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Abstract

High sensitivity and specificity are two desirable features in biomedical imaging. Raman imaging 

has surfaced as a promising optical modality that offers both. Here, we report the design and 

synthesis of a group of near infrared absorbing 2-thienyl-substituted chalcogenopyrylium dyes 

tailored to have high affinity for gold. When adsorbed onto gold nanoparticles, these dyes produce 

biocompatible SERRS-nanoprobes with attomolar limits of detection amenable to ultrasensitive in 

vivo multiplexed tumor and disease marker detection.
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Introduction

Surface-enhanced Raman scattering (SERS) is rapidly gaining interest in the field of 

biomedical imaging.1, 2, 3 By adsorbing a molecule on a noble metal surface, the weak 

Raman scattering of a molecule (only 1 in ~107 photons induces Raman scattering) is 

massively amplified (enhancement factor 107 – 1010).4, 5, 6 This phenomenon creates a 

spectroscopic technique that not only has high sensitivity (10−9 M – 10−12 M limits of 

detectability), but also the potential for multiplexing capabilities due to the unique 

vibrational structure of adsorbed molecules.7, 8, 9 These characteristics have prompted the 

use of SERS in a wide array of biomedical imaging applications.2, 10, 11, 12, 13, 14, 15, 16, 17 

Orders-of-magnitude higher sensitivities (10−12 – 10−14 M) can be achieved utilizing Raman 

reporters that are in resonance with the incident laser, thereby producing surface-enhanced 

resonance Raman scattering (SERRS) nanoprobes.18, 19, 20 Absorption of light by biological 

tissue is minimal in the near-infrared (NIR) window and, as a consequence, most optical 

biomedical applications use NIR detection lasers. While a great deal of attention has been 

given to dye molecules that absorb light in the visible region, less work has been devoted to 

developing Raman reporters with absorption maxima that are resonant with NIR detection 

lasers. The most common Raman reporters are members of the cyanine class of dyes.21

Herein we report thiophene-substituted chalcogenopyrylium (CP) dyes as a new class of 

ultra bright, NIR-absorbing Raman reporters. One notable feature of the pyrylium dyes is the 

ease in which a broad range of absorptivities can be accessed, and consequently be matched 

with the NIR light source by careful tuning of the dye’s optical properties. Specifically, the 

large differences in absorption maxima introduced by switching the chalcogen atom is a 

useful property of this dye class.22 Another important consideration is the affinity of the 

reporter for the surface of gold. Since the SERS effect decreases exponentially as a function 

of distance from the nanoparticle,23 it is important that the Raman reporter is near the gold 

surface. The 2-thienyl substituent provides a novel attachment point to gold for Raman 

reporters. The 2-thienyl group is not only part of the dye chromophore, but also can be 

rigorously coplanar with the rest of the chromophore.24 This allows the dye molecules to be 

in close proximity to the nanoparticle surface, creating a brighter SERRS-signal.

Results

Chalcogenopyrylium dye synthesis and characterization

Cationic chalcogenopyrylium dyes 1–3, with absorption maxima near the 785-nm emission 

of the detection laser were synthesized as outlined in Figure 1A. The addition of MeMgBr to 

the known chalcogenopyranones25 (4, 6), followed by dehydration with the appropriate acid 

(HZ), yields 4-methyl pyrylium compounds (5, 7) with the desired counterion (PF6
− or 

ClO4
−)22, 26, 27 The condensation of 7 with N,N-dimethylthioformamide in Ac2O, and 

subsequent hydrolysis of the intermediate iminium salt yields the 

(chalcogenopyranylidene)acetaldehyde 8, the penultimate compound leading to trimethine 

chalcogenopyrylium dyes.22 Condensation of 4-methylpyrylium salt 5 and the 

(chalcogenopyranylidene)acetaldehyde 8 bearing the desired R groups and chalcogen atom 

in hot Ac2O26 forms the final dye compounds 1–3 that are substituted with 2-phenyl or 2-

thienyl groups, and different combinations of chalcogen atoms (S or Se) (Table 1). The Cl− 
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and Br− counterions of dye 1a were accessed by treating the PF6
− salts with an Amberlite® 

ion exchange resin.

SERRS-nanoprobe synthesis and characterization

Chalcogenopyrylium dyes 1–3 were dissolved in dry N,N-dimethylformamide (DMF), at a 

concentration between 1.0 and 10 mM, and were subsequently used to generate the SERRS-

nanoprobes. The SERRS-nanoprobes consist of a gold core onto which the SERRS-reporter 

is adsorbed, which is then protected by an encapsulating silica layer (Figure 1B, Table 1). 

The pyrylium based SERRS-nanoprobes were synthesized by encapsulating 60 nm spherical 

citrate-capped gold nanoparticles via a modified Stöber procedure28, 29, 30 in the presence of 

the reporter. After 25 minutes, the reaction was quenched by the addition of ethanol and the 

SERRS-nanoprobes were collected through centrifugation. Typically, the as-synthesized 

SERRS-nanoprobes had a mean diameter of ~100 nm (non-aggregated; Supplementary 

Figure 1 and 2).

Effect of counterion on colloidal stability and SERRS-signal

In previous reports, the dye counterion was shown to affect the structural and electronic 

properties of polymethine dyes31 and the solubility of chalcogenopyrylium dyes.32 Since 

SERRS is highly dependent on these factors, we evaluated the effect of the counterion (Z−) 

on the SERRS spectrum, intensity, and colloidal stability of the pyrylium-based SERRS-

nanoprobes. We compared chloride (Cl−), bromide (Br−), perchlorate (ClO4
−), and 

hexafluorophosphate (PF6
−) as counterions for chalcogenopyrylium dye 1a. The SERRS-

nanoprobes were synthesized in the presence of equimolar amounts (10 μM) of CP dye 1a 
Z− (where Z− = Cl−, Br−, ClO4

−, or PF6
−). The counterion introduces almost no difference 

in optical properties (e.g. absorption maxima, extinction coefficient). Furthermore, with the 

exception of the chloride counter-ion, the Raman shifts and intensity of 1a were minimally 

affected by the different counterions (Figure 2B). The colloidal stability, however, was 

shown to be highly counterion dependent (Figure 2B, Supplementary Figure 1 and 

Supplementary Table 1). The least chaotropic counterion, Cl−, strongly destabilized the gold 

colloids and caused aggregation for SERRS-nanoprobes utilizing 1a as a reporter as 

evidenced by the strong absorption between 700–900 nm. The strongest chaotropic anion, 

PF6
−, did not affect colloidal stability during the synthesis of SERRS-nanoprobes as 

evidenced by the strong absorption at 540 nm and low absorbance between 700 – 900 nm 

(monomeric 60 nm spherical gold nanoparticles have an absorption maximum around 540 

nm). Since the PF6
− anion induced the least nanoparticle aggregation, it was used for further 

SERRS experiments.

Effect of increased affinity on colloidal stability and SERRS-signal

We also examined the SERRS-signal intensity as a function of the number of sulfur atoms in 

the dye. Sulfur-containing functionality has been used frequently to adhere molecules to 

gold,33 with several reports using thiol or lipoic acid functional groups to add sulfur-

containing functionality.21, 34 In our structures, 2-thienyl groups attached to the 2- and 6- 

positions of the dye were used to bind the dyes to the gold surface. We also explored the 

impact of the chalcogen atoms in the chalcogenopyrylium core, switching a Se (1a and 2a) 

Harmsen et al. Page 3

Nat Commun. Author manuscript; available in PMC 2015 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to S (1b and 2b). The chalcogen switch was used to increase semi-covalent interactions with 

the gold surface, and also to create a chromophore that had a more resonant absorption with 

the 785-nm detection laser (Table 1). Chalcogenopyrylium dyes 1–3 were used at a final 

concentration of 1.0 μM, which prevented nanoparticle aggregation for dye 3. Figure 3A 

shows the molecular structures of the chalcogenopyrylium dyes. The SERRS intensity of the 

different as-synthesized pyrylium-based SERRS-nanoprobes, which were synthesized at 

equimolar reporter concentrations, were measured at equimolar SERRS-nanoprobe 

concentrations at low laser power to prevent CCD-saturation (50 μW, 1.0 s acquisition time, 

5× objective). We specifically focused on the 1600 cm−1 peak, which corresponds to 

aromatic ring stretching modes; and is a mode shared by chalcogenopyrylium dyes 1–3. The 

SERRS-signal intensity of the 1600 cm−1 peak increased significantly as the number of 2-

thienyl substituents increased (Figure 3B, Supplementary Table 1) without causing 

significant aggregation (Figure 3C, Supplementary Figure 2 and Supplementary Table 1). 

Thus, 3 produced the highest SERRS-signal, which was significantly more intense than 

2a/2b or 1a/1b (P<0.05) and 2a/2b were significantly more intense than 1a/1b (P<0.05). 

There was a less noticeable, but significant, increase from the chalcogen switch in the core 

(1a/1b and 2a/2b being significantly different (P<0.05)). This strongly supports the 

hypothesis that 2-thienyl groups are an effective means of adhering dyes to gold, resulting in 

brighter SERRS-nanoprobes.

Comparison of CP-dye 3 with a cyanine-based SERRS-reporter

In order to assess the quality of our optimized nanoprobe, thiopyrylium dye 3 and 

commercially available IR792 (Figure 4A), which has been previously used to generate 

surface-enhanced resonance Raman scattering nanoprobes,35 were studied. A direct 

comparison of the nanoprobes synthesized in the presence of equimolar (1.0 μM) amounts of 

3 and IR792 shows a 5–6-fold higher signal for nanoprobes generated with dye 3 (Figure 

4B). It is interesting to note that a fluorescence background is minimal in the SERRS spectra 

of the CP- and cyanine-based SERRS-nanoprobes (Supplementary Figure 3). Whereas 

fluorescence interference would not be expected from chalcogenopyrylium dyes containing 

heavy chalcogens that enhance intersystem crossing,36 fluorescence interference could be 

expected for the cyanine dye IR792. In fact, when equimolar amounts of the CP dyes 1–3 
and IR792 were incorporated in silica (without gold nanoparticle), IR792 demonstrated 

strong fluorescence when excited at 785 nm (50 μW, 1.0 s acquisition time), while minimal 

fluorescence was observed for CP 1–3. As shown in Figure 4B and Supplementary Figure 3, 

the fluorescence interference of the cyanine dye IR792 is minimal in its SERRS spectrum. 

This is due to quenching effects near the surface of the nanoparticle.37

A concentration series of the as-synthesized SERRS-nanoprobes was generated in triplicate 

fashion (Supplementary Figure 4) to determine the limit of detection (LOD) of both 

nanoprobes. Figure 4C shows the LOD for IR792 based nanoprobes to be 1.0 fM, while 3-

based nanoprobes had a 10-fold lower LOD, 100 aM. To our knowledge this is the lowest 

reported LOD utilizing a biologically relevant NIR excitation source. We also evaluated the 

serum stability of the 3-based SERRS-nanoprobe. The SERRS-nanoprobe was shown to be 

serum stable (e.g. no significant difference between t = 1 h and t = 48 h) for at least 48 hours 

(Supplementary Figure 5; Supplementary Methods). This is supported by a study by Thakor 
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et al. who have shown that SERS-nanoparticles of similar size and composition remain 

stable in vivo for more than 2 weeks.38

In vivo comparison of EGFR-targeted CP3- or IR792-SERRS-nanoprobes

The ability of our SERRS-nanoprobe to delineate tumor tissue in vivo was assessed by 

utilizing CP dye 3 and IR792-based SERRS-nanoprobes functionalized with an epidermal 

growth factor receptor (EGFR)-targeting antibody. Equimolar amounts (15 fmol/g) of these 

two EGFR-targeted nanoprobes were injected intravenously into athymic nude mice which 

had been inoculated two weeks prior with the EGFR-overexpressing cell line A431 (1 × 106 

cells). After 18 hours, the skin around the tumor was carefully peeled back and multiplexed 

Raman imaging the tumor site and surrounding tissue was performed (Figure 5–6). A 

Raman map was generated and the signals from the multiplexed SERRS-nanoprobes were 

deconvoluted by applying a direct classical least square algorithm (DCLS).7 The SERRS-

signal from both nanoprobes was more intense for the tumor site than for the surrounding 

tissue, showing that the EGFR-targeted SERRS-nanoprobes had selectively localized at the 

tumor site. The SERRS-signal intensity at the tumor mass revealed a 3× higher signal 

density for the 3-based SERRS-nanoprobes than for the otherwise identical IR792-based 

SERRS-nanoprobes. Ex vivo multiplexed Raman imaging of the tumor showed Raman 

signal of the EGFR-targeted SERRS-nanoprobes throughout the tumor with the exception of 

a hypointense Raman region in the center of the tumor. H&E and immunohistochemical 

staining for EGFR was performed (Supplementary Methods) and revealed that the 

hypointense Raman region corresponded with an area of necrosis, which explains the lack of 

SERRS-nanoprobe accumulation and decreased Raman signal. In addition, to validate 

EGFR targeting, we injected A431-tumor bearing mice with cetuximab (50 pmol/g) 3 hours 

prior to injection with the EGFR-targeted SERRS-nanoprobes. Pre-blocking of EGFR by 

cetuximab resulted in decreased accumulation of the EGFR-targeted SERRS-nanoprobes 

within the tumors of animals that were injected with cetuximab prior to EGFR-targeted 

SERRS-nanoprobe injection as compared to animals that were injected with EGFR-targeted 

SERRS-nanoprobes and were not pre-injected with cetuximab (Supplementary Figure 6).

Discussion

Effective biomedical imaging requires low limits of detection and high specificity for 

biological targets. Raman imaging has surfaced as an optical imaging modality that has the 

promise to enable both. While the Raman effect is relatively weak (1 in 107 photons),3-5 the 

Raman scattering cross section of a molecule can be massively amplified by noble metal 

surfaces. Here, we demonstrated that rational SERRS-reporter design afforded SERRS-

nanoprobes with unprecedented limits of detection: 100 attomolar. This is to the best of our 

knowledge the lowest reported limit of detection at near-real-time detection (≤2.0 s 

acquisition times) for SERRS-nanoprobes that are compatible with a NIR light source. As a 

comparison non-resonant SERS-nanoprobes are in the 0.1–1.0 pM range (1,000–10,000-fold 

less sensitive)2, while reported detection limits of SERRS-nanoprobes are >17 fM at near 

real-time detection.39 Others have reported a 0.4 fM detection limit, however, this was 

acquired through cumulative data acquisition with an acquisition time ≥60s, which is not 

practical for biomedical imaging applications.35
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We believe the unprecedented limit of detection of our novel SERRS-nanoprobe is due to 

several factors. First, we demonstrate that rational design and optimization of the SERRS-

reporter is important to achieve efficient “loading” on the nanoparticle. Our results 

demonstrate that the counterion and gold surface affinity are important considerations. For 

instance, while the chaotropic PF6
− anions stabilized the dye-nanoparticle system during 

silica shell formation in ethanol, the system becomes more destabilized with Cl− (more 

kosmotropic) ions present. Chloride-induced aggregation of colloidal dispersions in relation 

to SERS has been studied. Natan et al. demonstrated that the strongest enhancements were 

obtained from aggregates with effective diameters of less than 200nm and aggregates with 

sizes >200nm did not generate appreciable SERS intensities.40 The aggregates that were 

induced by the chloride counterion in our system were >200 nm (Supplementary Figure 2), 

which might explain the reduced SERRS-signal when chloride is used as a counterion. 

Others have shown that the kosmotropic chloride-ion could induce reorientation of the dye 

on the surface, which could also contribute to the reduced SERRS intensities.41 However, 

while we did observe a decrease in the SERRS-signal intensity when chloride is present, we 

did not find any appreciable differences between the Raman spectra of the dyes when 

different counterions were use, which would have been expected if the molecule had 

reoriented on the surface. Since the most chaotropic counterion, PF6
−, induced the least 

aggregation and generated robust SERRS-signal intensities, we used PF6
− as a counterion.

Next, we showed that an increase in affinity of the SERRS-reporter for the gold nanoparticle 

surface via incorporation of 2-thienyl functional groups considerably increased the SERRS-

signal without inducing aggregation. Others have reported the functionalization of NIR dyes 

with thiol or lipoic acid functional groups. In contrast to a 2-thienyl substituent, thiol and 

lipoic acid functional groups offer no benefit to the optical properties of the dye, and as a 

tether, do not allow the dye to be as close to the gold surface. Moreover, based on the 

absorption spectra of reported lipoic-acid modified cyanine dye-gold nanoparticle 

conjugates, it is clear that lipoic-acid modified dyes promote aggregation.21, 34

Finally, the strategy chosen to stabilize the SERRS-nanoprobe is a key factor. Others have 

reported using either surfactants or thiolated-polymers to stabilize their SERRS-

nanoparticles.35, 39, 42 However, such stabilizing agents compete with the SERRS-reporter 

for the surface of the nanoparticle, which leads to relatively low SE(R)RS-signal. We 

achieved very low limits of detection by using a primerless silication procedure in which the 

silica not only served as a stabilizing agent, but also as a matrix to contain our optimized 

CP-based SERRS-reporter. Since silica has much lower affinity for the gold than the applied 

SERRS-reporters, attomolar limits of detection were achieved.

The chalcogenopyrylium dyes represent a new class of SERRS-reporters. Selection of the 

right combination of chaotropic counterions and increased affinity of the SERRS-reporter 

for the gold nanoparticle’s surface produces stable SERRS-nanoprobes with exceptionally 

low limits of detection (attomolar range). The low limit of detection (i.e. close to single 

nanoparticle detection) in combination with the high resolution of Raman imaging, enables 

highly sensitive and specific, near-real-time tumor delineation and, as a result of the 

fingerprint like spectra of the different SERRS-nanoprobes, can offer multiplexed disease 

marker detection in vivo.
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Methods

Materials

Acetonitrile (99.9%), sodium borohydride (98%) and sodium bicarbonate (99%) were used 

as received from Fisher Scientific (Pittsburg, PA). Methyl magnesium bromide (3.0 M in 

tetrahydrofuran), hexafluorophosphoric acid (60% (w/v)), perchloric acid (60% (w/v)), 

Amberlite® IRA-400(Cl) ion exchange resin, N,N-dimethylthioformamide (98%), 

potassium hydroxide (85%), acetic anhydride (99.7%), gold chloride trihydrate (99.9%), 

ammonium hydroxide (28% (v/v) 99.99% purity), tetraethyl orthosilicate (TEOS; 99.999%), 

mercaptotrimethoxysilane (MPTMS), ethanol (anhydrous, 99.5%), 2-(N-

morpholino)ethanesulfonic acid (MES), IR792 perchlorate, heterobifunctional polyethylene 

glycol (4000 Da; maleimide/N-hydroxysuccinimide(NHS)) were used as received from 

Sigma Aldrich (St.Louis, MO.). Cetuximab (2mg/ml; Genentech, South San Francisco, CA) 

was provided by the Memorial Sloan Kettering Cancer Center Hospital Pharmacy. All 

chromatographic separations were performed on silica gel (SiO2; 60 Å, Scientific 

Absorbents Inc.). Tetrahydrofuran (THF) was distilled from a sodium benzophenone ketyl 

still prior to use.

Chalcogenopyrylium dye synthesis and characterization

All reactions were done open to air unless otherwise noted. Concentration in vacuo was 

performed on a rotary evaporator. NMR spectra were recorded at 300 or 500 MHz for 1H 

and at 75.5 MHz for 13C with residual solvent signal as internal standard. If a mixture of 

CD2Cl2 and CD3OD was used to acquire 1H NMR, the peak for CH2Cl2 was used as the 

internal standard. UV/VIS-near-IR spectra were recorded in quartz cuvettes with a 1-cm 

path length. Melting points were determined with a capillary melting point apparatus and are 

uncorrected. Non-hygroscopic compounds have a purity of ≥ 95% as determined by 

elemental analyses for C, H, and N. Experimental values of C, H, and N are within 0.3% of 

theoretical values. 13C NMR was not recorded for pyrylium dyes due to limited solubility in 

common NMR solvents. Chalcogenopyranones25 4 and 6 were made according to literature 

procedures as were 4-methylchalcogenopyrylium and 4-methylchalcogenobenzopyrylium 

compounds 5 and 7.22, 25, 26, 27

Preparation of 4-(2,6-di(thiophen-2-yl)-4H-thiopyran-4ylidene)acetaldehyde (8, 
Y=S, R2=2-thienyl)—4-Methyl-2,6-di(thiophen-2-yl)thiopyrylium hexafluorophosphate 

(0.350 g, 0.833 mmol), N,N-dimethylthioformamide (0.213 mL, 2.50 mmol) and Ac2O (3.0 

mL) were combined in a small round bottom flask and heated at 95 °C for 1 h. After cooling 

to ambient temperature an additional portion of Ac2O (2.0 mL) was added and the solution 

diluted with ether. The formed iminium salt was allowed to precipitate in the freezer over 

night, and then isolated by filtration to yield a bright orange solid. This solid was dissolved 

in CH3CN (3.0 mL) and satd. aqueous NaHCO3 (3.0 mL) was added. This mixture was 

heated to 80 °C over 15 min, and kept at that temperature for 30 min. After diluting with 

H2O (30 mL) the product was extracted with CH2Cl2 (3 × 50 mL), dried with Na2SO4 and 

purified on SiO2 with a 10% EtOAc/CH2Cl2 eluent (Rf = 0.71) to yield a yellow oil that was 

recrystallized in CH2Cl2/hexanes to yield 0.219 g (87%) of a yellow crystalline solid, mp 

143-144 °C: 1H NMR [500 MHz, CDCl3] 9.84 (d, 1 H, J = 6.0 Hz), 8.26 (s, 1 H), 7.45-7.39 
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(m, 4 H), 7.13-7.11 (m, 2 H), 6.88 (s, 1 H), 5.72 (d, 1 H, J = 6.5 Hz); 13C NMR [75.5 MHz, 

CDCl3] δ 188.05, 146.43, 139.36, 139.07, 137.33, 136.65, 128.16, 127.78, 127.58, 126.30, 

126.01, 122.48, 117.63, 117.48; HRMS (ESI) m/z 302.9971 (calcd for C15H11O1S3: 

302.9967).

Preparation of 4-(2,6-diphenyl-4H-selenopyran-4ylidene)acetaldehyde (8, 
Y=Se, R2=Ph)—4-methyl-2,6-di(phenyl)selenopyrylium hexafluorophosphate (0.200 g, 

0.439 mmol), N,N-dimethylthioformamide (0.112 mL, 1.32 mmol) and Ac2O (4.0 mL) were 

added to a round-bottom flask and heated at 95 °C for 90 min. After cooling to rt CH3CN 

(4.0 mL) was added and the product precipitated by addition of ether and chilling overnight 

in the freezer. The iminium salt was isolated by filtration, and hydrolyzed by dissolving in 

CH3CN (4.0 mL), adding satd. aqueous NaHCO3 (4.0 mL) and heating the mixture to 80 °C 

over a 15 min period. The reaction was maintained at this temperature for 30 min, after 

which the reaction was diluted with H2O (50 mL), the product extracted with CH2Cl2 (3 × 

30 mL), dried with MgSO4, and after concentration purified on SiO2 with first a CH2Cl2 and 

then a 10% EtOAc/CH2Cl2 (Rf = 0.70) eluent to yield 0.122 g (82%) of a orange oil: 1H 

NMR [500 MHz, CDCl3] δ 10.11 (d, 1 H, J = 10.5 Hz), 8.32 (s, 1 H), 7.62-7.46 (m, 9 H), 

7.00 (s, 1 H), 5.88 (d, 1 H, J = 11.0 Hz); 13C NMR [75.5 MHz, CDCl3] δ 188.69, 148.44, 

147.01, 146.03, 138.65, 138.40, 129.96, 129.90, 129.14, 126.62, 126.44, 126.37, 126.31, 

125.67, 120.57, 120.48; HRMS (EI) m/z 339.0292 (calcd for C19H15O80Se: 339.0283).

Preparation of 4-(3-(2,6-diphenyl-4H-selenopyran-4-ylidene)prop-1-enyl)-2,6-
diphenylselenopyrylium (1a) (CAS Registry Number: 51848-65-8)

PF6
−: 4-methyl-2,6-di(phenyl)selenopyrylium hexafluorophosphate (0.190 g, 0.417 mmol), 

4-(2,6-diphenyl-4H-selenopyran-4ylidene)acetaldehyde (0.155 g, 0.459 mmol) and Ac2O 

(3.0 mL) were combined in a round bottom flask and heated at 105 °C for 10 min. The 

reaction was cooled to ambient temperature, precipitated with ether, and the collected solid 

recrystallized from CH3CN/ether to yield 0.278 g (86%) of a golden-green solid: 1H NMR 

[500 MHz, CD2Cl2] δ 8.59 (t, 1 H, J = 13.5 Hz), 8.40-7.80 (br s, 4 H), 7.71 (d, 8 H, J = 7.0 

Hz), 7.63-7.59 (m, 12 H), 6.85 (d, 2 H, J = 13.0 Hz); Anal. Calcd for C37H27Se2 PF6: C, 

57.38; H, 3.51; F, 14.72. Found: C, 57.34; H, 3.48; F, 14.76; LRMS (ESI) m/z 631.2 (calcd 

for C37H27
80Se2: 631.0); λmax (CH2Cl2) = 806 nm, ε = 2.5 × 105 M−1cm−1.

ClO4
−: 4-methyl-2,6-di(phenyl)selenopyrylium perchlorate (50.0 mg, 0.122 mol), 4-(2,6-

diphenyl-4H-selenopyran-4ylidene)acetaldehyde (81.4 mg, 0.241 mmol) and Ac2O (2.0 mL) 

were treated as described for the PF6 salt to yield 82.0 mg (90%) of a golden-green solid: 1H 

NMR [500 MHz, 1:1 CD2Cl2:CD3OD] δ 8.77 (t, 1 H, J = 13.5 Hz), 8.60-7.80 (m, 4 H), 7.71 

(d, 8 H, J = 7.0 Hz), 7.66-7.54 (m, 12 H), 6.83 (d, 2 H, J = 14.0 Hz); Anal. Calcd for 

C37H27Se2 ClO4: C, 60.96; H, 3.73. Found: C, 60.69; H, 3.83; λmax (CH2Cl2) = 806 nm, ε = 

2.5 × 105 M−1cm−1.

Cl−: The hexafluorophosphate salt (50 mg) was converted to the chloride salt by treating 

with Amberlite® IRA-400 chloride form (200 mg) in a 1:1 CH2Cl2:MeOH mixture (3.0 

mL). This process was repeated two more times after which the product was dissolved in 

CH2Cl2, washed with water, the organic layer dried with Na2SO4, filtered over Celite®, and 
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after concentration recrystallized from CH3CN/ether to yield a bronze solid: 1H NMR [500 

MHz, 3:1 CD3OD:CD2Cl2] δ 8.87 (t, 1 H, J = 13.0 Hz), 8.40-7.80 (m, 4 H), 7.70 (d, 8 H, J = 

7.0 Hz), 7.56-7.50 (m, 12 H), 6.84 (d, 2 H, J = 13.0 Hz); Anal. Calcd for 

C37H27Se2·Cl·4/3H2O: C, 64.50; H, 4.34; Cl, 5.15. Found: C, 64.54; H, 4.42; Cl, 4.98; λmax 

(CH2Cl2) = 806 nm,ε = 2.3 × 105 M−1cm−1.

Br−: The hexafluorophosphate salt (50 mg) was converted to the bromide salt by treating 

with Amberlite® IRA-400 bromide form (200 mg) in a 1:1 CH2Cl2:MeOH mixture (3.0 

mL). This process was repeated two more times after which the product was dissolved in 

CH2Cl2, washed with water, the organic layer dried with Na2SO4, filtered over Celite®, and 

after concentration recrystallized from CH3CN/ether to yield a bronze solid: 1H NMR [500 

MHz, 3:2 CD2Cl2:CD3OD] δ 8.79 (t, 1 H, J = 13.5 Hz), 8.40-7.80 (br s, 4 H), 7.71 (d, 8 H, J 

= 7.0 Hz), 7.60-7.54 (m, 12 H), 8.50 (d, 2 H, J = 13.0 Hz); Anal. Calcd for C37H27Se2 Br 

H2O: C, 61.09; H, 4.02; Br, 10.98. Found: C, 61.08; H, 3.89; Br, 10.77; λmax (CH2Cl2) = 

806 nm, ε = 2.3 × 105 M−1cm−1.

Preparation of 4-(3-(2,6-diphenyl-4H-thiopyran-4-ylidene)prop-1-enyl)-2,6-
diphenylselenopyrylium hexafluorophosphate (1b) (CAS Registry Number: 
79054-92-5)—4-Methyl-2,6-di(phenyl)thiopyrylium hexafluorophosphate (0.128 g, 0.312 

mmol), 4-(2,6-diphenyl-4H-selenopyran-4ylidene)acetaldehyde (0.157 g, 0.344 mmol) and 

Ac2O (2.0 mL) were combined in a round bottom flask and heated at 105 °C for 10 min. The 

reaction was cooled to ambient temperature, CH3CN (2.0 mL) was added and ether was 

used to precipitate product from solution to yield 0.196 g (86%) of a copper-bronze 

solid: 1H NMR [500 MHz, CD2Cl2] δ 8.54 (t, 1 H, J = 13.0 Hz), 8.20-7.80 (br s, 4 H), 7.78 

(d, 4 H, J = 8.0 Hz), 7.70 (d, 4 H, J = 7.5 Hz), 7.66-7.58 (m, 12 H), 6.78 (d, 2 H, J = 13.5 

Hz); Anal. Calcd for C39H34O3Se2 PF6: C, 61.08; H, 3.74. Found: C, 61.10; H, 3.68; LRMS 

(ESI) m/z 583.3 (calcd for C37H27S80Se: 583.1); λmax (CH2Cl2) = 784 nm, ε = 2.0 × 105 

M−1cm−1.

Preparation of 4-(3-(2,6-dithiophen-2-yl-4H-thiopyran-4-ylidene)prop-1-
enyl)-2,6-diphenylselenopyrylium (2a)—4-methyl-2,6-di(phenyl)selenopyrylium 

hexafluorophosphate (0.102 g, 0.225 mmol), 4-(2,6-(thiophen-2-yl)-4H-

thiopyran-4ylidene)acetaldehyde (75.0 mg, 0.248 mmol) and Ac2O (3.0 mL) were combined 

in a round bottom flask and heated at 105 °C for 5 min. The reaction was cooled to ambient 

temperature, precipitated with ether, and the collected solid recrystallized from CH3CN/

ether to yield 0.145 g (87%) of a bronze solid, mp 229-231 °C: 1H NMR [500 MHz, 

CD2Cl2] δ 8.46 (t, 1 H, J = 13.0 Hz), 7.71-7.58 (m, 18 H), 7.26 (t, 2 H, J = 4.0 Hz), 6.77 (d, 

1 H, J = 13.0 Hz), 6.70 (d, 1 H, J = 14.0 Hz); Anal. Calcd for C33H23S3Se PF6: C, 53.59; H, 

3.13; F, 15.41. Found: C, 53.79; H, 3.13; F, 15.19; HRMS (ESI) m/z 595.0125(calcd for 

C33H23S3
80Se: 595.0122); λmax (CH2Cl2) = 810 nm, ε = 2.5 × 105 M−1cm−1.

Preparation of 4-(3-(2,6-dithiophen-2-yl-4H-thiopyran-4-ylidene)prop-1-
enyl)-2,6-diphenylthiopyrylium hexafluorophosphate (2b)—4-Methyl-2,6-

diphenylthiopyrylium hexafluorophosphate (30.0 mg, 73.0 μmol), 4-(2,6-(thiophen-2-

yl)-4H-thiopyran-4ylidene)acetaldehyde (24.4 mg, 81.0 μmol) and Ac2O (1.0 mL) were 
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combined in a round bottom flask and heated at 105 °C for 5 min. The reaction was cooled 

to ambient temperature, CH3CN (4.0 mL) was added and ether was used to precipitate 

product from solution to yield 45.0 mg (88%) of a bronze solid, mp > 260 °C: 1H NMR [500 

MHz, CD2Cl2] δ 8.44 (t, 1 H, J = 13.0 Hz), 8.40-7.80 (br s, 4 H), 7.78 (d, 4 H, J = 7.0 Hz), 

7.67-7.59 (m, 10 H), 7.24 (t, 2 H, J = 4.5 Hz), 6.71 (d, 1 H, J = 13.0 Hz), 6.63 (d, 1 H, J = 

13.5 Hz); Anal. Calcd for C33H23S4 PF6: C, 57.21; H, 3.35. Found: C, 56.97; H, 3.36; 

HRMS (ESI) m/z 547.0674 (calcd for C33H23S4: 547.0677); λmax (CH2Cl2) = 789 nm, ε = 

2.2 × 105 M−1 cm−1.

Preparation of 4-(3-(2,6-dithiophen-2-yl-4H-thiopyran-4-ylidene)prop-1-enyl)-
(2,6-dithiophen-2-yl)thiopyrylium hexafluorophosphate (3) (CAS Registry 
Number: 95410-36-9)—4-Methyl-2,6-di(thiophen-2-yl)thiopyrylium 

hexafluorophosphate (11.0 mg, 26.2 μmol), 4-(2,6-(thiophen-2-yl)-4H-

thiopyran-4ylidene)acetaldehyde (9.5 mg, 31.4 μmol) and Ac2O (1.0 mL) were combined in 

a round bottom flask and heated at 105 °C for 5 min. The reaction was cooled to ambient 

temperature, CH2Cl2 (2.0 mL) was added and ether was used to precipitate product from 

solution to yield 17.8 mg (94%) of a bronze solid, mp > 260 °C: 1H NMR [500 MHz, 

CD3CN] δ 8.32 (t, 1 H, J = 13.5 Hz), 7.68 (d, 2 H, J = 4 Hz), 7.56 (br. s, 4 H) 7.14 (t, 4 H, J 

= 4.5 Hz), 6.48 (d, 2 H, J = 13.0 Hz); Anal. Calcd for C29H19S6 PF6: C, 49.42; H, 2.72. 

Found: C, 49.19; H, 2.79; HRMS (ESI) m/z 558.9805 (calcd for C29H19S6: 558.9806); λmax 

(CH2Cl2) = 813 nm, ε = 2.8 × 105 M−1cm−1. Spectral data agree with published spectra.43

SERRS-nanoprobe synthesis

Gold nanoparticles were synthesized through addition of 7.5 mL 1% (w/v) sodium citrate to 

1.0 L boiling 0.25 mM HAuCl4. The as-synthesized gold nanoparticles were concentrated by 

centrifugation (10 min, 7500 × g, 4 °C) and dialyzed overnight (3.5 kDa MWCO; 5 L 18.2 

MΩ.cm). The dialyzed gold nanoparticles (100 μL; 2.0 nM) were added to 1000 μL absolute 

ethanol in the presence of 30 μL 99.999% tetraethyl orthosilicate (Sigma Aldrich), 15 μL 

28% (v/v) ammonium hydroxide (Sigma Aldrich) and 1 μL chalcogenopyrylium dye (1–10 

mM) in N,N-dimethylformamide. After shaking (375 rpm) for 25 min at ambient conditions 

in a plastic container, the SERRS-nanoprobes were collected by centrifugation, washed with 

ethanol, and redispersed in water to yield 2.0 nM SERRS-nanoprobes.

SERRS-nanoprobe characterization

The as-synthesized SERRS-nanoprobes were characterized by transmission electron 

microscopy (TEM; JEOL 1200ex-II, 80 kV, 150,000× magnification) to study the SERRS-

nanoprobe structural morphology. The size and concentration of the SERRS-nanoprobes 

were determined on a Nanoparticle Tracking Analyzer (NTA; Malvern Instruments, 

Malvern, UK). Absorption spectra to determine possible nanoparticle aggregation (typically 

detectable at wavelengths > 600 nm) were measured on an M1000Pro spectrophotometer 

(Tecan Systems Inc. San Jose, CA). Finally Raman spectra were acquired on a Renishaw 

InVIA system equipped with a 785-nm laser (Renishaw Inc, Hoffman Estates, IL). All 

measurements were performed at a laser power of 50 μW (1.0 s acquisition time, 5× 

objective).
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SERRS-nanoprobe limit of detection

SERRS-nanoprobes were synthesized as described above in the presence of an equimolar 

(1.0 μM) amount of 3 or IR792. SERRS imaging to determine the limit of detection was 

performed at 100 mW (2.0 s acquisition time (StreamLime™), 5× objective) on a phantom 

that consisted of a serial diluted IR792- or chalcogenopyrylium dye 3-based SERRS-

nanoprobe redispersed in 10 μL water (concentration range 3000 – 0.003 fM; n=3). The 

Raman maps were generated by WiRE 3.4 software (Renishaw) by applying a direct 

classical least square (DCLS) algorithm. The Raman image was analyzed with ImageJ 

software and plotted in GraphPad Prism (GraphPad Software Inc., La Jolla, CA).

Animal studies

All animal experiments were approved by the Institutional Animal Care and Use 

Committees of Memorial Sloan Kettering Cancer Center.

In vivo comparison of EGFR-targeted CP3- or IR792-SERRS-nanoprobes

Eight-to-ten week-old female athymic nude mice (n=5; Hsd:Athymic Nude-Foxn1nu; Harlan 

Laboratories) were subcutaneously inoculated with the EGFR-overexpressing cell line A431 

(1 × 106 cells; ATCC CRL-1555). After 2 weeks, the mice were injected with an equimolar 

amount (15 fmol/g) of EGFR-targeted IR792- and 3-based SERRS-nanoprobes. The EGFR-

targeted SERRS-nanoprobes were synthesized as described above in the presence of an 

equimolar (1.0 μM) amount of 3 or IR792. The as-synthesized SERRS-nanoprobes were 

subsequently functionalized with sulfhydryl-groups by heating the SERRS-nanoprobes in 5 

mL 2% (v/v) mercaptotrimethoxysilane (MPTMS) in ethanol at 70 °C for 2 hours. The 

sulfhydryl-functionalized SERRS-nanoprobes were washed with water, redispersed in 10 

mM MES buffer (pH 7.1), and conjugated to an EGFR-targeting antibody (cetuximab; 

Genentech, South San Francisco, CA) with a 4000 Da heterobifunctional maleimide/N-

hydroxysuccinimide polyethylene glycol linker.44 Eighteen hours later, the mice were 

sacrificed by CO2-asphyxiation. The tumor was exposed and scanned by Raman imaging 

(10 mW, 1.5 s acquisition time (StreamLime™), 5× objective). The Raman maps were 

generated by WiRE 3.4 software (Renishaw) by applying a direct classical least square 

(DCLS) algorithm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank the Electron Microscopy and Molecular Cytology Core Facility at Memorial Sloan 
Kettering Cancer Center (MSKCC). This work was supported in part by the following grants: NIH R01 EB017748 
(M.F.K.); NIH K08 CA163961 (M.F.K.); M.F.K. is a Damon Runyon-Rachleff Innovator supported (in part) by the 
Damon Runyon Cancer Research Foundation (DRR-29-14); MSKCC Center for Experimental Therapeutics Grant 
(M.F.K.). MSKCC Center for Molecular Imaging and Nanotechnology Grant (M.F.K.); MSKCC Technology 
Development Grant (M.F.K.); Geoffrey Beene Cancer Research Center at MSKCC Grant Award (M.F.K.) and 
Shared Resources Award (M.F.K.); The Dana Foundation Brain and Immuno-Imaging Grant (M.F.K.); Dana 
Neuroscience Scholar Award (M.F.K.); Bayer HealthCare Pharmaceuticals/RSNA Research Scholar Grant 
(M.F.K.); MSKCC Brain Tumor Center Grant (M.F.K.); Society of MSKCC Research Grant (M.F.K.); NIH 
GM-94367 (M.R.D.); and the National Science Foundation (CHE-1151379, M.R.D.). M.A.W. is supported by a 
National Science Foundation Integrative Graduate Education and Research Traineeship Grant (NSF, IGERT 

Harmsen et al. Page 11

Nat Commun. Author manuscript; available in PMC 2015 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0965983 at Hunter College). Acknowledgments are also extended to the grant-funding support provided by the NIH 
MSKCC Center Grant (P30 CA008748).

References

1. Wang Y, Yan B, Chen L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 
2013; 113:1391–1428. [PubMed: 23273312] 

2. Kircher MF, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-
photoacoustic-Raman nanoparticle. Nat. Med. 2012; 18:829–834. [PubMed: 22504484] 

3. Qian X, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman 
nanoparticle tags. Nature biotechnology. 2008; 26:83–90.

4. Kneipp K, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. 
Rev. Lett. 1997; 78:1667–1670.

5. Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman 
scattering. Science. 1997; 275:1102–1106. [PubMed: 9027306] 

6. Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry. Part I. Heterocyclic, 
aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 
Interfacial Electrochem. 1977; 84:1–20.

7. Zavaleta CL, et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living 
mice using noninvasive Raman spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2009; 106:13511–
13516. [PubMed: 19666578] 

8. Faulds K, Jarvis R, Smith WE, Graham D, Goodacre R. Multiplexed detection of six labeled 
oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst. 2008; 
133:1505–1512. [PubMed: 18936827] 

9. Gellner M, Koempe K, Schluecker S. Multiplexing with SERS labels using mixed SAMs of Raman 
reporter molecules. Anal. Bioanal. Chem. 2009; 394:1839–1844. [PubMed: 19543719] 

10. Craig D, McAughtrie S, Simpson J, McCraw C, Faulds K, Graham D. Confocal SERS Mapping of 
Glycan Expression for the Identification of Cancerous Cells. Anal. Chem. 2014; 86:4775–4782. 
[PubMed: 24842517] 

11. Gracie K, et al. Simultaneous detection and quantification of three bacterial meningitis pathogens 
by SERS. Chem. Sci. 2014; 5:1030–1040.

12. McAughtrie S, Lau K, Faulds K, Graham D. 3D optical imaging of multiple SERS nanotags in 
cells. Chem. Sci. 2013; 4:3566–3572.

13. Sha MY, Xu H, Natan MJ, Cromer R. Surface-Enhanced Raman Scattering Tags for Rapid and 
Homogeneous Detection of Circulating Tumor Cells in the Presence of Human Whole Blood. J. 
Am. Chem. Soc. 2008; 130:17214–17215. [PubMed: 19053187] 

14. Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and 
RNA detection. Science. 2002; 297:1536–1540. [PubMed: 12202825] 

15. Yuen JM, Shah NC, Walsh JT Jr. Glucksberg MR, Van Duyne RP. Transcutaneous Glucose 
Sensing by Surface-Enhanced Spatially Offset Raman Spectroscopy in a Rat Model. Anal. Chem. 
2010; 82:8382–8385. [PubMed: 20845919] 

16. McQueenie R, et al. Detection of Inflammation in Vivo by Surface-Enhanced Raman Scattering 
Provides Higher Sensitivity Than Conventional Fluorescence Imaging. Anal. Chem. 2012; 
84:5968–5975. [PubMed: 22816780] 

17. Graham D, Mallinder BJ, Whitcombe D, Smith WE. Surface enhanced resonance Raman scattering 
(SERRS) - a first example of its use in multiplex genotyping. Chemphyschem. 2001; 2:746–748. 
[PubMed: 23686925] 

18. Hildebrandt P, Stockburger M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 
6G adsorbed on colloidal silver. J. Phys. Chem. 1984; 88:5935–5944.

19. Dieringer JA, et al. Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G 
Molecule. J. Am. Chem. Soc. 2009; 131:849–854. [PubMed: 19140802] 

20. Harmsen S, et al. Surface-enhanced resonance Raman scattering nanostars for high-precision 
cancer imaging. Sci. Transl. Med. 2015; 7:271ra277.

Harmsen et al. Page 12

Nat Commun. Author manuscript; available in PMC 2015 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Samanta A, et al. Ultrasensitive Near-Infrared Raman Reporters for SERS-Based In Vivo Cancer 
Detection. Angew. Chem., Int. Ed. 2011; 50:6089–6092.

22. Detty MR, Murray BJ. Telluropyrylium dyes. 1. 2,6-Diphenyltelluropyrylium dyes. J. Org. Chem. 
1982; 47:5235–5239.

23. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu. 
Rev. Anal. Chem. 2008; 1:601–626.

24. Detty MR, et al. Electron Transport in 4H-1,1-Dioxo-4-(dicyanomethylidene)thiopyrans. 
Investigation of x-ray Structures of Neutral Molecules, Electrochemical Reduction to the Anion 
Radicals, and Absorption Properties and EPR Spectra of the Anion Radicals. J. Org. Chem. 1995; 
60:1674–1685.

25. Leonard K, Nelen M, Raghu M, Detty MR. Chalcogenopyranones from disodium chalcogenide 
additions to 1,4-pentadiyn-3-ones. The role of enol ethers as intermediates. J. Heterocycl. Chem. 
1999; 36:707–717.

26. Detty MR, McKelvey JM, Luss HR. Tellurapyrylium dyes. 2. The electron-donating properties of 
the chalcogen atoms to the chalcogenapyrylium nuclei and their radical dications, neutral radicals, 
and anions. Organometallics. 1988; 7:1131–1147.

27. Panda J, Virkler PR, Detty MR. A comparison of linear optical properties and redox properties in 
chalcogenopyrylium dyes bearing ortho-substituted aryl substituents and tert-butyl substituents. J. 
Org. Chem. 2003; 68:1804–1809. [PubMed: 12608794] 

28. Stoeber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size 
range. J. Colloid Interface Sci. 1968; 26:62–69.

29. Liz-Marzán LM, Giersig M, Mulvaney P. Synthesis of Nanosized Gold–Silica Core–Shell 
Particles. Langmuir. 1996; 12:4329–4335.

30. Mulvaney SP, Musick MD, Keating CD, Natan MJ. Glass-Coated, Analyte-Tagged Nanoparticles: 
A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering. Langmuir. 
2003; 19:4784–4790.

31. Bouit P-A, et al. A “Cyanine-Cyanine” Salt Exhibiting Photovoltaic Properties. Org. Lett. 2009; 
11:4806–4809. [PubMed: 19795845] 

32. Detty MR, Merkel PB, Hilf R, Gibson SL, Powers SK. Chalcogenapyrylium dyes as 
photochemotherapeutic agents. 2. Tumor uptake, mitochondrial targeting, and singlet-oxygen-
induced inhibition of cytochrome c oxidase. J. Med. Chem. 1990; 33:1108–1116. [PubMed: 
2157006] 

33. Haekkinen H. The gold-sulfur interface at the nanoscale. Nat. Chem. 2012; 4:443–455. [PubMed: 
22614378] 

34. Mahajan S, Baumberg JJ, Russell AE, Bartlett PN. Reproducible SERRS from structured gold 
surfaces. Phys. Chem. Chem. Phys. 2007; 9:6016–6020. [PubMed: 18004415] 

35. von Maltzahn G, et al. SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely 
Multiplexed Near-Infrared Imaging and Photothermal Heating. Adv. Mater. 2009; 21:3175–3180. 
[PubMed: 20174478] 

36. Detty MR, Merkel PB. Chalcogenapyrylium dyes as potential photochemotherapeutic agents. 
Solution studies of heavy atom effects on triplet yields, quantum efficiencies of singlet oxygen 
generation, rates of reaction with singlet oxygen, and emission quantum yields. J. Am. Chem. Soc. 
1990; 112:3845–3855.

37. Dulkeith E, Ringler M, Klar TA, Feldmann J, Javier AM, Parak WJ. Gold Nanoparticles Quench 
Fluorescence by Phase Induced Radiative Rate Suppression. Nano Lett. 2005; 5:585–589. 
[PubMed: 15826091] 

38. Thakor AS, et al. The fate and toxicity of Raman-active silica-gold nanoparticles in mice. Sci. 
Transl. Med. 2011; 3:79ra33.

39. Jokerst JV, Cole AJ, Van de Sompel D, Gambhir SS. Gold Nanorods for Ovarian Cancer Detection 
with Photoacoustic Imaging and Resection Guidance via Raman Imaging in Living Mice. ACS 
Nano. 2012; 6:10366–10377. [PubMed: 23101432] 

40. Freeman RG, Bright RM, Hommer MB, Natan MJ. Size selection of colloidal gold aggregates by 
filtration: effect on surface-enhanced Raman scattering intensities. J. Raman Spectrosc. 1999; 
30:733–738.

Harmsen et al. Page 13

Nat Commun. Author manuscript; available in PMC 2015 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Grochala W, Kudelski A, Bukowska J. Anion-induced charge-transfer enhancement in SERS and 
SERRS spectra of Rhodamine 6G on a silver electrode: how important is it? J. Raman Spectrosc. 
1998; 29:681.

42. Yuan H, Liu Y, Fales AM, Li YL, Liu J, Vo-Dinh T. Quantitative Surface-Enhanced Resonant 
Raman Scattering Multiplexing of Biocompatible Gold Nanostars for in Vitro and ex Vivo 
Detection. Anal. Chem. 2013; 85:208–212. [PubMed: 23194068] 

43. Kudinova MA, Kurdyukov VV, Kachkovski AV, Tolmachev AI. Pyrylocyanines. 36. alpha-
thienyl-substituted pyrylo- and thiopyrylocyanines. Khim Geterotsikl. 1998:494–500.

44. Chung E, et al. Use of surface-enhanced Raman scattering to quantify EGFR markers uninhibited 
by cetuximab antibodies. Biosensors & Bioelectronics. 2014; 60:358–365. [PubMed: 24859273] 

Harmsen et al. Page 14

Nat Commun. Author manuscript; available in PMC 2015 September 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Synthesis and structure of the SERRS-reporters and SERRS-nanoprobe
(A) Reaction scheme for the synthesis of pyrylium-based SERRS-reporters (1a–3). (B) A 

60-nm gold core (yellow) encapsulated in a 15 nm thick chalcogenopyrylium dye (red; Ph, 

phenyl)-containing silica shell (white). The structure, yields, and optical properties of the 

different chalcogenopyrylium-based Raman reporters are shown in the table.
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Figure 2. The effect of the counterion on colloidal stability
(A) The effect of the counterion (Z−) on SERRS intensity (785 nm, 50 μW, 1.0 s acquisition 

time, 5× objective). Inset: Structure of CP dye 1a (Ph, phenyl). (B) Effect of counterion on 

the colloidal stability of CP-dye 1a-based SERRS-nanoprobes (n=3, error bars represent 

standard deviations; See also Supplementary Figure 1; Supplementary Table 1).
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Figure 3. The SERRS-intensity as a function of dye affinity for the gold surface
(A) Molecular structures of the adsorbed CP-dyes (1–3) arranged by increased number of 2-

thienyl substituents (Ph, phenyl). (B) SERRS spectra of the CP-based SERRS-nanoprobes. 

The SERRS spectra were baseline corrected to allow proper comparison. (For the non-

baseline corrected spectra see Supplementary Figure 3). Inset: intensity of the 1600 cm−1 

peak (n=3; error bars represent standard deviations, *P<0.05; an unpaired Student’s t-test 

was performed). C) Colloidal stability of the CP-based SERRS-nanoprobes as determined 

by LSPR measurements (n=3; error bars represent standard deviations; See also 

Supplementary Figure 2; Supplementary Table 1).
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Figure 4. Comparison of the SERRS-signal intensity of the optimized CP-dye 3 versus a widely 
used resonant dye IR792
(A) Structure of the resonant dye IR792 and chalcogenopyrylium dye 3. (B) SERRS 

intensity of an equimolar amount of an IR792-based SERRS-nanoprobe and a 3-based 

SERRS-nanoprobe that were synthesized of an equimolar amount of the dyes. (C) Limits of 

detection of the IR792- (cyan) and 3- (red) based SERRS-nanoprobes were performed in 

triplicate and determined to be 1.0 fM and 100 attomolar, respectively (See also 

Supplementary Figure 4).
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Figure 5. Comparison between EGFR-targeted IR792- or 3-based SERRS-nanoprobes in an 
A431 tumor xenograft
Female nude mice (n=5) bearing A431 xenograft tumors were injected intravenously via tail 

vein with an equimolar amount of EGFR-antibody (cetuximab)-conjugated IR792- and CP 

3-based SERRS-nanoprobes (15 fmol/g per probe; total injected dose: 30 fmol/g). After 18 

hours, the tumors were imaged in situ by Raman (10 mW, 1.5 s acquisition time, 5× 

objective). The chalcogenopyrylium dye 3-based SERRS-nanoprobe (red) provided ~3× 

more contrast than the IR792-based SERRS-nanoprobe (cyan) (22.442 cps/cm2 versus 7.313 

cps/cm2, respectively). All scale bars represent 2.0 mm.
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Figure 6. Immunohistochemistry and ex vivo Raman imaging of the A431 tumor
The excised tumor was scanned by Raman imaging (10 mW, 1.5 s acquisition time, 5× 

objective) and subsequently fixed in 4% paraformaldehyde and processed for H&E staining 

and anti-EGFR immunohistochemistry. With the exception of a hypointense Raman region 

in the center of the tumor, the tumor homogenously expressed EGFR and the EGFR-targeted 

SERRS-nanoprobes had accumulated throughout the tumor. The hypointense Raman area 

corresponds to a highly necrotic region within the tumor, which explains the lack of SERRS-

nanoprobe accumulation and decreased Raman signal. All scale bars represent 1.0 mm.
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Table 1
Chalcogenopyrylium dye structural and optical characteristics

Dye X Y λmax (CH2C12) Log (ε) Yield (%)

1a Se Se 806 nm 5.40 86

1b S Se 784 nm 5.30 86

2a S Se 810 nm 5.40 87

2b S S 789 nm 5.34 88

3 S S 813 nm 5.45 94
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