i

i + 1
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The explanation for Corollary 5.4.4
The main point of analysis lies in the expected pay-
off function π(�) defined by formula (10a) and function 
h(i,ω) defined by formula (7a).

At first, we will consider the situation when α < 3.94 . It 
can be deduced that both e−ω(α−π(�)) and δe−ω(α−π(�)) will 
decrease with α . In addition, it can be obtained that the 
decreasing rate of δe−ω(α−π(�)) is much larger than that 
of e−ω(α−π(�)) because of the existence of mutation δ . For 
example, the decreasing rate of δe−ω(α−π(�)) is 32 times 
larger than that of e−ω(α−π(�)) when δ = 0.03.

It can be seen from the above discussions that the fol-
lowing inequalities will be established when m = 10 : 

Then, on the basis of formula (C.6), function h(i,ω) will 
gradually degenerate to the following expression:

(41a)e−ω(α−π(�)) < 1

(41b)δe−ω(α−π(�)) << 1

Fig. 1 The relationship between r and m when considering whether 
strategy A is favoured by selection or not ( d = 15, τ = 0.25)
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Fig. 2 Average abundance function XA(ω) changes 
with selection intensity ω under different mutations δ 
( d = 15, r = 3, c = 1, τ = 0.25,α = 1,m = 12,N = 100 ) 
( δ = 0, 0.003, 0.03)
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Fig. 3 Average abundance function XA(ω) changes with  
selection intensity ω under different mutations δ  
( d = 15, r = 8, c = 1, τ = 0.25,α = 1,m = 8,N = 100 )  
( δ = 0, 0.003, 0.03)
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Fig. 4 Average abundance function with mutation XA(ω) changes 
with ω based on preliminary formula (7a) and approximation formula 
(13a) ( d = 15, r = 8, c = 1, τ = 0.25,α = 1,m = 8,N = 100, δ = 0.03)
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Combined with the above discussion, we can see that 
h(i,ω) ≈ N−i

i+1
× 1+e−ω(α−πA(i+1))

1+e−ω(α−πB(i))
 when m = 10 . Therefore, 

(42)

{

h(i,ω) = N−i
i+1

× 1+e−ω(α−πA(i+1))

1+e−ω(α−πB(i))
× 1+δe−ω(α−πB(i))

1+δe−ω(α−πA(i+1))

δe−ω(α−π(�)) << 1

⇒ h(i,ω) ≈
N − i

i + 1
×

1+ e−ω(α−πA(i+1))

1+ e−ω(α−πB(i))
×

1

1
=

N − i

i + 1
×

1+ e−ω(α−πA(i+1))

1+ e−ω(α−πB(i))

we will set h(i,ω) = N−i
i+1

× 1+e−ω(α−πA(i+1))

1+e−ω(α−πB(i))
 in the follow-

ing discussion.
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Fig. 5 Average abundance function XA(ω) changes with  
selection intensity ω under different mutations δ  
( d = 15, r = 10, c = 1, τ = 0.25,α = 1,m = 2,N = 100 )  
( δ = 0, 0.003, 0.03)
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Fig. 6 Average abundance function with mutation  
XA(ω) changes with ω based on preliminary  
formula (7a)and approximation formula (13a)  
( d = 15, r = 10, c = 1, τ = 0.25,α = 1,m = 2,N = 100, δ = 0.03)
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Fig. 7 Average abundance function changes with  
selection intensity ω under different mutations δ  
( d = 15, r = 5, c = 1, τ = 0.25,α = 1,m = 5,N = 100 )  
( δ = 0, 0.003, 0.03)
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Fig. 8 Average abundance function with mutation XA(ω) changes 
with ω based on original formula (7a) and approximation formula (13a) 
( d = 15, r = 5, c = 1, τ = 0.25,α = 1,m = 5,N = 100, δ = 0.03)
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At the beginning, we suppose that function h(i,ω) will 
change to h(i,ω) when aspiration level α increases to α+β 
( β > 0 ). Then,it can be deduced that the most important 
problem is to compare h(i,ω) with h(i,ω) . Furthermore, 
The difference between between h(i,ω) and h(i,ω) can be 
defined as follows:

It has been deduced that the inequality πB(i) > πA(i + 1) 
holds. Then, we can obtain that eωπB(i) > eωπA(i+1) . In 
addition, it can be deduced that e−ωβ < 1 because β > 0 . 
It can be seen from the above discussions that the follow-
ing inequality will be established:

On the basis of formula (44), it can be deduced that func-
tion h(i,ω) will increase with α . Then it can be concluded 
that the average abundance function will increase with α 
when α < 3.94.

Then, we will consider the situation when α > 3.94 . 
It can be deduced that both πA(i + 1) and πB(i) will be 
smaller than aspiration level α when α > 3.94 . In other 
words, πA(i + 1) < α,πB(i) < α . Furthermore, both 
δe−ω(α−π(�)) and e−ω(α−π(�)) will decrease to very low level. 
It can be seen from the above discussions that the following 
inequalities will be established:

Then, on the basis of formula (45), function h(i,ω) will 
gradually degenerate to the following expression:

(43)

h(i,ω)− h(i,ω)

=
N − i

i + 1
×

1+ e−ω(α+β−πA(i+1))

1+ e−ω(α+β−πB(i))
−

N − i

i + 1
×

1+ e−ω(α−πA(i+1))

1+ e−ω(α−πB(i))

=
N − i

i + 1
×

[

e−ω(α−πB(i))+e−ω(α+β−πA(i+1)) − e−ω(α+β−πB(i)) − e−ω(α−πA(i+1))

(

1+ e−ω(α+β−πB(i))
)

×
(

1+ e−ω(α−πB(i))
)

]

=
N − i

i + 1
×

[

e−ω(α−πB(i))
(

1− e−ωβ
)

+e−ω(α−πA(i+1))
(

e−ωβ − 1
)

(

1+ e−ω(α+β−πB(i))
)

×
(

1+ e−ω(α−πB(i))
)

]

=
N − i

i + 1
×

[

(

1− e−ωβ
)

e−ωα
(

eωπB(i) − eωπA(i+1)
)

(

1+ e−ω(α+β−πB(i))
)

×
(

1+ e−ω(α−πB(i))
)

]

(44)

{

eωπB(i) > eωπA(i+1)

e−ωβ < 1

⇒ h(i,ω)− h(i,ω) =
N − i

i + 1
×

[

(

1− e−ωβ
)

e−ωα
(

eωπB(i) − eωπA(i+1)
)

(

1+ e−ω(α+β−πB(i))
)

×
(

1+ e−ω(α−πB(i))
)

]

> 0

(45)e−ω(α−π(�)) << 1

(46)

{

h(i,ω) = N−i
i+1

× 1+e−ω(α−πA(i+1))

1+e−ω(α−πB(i))

e−ω(α−π(�)) << 1

⇒ h(i,ω) ≈
N − i

i + 1
×

1

1
=

N − i

i + 1

Therefore, the corresponding average abundance func-
tion will get close to 1/2 when α increases to a very high 
level ( α > 3.94 ). In addition, it has been deduced that 
average abundance function is larger than 1/2 when 
α < 3.94 . Based on the above analysis, we can see that 
average abundance function will decrease (and get close 

to 1/2) when α > 3.94.
Then, it can be easily deduced that average abundance 

function will reach 1/2 when α keeps increasing to very 
high level(α > 4.58 ). Furthermore, there is a balance 
between the proportion of individuals choosing strategy 

A and the proportion of individuals choosing strategy B 
at this time.
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Fig. 9 Average abundance function XA(ω) changes with m ( d = 15,
r = 8,c = 1,τ = 0.25,α = 1,N = 100)
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Combined with the above discussion, we can see that 
average abundance function will increase when α < 3.94 . 

In addition, it will decrease when 3.94 < α < 4.58 . At 
last, it will remain unchanged at 1/2 when α > 4.58.
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Fig. 10 Average abundance function XA(ω) changes with d ( r = 8, c = 1, τ = 0.25,α = 1,N = 100)
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Fig. 13 Average abundance function XA(ω) changes with α ( d = 15, r = 8, c = 1, τ = 0.25,N = 100)
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