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Abstract
In any setting, a proportion of incident active tuberculosis (TB) reflects recent transmission

(“recent transmission proportion”), whereas the remainder represents reactivation. Appro-

priately estimating the recent transmission proportion has important implications for local

TB control, but existing approaches have known biases, especially where data are incom-

plete. We constructed a stochastic individual-based model of a TB epidemic and designed

a set of simulations (derivation set) to develop two regression-based tools for estimating the

recent transmission proportion from five inputs: underlying TB incidence, sampling cover-

age, study duration, clustered proportion of observed cases, and proportion of observed

clusters in the sample. We tested these tools on a set of unrelated simulations (validation

set), and compared their performance against that of the traditional ‘n-1’ approach. In the

validation set, the regression tools reduced the absolute estimation bias (difference

between estimated and true recent transmission proportion) in the ‘n-1’ technique by a

median [interquartile range] of 60% [9%, 82%] and 69% [30%, 87%]. The bias in the ‘n-1’
model was highly sensitive to underlying levels of study coverage and duration, and sub-

stantially underestimated the recent transmission proportion in settings of incomplete data

coverage. By contrast, the regression models’ performance was more consistent across dif-

ferent epidemiological settings and study characteristics. We provide one of these regres-

sion models as a user-friendly, web-based tool. Novel tools can improve our ability to

estimate the recent TB transmission proportion from data that are observable (or estimable)

by public health practitioners with limited available molecular data.

Introduction
Tuberculosis (TB) is unique among major infectious diseases in its ability to cause symptom-
atic and infectious (active) disease many years after transmission [1–3]. As a result, new cases
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of active TB represent a mix of recent transmission and remote infection (reactivation) [4–6].
Understanding the proportion of TB incidence due to recent transmission versus reactivation–
a quantity that we term the “recent transmission proportion”–has important implications for
implementation of TB control strategies, as different strategies (for example, contact investiga-
tion, improved diagnosis of active disease) may have greater epidemiological impact in settings
of ongoing transmission [7–11], whereas other strategies (for example, preventive therapy)
may be more relevant for settings where most active TB represents reactivation [12–14].

The traditional approach for estimating the recent transmission proportion is based on
analysis of DNA fingerprints [15,16]. TB cases that are linked by recent transmission events
should have similar DNA fingerprints (forming “clusters”), whereas those that represent reacti-
vation will generally differ. Such fingerprinting methods are becoming increasingly important
in assessing recent transmission in settings of both low [17–22] and high TB burden [23–25]
for purposes of public health planning. While the molecular methods used for fingerprinting
vary in their discriminatory power, and thus the epidemiological relevance of identified clus-
ters, novel technologies (e.g., whole-genome sequencing) continue to reduce the probability of
clustering by chance [26,27], thereby improving our ability to discriminate between reactiva-
tion and recent transmission.

Unfortunately, technological advances in fingerprinting techniques have not been mirrored
by analytical advances in estimating the recent transmission proportion [28],which is still fre-
quently calculated using the simplistic assumption that, in each cluster, one case represents reac-
tivation (the index) whereas all other cases represent recent transmission–an approach known as
the ‘n-1’method [5]. The ‘n-1’method has several known biases [29–33] that limit its public
health utility in settings where fingerprint data are incomplete or collected over a short time
period, even when the fingerprinting technique itself is highly discriminatory. This is a broadly
applicable problem in evaluating the dynamics of infectious diseases with a long transmission
time scale (e.g., HIV, hepatitis C [34–36]), where molecular or genetic clustering data from popu-
lation-based studies with limited coverage are often used to draw inference as to the proportion
of transmission that occurs in a specific setting or on a given timescale. A less biased, user-
friendly alternative for estimating the recent transmission proportion would therefore enable
public health practitioners to maximize the utility of their molecular data. We therefore built a
model of a generalized TB epidemic (Fig 1), and created a set of controlled simulation experi-
ments (“derivation set”) to develop an improved tool for estimating the recent transmission pro-
portion frommolecular fingerprint data. We compared the performance of this tool against the
traditional ‘n-1’model, and validated the findings using an independent set of simulations (“vali-
dation set”). In order to illustrate the performance of this tool in a real setting, we also investi-
gated its potential use on published data from Cape Town, South Africa [23].

Methods
We constructed a stochastic, individual-based simulation model of a TB epidemic that incor-
porates elements of TB natural history, TB epidemiology, and hypothetical molecular epidemi-
ological studies (Fig 1). We modeled a hypothetical population of 100,000 individuals with
homogenous mixing structure, calibrating birth and death rates to preserve the mean popula-
tion size over time. TB natural history is modeled at an individual level in five states: unin-
fected, early latent, late latent, active disease, and recovered (Fig 1 and Table 1) [37]. A
complete description of the model is provided in Section A of the S1 Appendices.

To capture the clustering dynamics of TB strains, we defined individual TB genotypes and
modeled each transmission as resulting in an infection with a strain that, if isolated and finger-
printed, could be linked to the source case. Reinfection may occur, with an individual’s
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simulated DNA fingerprint reflecting the most recent transmission event. Over time, the simu-
lated closed population develops more strain homogeneity than observed in real populations
where migration and bacterial polymorphisms introduce additional diversity. We thus insti-
tuted a “fingerprint replacement” process in which a random set of individuals with latent
infection change mycobacterial genotypes each year [37], representing a combination of infec-
tion from individuals outside the population, immigration/emigration, and bacterial evolution
[43,44]. To minimize potential bias of this approach (to maintain long-term diversity in each
simulation, whereas clustering is measured in the short term), we performed this procedure
only on individuals who were infected more than five years previously. The replacement rate
was calibrated to observed levels of TB genetic diversity [28,45] (Section A.1. of the S1
Appendices).

Simulation experiments
After calibration, we developed a “derivation” set of simulations designed to cover setting-spe-
cific variables at regular intervals (for example, sampling TB incidence in intervals of 50 per

Fig 1. TB simulation overview. This figure illustrates our individual-based simulation model, following a hypothetical population for three consecutive
(annual) time steps (Time = t, t+1, t+2). All infected individuals carry a single strain of TB (A, B, or C in this example). At each time step, three processes are
modeled: 1. Transmission: upon successful contact, actively infected individuals can transmit the disease (marked by their strain type) to other people in the
population. 2. Progression: other TB states are updated as shown in the left panel, including stabilization of latency, re-infection, diagnosis, and treatment,
and relapse. Individuals who are diagnosed have their strain type recorded for analysis as they move from the active to the recovered state. 3. DNA
fingerprint replacement: a random number of individuals in the late latency state are selected to carry new and unique fingerprints (strains), to maintain
genetic diversity and account for processes such as mutation, migration, and infection from outside the population.

doi:10.1371/journal.pone.0144137.g001
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100,000/year), with natural history parameters held fixed at their best estimated value. Simula-
tion scenarios were characterized by level of disease incidence as well as underlying proportion
of incidence due to recent transmission (calibrated via contact rate and annual reactivation
rate parameters). Limiting the scope of our study to settings of medium-to-high TB burden, we
let the incidence level vary over the range of 100 to 450 cases per 100,000 per year [46], cover-
ing the parameter space using fixed intervals. Once TB natural history parameters were estab-
lished, we then simulated different data collection exercises, in which a given proportion of
individuals diagnosed with active TB (the sampling coverage) was fingerprinted over a speci-
fied period of time (the sampling duration). From each simulated “fingerprinting dataset”, we
calculated the corresponding number of clustered cases (C) and the number of clusters (N) that
would be observed, assuming a fingerprinting technique of perfect discrimination. The tradi-
tional ‘n-1’ estimate of the recent transmission proportion can then be calculated as (N-C)/SS,
where SS is the sample size (Section A.2 of the S1 Appendices). We compared this ‘n-1’ esti-
mate with the actual (simulated) recent transmission proportion in each scenario to calculate
the bias in the ‘n-1’ estimate. We defined the “estimation bias” as the absolute underestimation
or overestimation of the true recent transmission proportion.

After calculating the ‘n-1’ estimate and its bias, we used the simulated data in the derivation
set to develop an improved estimator of the recent transmission proportion via multiple linear
regression incorporating five input variables: incidence, duration, coverage, ratio of clustered
cases in the sample (c = C/SS), and ratio of observed clusters in the sample (n = N/SS). We eval-
uated both a simple linear model with these five covariates, as well as a more comprehensive
model in which all potential multiplicative interaction terms were considered; models with
even greater detail did not provide significant improvement in fit (data not shown). Full

Table 1. Model parameters.

Parameter Value / [Range] Source/Description

Natural History:

Cumulative proportion of TB infections
that progress to active disease over
five years

13.8% [38]

Mortality rate from untreated active TB 0.12 per year [39]

Rate of successful diagnosis and
treatment of active TB

0.9 per year Calibrated to provide prevalence/incidence
ratio of 1.4, accounting for people on
treatment [40]

Rate of relapse to active TB during the
first two years after treatment

0.06 per year Calibrated to provide 15% annual cumulative
incidence among previously treated
individuals [40]

Proportion of TB re-infections that
successfully replace a latently
established strain

50% [41–42]

Setting-Specific:

Replacement rate [0.5–10]x10-3
per year

Derivation set samples the following six
values: (0.5, 1, 2, 3, 4, 5, 7, 10) × 10–3

Incidence rate [100–450] per
100,000 per
year

Derivation set samples values in increments
of 50 (e.g., 100, 150, 200, etc.); calibrated by
changing the contact rate at each level of the
replacement rate above.

Duration of time over which isolates are
collected

[2–20] years Derivation set samples values in increments
of 2

Proportion of the population
contributing isolates for fingerprinting

[20–100]% Derivation set samples values in increments
of 20%

doi:10.1371/journal.pone.0144137.t001
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regression equations are provided in Section C.1 of the S1 Appendices and as an online calcula-
tor (http://modeltb.org/recenttrans/).

To validate the performance of the regression models and study the sensitivity of results to
variation of simulation parameters, we created a second set of simulations (the “validation set”)
in which both natural history and setting-specific parameters were randomly sampled from
wide underlying distributions (Section B of the S1 Appendices). The parameter space was sam-
pled using a Latin hypercube design to generate a sample of 1000 scenarios, of which 518 corre-
sponded to a incidence level of 100 to 450 per 100,000/year (as used in original analysis). Data-
collection exercises using varying levels of study coverage and duration were subsequently
modeled in each scenario. In each simulation, we calculated the recent transmission proportion
with both the traditional ‘n-1’method and the novel regression tools, and compared these to
the “true” (simulated) value. We then calculated the bias in each estimation method as the dif-
ference between the estimated and the true value. We used partial rank correlation coefficients
to evaluate associations between model input parameters and the resulting bias in each estima-
tion method [47], and performed additional sensitivity analyses around the fingerprint replace-
ment rate and in settings of very high incidence (sections D.2 and D.1 of the S1 Appendices).

Finally, to investigate the potential performance of suggested estimators in real settings, we
investigated a representative case study from the literature of a genotyping study in Cape
Town, South Africa, from 1993 to 1998 [23]. Calibrating the simulation model to the corre-
sponding study settings, we compared the estimation bias of the ‘n-1’ approach and regression-
based models for the recent transmission proportion. Due to uncertainty in estimating the
underlying TB incidence from available data on notifications, we considered two scenarios
using a high case detection ratio (percentage of incident TB cases that are notified) of 90% sim-
ilar to that assumed in the simulation derivation set (scenario 1), and a lower value equal to the
current estimate of 62% for South Africa (scenario 2). Under these scenarios, we calibrated the
replacement rate to produce similar measures of clustering as were observed in the original
study (Section E of the S1 Appendices).

Results

Regression-based Tool Performance
In the derivation set of simulation experiments, which sampled key parameters (TB incidence
and replacement rate) at regular intervals (Table 1), the median [interquartile range] absolute
bias in the estimated recent transmission proportion was 7.8% [3.9%, 12.3%] with the ‘n-1’
method (Fig 2- top graph). In other words, the median absolute difference between the recent
transmission proportion as actually simulated versus as estimated by the ‘n-1‘method was 8%
(for example, 50% vs. 58%, or 75% vs. 83%). The simple regression model reduced this bias to
3.0% [1.4%, 4.6%], equivalent to a 65% [20%, 80%] reduction in the estimation bias of the ‘n-1’
method, and the comprehensive regression model reduced the bias further to 1.5% [0.6%,
3.0%], or a 78% [58%, 94%] reduction. The statistical significance of improvements was further
confirmed via AWilcoxon signed-ranked test by comparing the absolute estimation bias in the
“n-1”method with the regression models (p-value< 0.001). When applied to the validation set,
similar results were seen: median absolute estimation bias of 7.4% [3.6%, 12.2%] with the ‘n-1’
method, 3.1% [1.5%, 4.9%] with the simple regression model (60% [9%, 82%] reduction in
bias), and 2.3% [1.1%, 3.8%] with the comprehensive regression model (69% [30%, 87%]
reduction in bias) (Fig 2-bottom graph).

As an outcome that might be relevant from a public health perspective, we measured the
proportion of simulations in which the recent transmission proportion was over- or underesti-
mated by 10% or more; 35% of simulations exceeded this threshold with the ‘n-1‘method,
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versus 2% with the simple regression model, and 1% with the comprehensive regression model
(Fig 3, grey dotted line). Thus, the ‘n-1’method produced results with an absolute bias of more
than 10% in over one-third of all simulated scenarios, whereas the regression tools resulted in
such bias in less than one of every 50 simulations.

Moreover, the ‘n-1‘method’s accuracy in estimating the recent transmission proportion was
highly sensitive to underlying levels of sampling coverage and duration (Fig 4). Specifically, fin-
gerprinting studies with low coverage or short duration were more likely to generate

Fig 2. Absolute bias in estimates of the TB recent transmission proportion, comparing the ‘n-1’method to novel regression-based tools in the
derivation set (top) and validation set (bottom). The y-axis presents the absolute estimation bias [|estimated value – true value| × 100] in the proportion of
incident active TB due to recent transmission (“recent transmission proportion”), and the x-axis denotes the recent transmission proportion (simulated) in
each set of simulations. Estimates from the ‘n-1’method are shown in red, and those from the simple and comprehensive regression tools are shown in
green and blue, respectively. Boxes show the interquartile range of values from all simulations, and “whiskers” show the 95% confidence intervals, such that
narrower boxes correspond to more precise (reproducible) estimates. The ‘n-1’model tends to provide less accurate and precise estimates of recent
transmission proportion (wide red bars) across all settings as compared to the simple and comprehensive regression-based models.

doi:10.1371/journal.pone.0144137.g002

Fig 3. Absolute estimation bias in validation set, comparing the ‘n-1’method to the regression-basedmodels. The x-axis denotes the absolute level
of estimation bias (abs[estimated value – true value]*100) in the proportion of incident active TB due to recent transmission (“recent transmission proportion”)
across the validation set of simulations. The y-axis denotes the cumulative proportion of simulations with estimation bias greater than the threshold shown on
the x-axis. For example, the vertical dotted line shows the proportion of simulations under each method that resulted in an absolute estimation bias of >10%:
the ‘n-1’method resulted in 10% or greater estimation bias in 35% of all simulations (red line), compared to 2% of all simulations with the simple regression
model (green) and 1% of all simulations with the comprehensive regression model (blue).

doi:10.1371/journal.pone.0144137.g003
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underestimates of the recent transmission proportion, as cases in the same transmission chain
were often miscategorised as non-clustered. This pattern is evident in the left side of Fig 4, for
sampling duration of less than 10 years (upper panel) or sampling coverage of less than 60%
(lower panel), where the ‘n-1’ approach (in red bars) increasingly underestimates the recent
transmission proportion as data become more incomplete.

Sensitivity Analysis
In analyses of partial rank correlation coefficients, bias in the ‘n-1’ estimates was strongly and
positively correlated with the duration (PRCC = 0.79) and coverage of fingerprint data
(PRCC = 0.89). The regression models, on the other hand, provided more accurate and precise
estimates of the recent transmission proportion in the setting of incomplete data collection.
For example, among simulations with 30–40% population coverage of molecular data over a
2-to-4 year duration of data collection, the simple regression model had a median estimation
bias of 0.2% [-4%, 4%], compared to a substantial underestimation of -18% [-21%, -15%] with
the ‘n-1’method. At 70–80% coverage for 10–12 years, by contrast, the median bias in the sim-
ple regression estimate was 4% [2.4%, 5.5%], not noticeably different from that of the ‘n-1’
method (5% [4%, 7%]). These findings were consistent with the results of a large-scale whole-
genome sequencing study in the Karonga district of Malawi [48], in which a sample of TB
cases over 15 years with an approximate coverage of 50% resulted an estimate of 38% for the
recent transmission proportion, whereas the simple regression estimate was about 32% (further
details in Section C.4 of the S1 Appendices). PRCCs for correlation between the simple model
output and study duration/coverage were -0.03 and 0.17, respectively (Section C.3 and C.4 of
the S1 Appendices).

Variation in the underlying fingerprint replacement rate for individuals with latent TB
infection influenced the performance of models, but it did not change the relative performance
of the regression-based models versus the ‘n-1’method. At higher fingerprint replacement
rates (higher strain heterogeneity), the models tended to underestimate the recent transmission
proportion [30,43], but the effect was similar both models (‘n-1’ and regression), such that the
regression models provided more precise estimates of recent transmission in all scenarios. Sim-
ilarly, the models tended to overestimate the recent transmission proportion in settings with
low fingerprint heterogeneity (low replacement rate) [49], but this effect was similar for both
regression and ‘n-1’ techniques. Section D.1 of the S1 Appendices provides more detail. When
we studied the performance of models in the remaining 419 simulations with an incidence
higher than 450 per 100,000/year, the regression tools continued to outperform the ‘n-1’
method (Section D.2 of the S1 Appendices).

Illustrative Case
In the original study (recreated by the calibrated simulation model as described in Section E of
the S1 Appendices), the ‘n-1’method provided a close estimate of the underlying recent trans-
mission proportion (<1% bias, asterisk in Fig 5), due to reasonable completeness of data

Fig 4. Estimation bias at different levels of study duration (top) and coverage (bottom), comparing the ‘n-1’method to novel regression-based
tools. The y-axis presents the (non-absolute) estimation bias [(estimated value – true value) × 100] in the proportion of incident active TB due to recent
transmission (“recent transmission proportion”). Estimates from the ‘n-1’method are shown in red, and those from the simple and comprehensive regression
tools are shown in green and blue, respectively. Boxes show the interquartile range of values from all simulations, and “whiskers” show the 95% confidence
intervals, such that narrower boxes correspond to more precise (reproducible) estimates. The ‘n-1’model tends to underestimate the recent transmission
proportion at low levels of sample coverage (<50%) and study duration (<10 years), and begins to overestimate the recent transmission proportion as
coverage and duration are increased. The regression models are fairly robust to variation of study characteristics, providing more accurate and precise
estimates of recent transmission proportion, especially in settings of incomplete coverage and short study duration.

doi:10.1371/journal.pone.0144137.g004
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collection (e.g., sample duration of 6 years and coverage of 73% in scenario 1). This perfor-
mance, however, deteriorated under the assumption that fingerprinting data might be more
limited in corresponding programmatic settings. For example, if data were available for six
years (as in the original study), but samples were collected only from 30% of diagnosed cases
(instead of 73% in the original study), the median bias using the ‘n-1’method inflated to -17%
(Fig 5, lower panel, second column, red bars). Similarly, if the study duration was limited to
two years, while maintaining the sampling coverage at 73% (per original study), the median
bias using the ‘n-1’method was again -17% (Fig 5, upper panel, second column, red bars). In
both of these cases, use of the regression tools rather than the ‘n-1’method would have reduced
this bias into the range of -7% to +3% (Fig 5, green and blue bars). Similar results were
observed in scenario 2 (Fig N of the S1 Appendices), with the regression tools having similar
performance to the ‘n-1’method in settings of comprehensive data collection, but showing sub-
stantially less bias in settings where data collection was incomplete.

Discussion
The recent transmission proportion is an important indicator of the degree to which observed
TB incidence reflects ongoing disease transmission in a given population, with key policy
implications including selection of appropriate interventions for disease control. We present
here a set of two regression-based tools, the simpler of which is accessible via an easy-to-use
web interface (http://modeltb.org/recenttrans/), and each of which removes 60–70% of the bias
in estimating the recent transmission proportion in programmatic settings where molecular
TB data may be incomplete or short-term in nature. Use of these tools may substantially
advance our ability to link programmatic, often sparse molecular data on TB strain clustering
to more accurate estimates of recent transmission and thus to more appropriate public health
decision-making, without the need to conduct long and extensive molecular epidemiological
studies where resources are limited. This meta-modeling technique using a combination of
individual-based simulation and regression may also serve as a paradigm with broader applica-
tion to using population-based (but sparse) molecular data to better understand infectious dis-
ease dynamics on longer time scales.

Previous studies have demonstrated the degree of bias in ‘n-1’ estimates [32], for example
showing that clustering levels will underestimate recent transmission in settings of low data
coverage. Our simulations further confirm these results, showing that gaps in sampling cause
compensatory underestimates in the recent transmission proportion when using the ‘n-1’
method. Our model extends these earlier findings by providing an accessible tool that enables
public health decision-makers to input estimates of study duration, sampling coverage, and TB
incidence to obtain a more accurate estimate of the recent transmission proportion under local
conditions. This new method is particularly relevant in settings of incomplete coverage of fin-
gerprinting data, and accommodates the application of limited data to programmatic decision-

Fig 5. Estimation bias in the TB recent transmission proportion in an illustrative high burden case study, comparing the ‘n-1’method to the
regression-basedmodels at different levels of sampling coverage. The top panel compares the estimation bias resulting from each model at a fixed
sampling coverage of 73% (as estimated assuming a 90% case detection proportion, referred to as “Scenario 1” in the text), while varying the duration of data
collection. The bottom panel present the results at a fixed study duration of 6 years (as reported in the original study), while varying the coverage of molecular
fingerprints at the population level. The asterisk denotes the baseline scenario as reported in reference [23], at which all three methods accurately estimate
the recent transmission proportion to within 5%. However, as study duration and population coverage decline, the performance of the ‘n-1’method falls
dramatically. At either a two-year study duration or a 20% population coverage of molecular data, the ‘n-1’method underestimates the recent transmission
proportion by 17% (second column of each figure), whereas both regression tools continue to estimate the recent transmission proportion with a bias of 7% or
less. Boxes show the interquartile range of values from all simulations, and “whiskers” show the 95% confidence intervals, such that narrower boxes
correspond to more precise (reproducible) estimates. Note that the three bars are jittered at each level of coverage/duration for clarity, but all three methods
are performed under the same conditions.

doi:10.1371/journal.pone.0144137.g005
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making. Thus, a public health system in a high-burden country with no existing molecular
repository may now be able to obtain reasonably accurate estimates of the recent transmission
proportion by fingerprinting only a few years of data (either retrospective analysis of existing
isolates or prospective collection of isolates over two to three years), and without the need for
full population coverage (as long as the sample is representative of an underlying population).
As an example, we studied the application of these regression tools in an epidemiological set-
ting discussed in the literature [23] and evaluated the results assuming different levels of access
to molecular fingerprinting data. Specifically, we found that, while both the regression tools
and ‘n-1’method performed well in the setting of complete data availability, the regression
tools markedly reduced bias in estimating the recent transmission proportion when data were
incomplete (due either to short duration or low sampling coverage). These tools may therefore
enable policy decisions that are more data-driven in settings of high TB burden, even when
molecular fingerprint data are relatively sparse.

As with any other modeling study, our analysis has certain limitations. First, to retain strain
diversity over time, we implemented an artificial “fingerprint replacement” procedure to cap-
ture uncertain patterns of migration, mutation rates, and exogenous infection over time. Our
simulations may therefore underestimate the true recent transmission proportion in settings
where mutation, migration, and mixing with external populations occur at a high rate, and
overestimate the recent transmission proportion in isolated populations where such replace-
ment rarely occurs. Importantly, we varied this “replacement” rate over a wide range in sensi-
tivity analysis and did not see any substantial impact on our results. Second, because of
difficulties in setting up appropriately representative closed-population simulations in low-
burden settings where the majority of incident TB is imported, we restricted our model to mod-
erate-to-high burden settings. These results should therefore be generalized to lower-burden
settings only with caution, and future simulation efforts may be useful in developing a tool that
is more appropriate for settings in which immigration drives the majority of incident TB.
Third, as our aim was to provide a generalizable, transparent, user-friendly platform, we
excluded complexities such as age structure, HIV coinfection, and heterogeneous mixing. Prior
studies have suggested that these heterogeneities may affect the estimates of clustering (and
therefore recent transmission proportion) in different ways (for example, underestimating
clustering among younger individuals and overestimating clustering in older individuals)
[33,43,50]. Future efforts could incorporate these assumptions into more complex models to
evaluate the residual amount of bias introduced by such simplifications (which should apply
equally to the regression and ‘n-1’ approaches). Finally, since our goal here was to generate a
method that more accurately represents the truth (especially as the resolution of genotyping
data is anticipated to improve over time), we assumed a genotyping method with perfect reso-
lution between strains. To the extent that less-discriminatory methods are used for fingerprint-
ing, estimates of clustering from all methods are likely to be positively biased, resulting in
overestimates of the recent transmission proportion.

In summary, we have created novel tools, using regression and an individual-based simula-
tion model, to better estimate the proportion of incident TB due to recent transmission in
high-burden settings. These tools remove 60–70% of the bias intrinsic to the most commonly
used method at present (the ‘n-1’method), and the simple tool is easily accessible to epidemiol-
ogists and public health officials via a web-based user interface. Such approaches may have
broader applicability to the estimation of clustered transmission of other infectious diseases as
well. As we seek to accelerate progress in the fight against these diseases worldwide, better esti-
mates of the recent transmission proportion in subpopulations will be critical to developing
evidence-based public-health approaches that appropriately target those hotspots of recent
transmission. For example, more accurate estimates of the recent progression proportion could
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assist local-level officials in deciding whether to allocate resources to interventions (e.g., contact
investigation, improved diagnosis, and case finding) more appropriate for epidemics driven by
recent transmission, or to those (e.g., preventive therapy) more targeted toward preventing
reactivation. Tools such as these can help guide decision-makers to develop more effective poli-
cies and interventions in settings where data are often incomplete and long studies are
impractical.
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