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INTRODUCTION 
 
Aging is defined as progressive multifactorial 
functional decline over time at the molecular, cellular, 
tissue, and organismal levels [1]. The aging organism 
becomes frail, with increased disease susceptibility. 
Aging is a major risk factor for aging-related diseases 
including neurodegeneration, cardiovascular disease, 
osteoporosis, and cancer [2]. This process depends  
on the interaction between numerous genetic, 

environmental, and lifestyle factors [3]. The individual 
genetic or epigenetic background affects cellular 
senescence. Consequently, the genetic and epigenetic 
backgrounds are the main factors related to aging 
within organisms. Molecular mechanisms of aging can 
be attributed to accumulated genetic mutations and 
epigenetic dysfunction [4]. These molecular alterations 
interact directly with the transcriptional network. 
Thus, identifying aging-related molecular features has 
critical implications for enhancing our understanding 
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ABSTRACT 
 
African green monkeys (AGMs, Chlorocebus aethiops) are Old World monkeys which are used as experimental 
models in biomedical research. Recent technological advances in next generation sequencing are useful for 
unraveling the genetic mechanisms underlying senescence, aging, and age-related disease. To elucidate the 
normal aging mechanisms in older age, the blood transcriptomes of nine healthy, aged AGMs (15‒23 years old), 
were analyzed over two years. We identified 910‒1399 accumulated differentially expressed genes (DEGs) in 
each individual, which increased with age. Aging-related DEGs were sorted across the three time points. A 
major proportion of the aging-related DEGs belonged to gene ontology (GO) categories involved in translation 
and rRNA metabolic processes. Next, we sorted common aging-related DEGs across three time points over two 
years. Common aging-related DEGs belonged to GO categories involved in translation, cellular component 
biogenesis, rRNA metabolic processes, cellular component organization, biogenesis, and RNA metabolic 
processes. Furthermore, we identified 29 candidate aging genes that were upregulated across the time series 
analysis. These candidate aging genes were linked to protein synthesis. This study describes a changing gene 
expression pattern in AGMs during aging using longitudinal transcriptome sequencing. The candidate aging 
genes identified here may be potential targets for the treatment of aging. 
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of aging and the mechanism underlying aging-induced 
disease. 
 
Because peripheral whole blood sampling is easy to 
access and non-invasive, researchers use whole blood to 
investigate molecular profiles and disease-associated 
molecular biomarkers [5]. This approach is based on the 
idea that gene expression in peripheral whole blood 
reflects expression profiles related to pathological 
changes in other tissues [6]. To fully explore the 
information contained in the molecular blood signature, 
molecular profiling tools using -omics analyses were 
applied to whole blood, giving rise to the field of 
“bloodomics” [7]. Numerous investigators apply 
bloodomics assays in studies on aging [8–11]. Large-
scale analyses of the relationship between aging and 
gene expression have been performed using human 
peripheral blood samples [9, 12]. Most studies are 
cross-sectional; however, several longitudinal studies 
focused on specific aging-related hypofunction [13], 
only used short-term observations [14], or examined 
specific cell populations [15, 16]. While these massive 
scale studies provide insights into the complex 
biological processes associated with human aging, 
transcriptome studies involving natural aging over time 
using identical samples and controlled environmental 
conditions remain lacking. 
 
To date, studies on aging have laid extensive 
groundwork using models such as worms, flies, fish, 
and rodents. These models provide insights into the 
process of aging. However, for clinical applications, 
more complex animal models such as non-human 
primates (NHPs), which exhibit aging mechanisms that 
are similar to those observed during human aging, are 
required [17]. NHPs share genetic, physiological, 
immunological, and behavioral similarities with 
humans. In addition, inter-individual variation in NHPs 
is similar to the variation observed in humans, and NHP 
models recapitulate naturally-occurring age-associated 
diseases even in the absence of genetic manipulation 
[18, 19]. NHP studies permit complete control of 
environmental exposures including diet, environmental 
factors, housing, and social interactions. Therefore, 
longitudinal NHP studies can overcome the limitations 
associated with other models of aging and human 
studies. Thus, longitudinal NHP studies provide an 
excellent opportunity to study the actual mechanisms 
involved in aging over time. 
 
The African green monkey (AGM) is a medium-sized Old 
World monkey (OWM) that originated in Africa. AGMs 
have an average lifespan of 11-13 years in the wild, while 
they can survive for more than 31 years in captivity [19]. 
Traditionally, AGMs are used as an experimental NHP 
model for biomedical research [20], particularly as models 

of infectious disease, human immunodeficiency virus, and 
preclinical pharmacokinetic studies [21]. They are also 
important models of neurological, degenerative, and 
cardiovascular disease, and cognitive and social behavior. 
AGMs exhibit the same or similar degenerative diseases 
as humans, including cancer, dementia, Parkinson’s 
disease, and cardiovascular impairments. For these 
reasons, AGMs serve as an excellent animal model for 
studying changes related to aging and age-associated 
disease. In addition, the draft genome of AGM was 
recently published and is now available in GenBank 
(AGM GenBank Assembly ID, GCA_000409795.2). 
Therefore, the above-mentioned characteristics make 
AGMs an attractive animal model in aging-related studies. 
 
Here, we performed a longitudinal gene expression 
study in healthy aged AGMs (n=9) by obtaining 
peripheral blood cells at three time points over a period 
of two years using non-invasive biopsy. To identify the 
most relevant gene expression signatures for aging over 
time, we performed transcriptomic analysis at three time 
points and compared differentially expressed genes 
(DEGs) between two time points. Furthermore, 
candidate aging genes were selected by time series 
analysis. Gene ontology (GO) and gene interaction 
analyses showed that upregulated genes or candidate 
aging genes are associated various biological processes, 
with ribosome and translation processes among the 
most represented. 
 
RESULTS 
 
Global transcriptional profiling and clustering 
 
To compare the temporal transcriptional changes, 
samples from nine naturally-aged AGMs (age 15 to 23, 
and consisting of seven females and two males) were 
analyzed by RNA-seq over a period of two years. 
Samples from each animal were collected at three 
consecutive time points (Supplementary Figure 1 and 
Supplementary Table 1). About 43.1-62.3 million raw 
reads from each sample were sequenced 
(Supplementary Table 2). After the low-quality reads 
were filtered out, 82.3-90.0% reads were analyzed and 
uniquely mapped to the AGM ChlSab1.1 reference 
genome. The expression of each gene was normalized 
to fragments per kb per million fragments (FPKM); the 
FPKM values were considered the final level of 
expression for each gene. We calculated Pearson’s 
correlation coefficients to compare global gene 
expression between samples (Supplementary Table 3). 
The intra-individual correlation coefficients decreased 
over time. Furthermore, the number of high inter-
individual correlation coefficients exhibited a time-
dependent decrease at the second and third time points 
compared with the first time point. 
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We also performed unsupervised clustering analysis and 
generated heat maps from whole transcriptome data 
using Cluster 3.0 software. Genes with an FPKM value 
above 25 in at least one sample and a fold change 
greater than 2 between the highest and lowest samples 
were excluded to remove noninformative genes for 
clustering. This resulted in 1866 unique genes. 
Hierarchical clustering analysis identified gene groups 
at each time point (Figure 1A). Cluster 1 contained 289 
genes, and the correlation between genes in the cluster 
was 0.52. Then, Cluster 1 was annotated using the 
PANTHER (Protein Analysis through Evolutionary 
Relationships) classification system, which identified 
272 mRNAs distributed in various GO categories. 
Among the GO categories, metabolic processes, cellular 
component organization or biogenesis, biological 
regulation, binding, and cell terms were dominant 
(Figure 1B–1D). 
 
Characterization of individual aging processes in 
aged AGMs 
 
We analyzed RNA-seq data from whole-blood samples 
of aged AGMs. Then, we selected genes that were 
differentially expressed over time for each individual. 

Genes that satisfied the following two conditions were 
considered as DEGs: (1) p-value < 0.05, and (2) |fold 
change| ≥ 1.3. The DEGs were compared as follows: (1) 
time point (TP) 2 vs TP 1; (2) TP 3 vs TP 2; and (3) TP 
3 vs TP 1. To investigate aging in each individual, we 
compared the number of DEGs in each aged AGM. 
Linear regression analysis of DEGs showed that the 
number of DEGs tended to increase with age (Figure 2). 
Then, we identified the aging-related DEGs using Venn 
diagram analysis (Supplementary Figure 2). The aging-
related DEGs were defined as overlapping genes in each 
DEG set. Then, the aging-related DEGs were annotated 
using the PANTHER classification system for GO 
analysis. In this analysis, GO terms with a corrected p-
value < 0.05 were considered significantly enriched. 
Then, we selected GO terms with two criteria: i.e., -
log(p-value) > 2.5 and enrichment fold > 5. When we 
analyzed the upregulated aging-related DEGs, we found 
significant enrichment in translation- and ATP 
synthesis-related biological processes in more than half 
of all the aged AGMs (Figure 3A). The molecular 
functions, “structural ribosome constituent” and 
“structural molecule activity” were overrepresented in 
all aged AGMs (Figure 3B). The most overrepresented 
cellular components were “ribosome,” “ribosomal 

 

 
 

Figure 1. Longitudinal aging-associated global expression profiling. (A) Hierarchical clustering is presented in a matrix format, where 
each row represents an individual gene and each column represents a different time point in each AGM. Red, high expression; green, low 
expression. Cluster 1 contains the genes that are highly expressed in TP2 and TP3 compared with those in TP1. PANTHER GO slim enrichment 
analysis of (B) biological processes (BP), (C) molecular function (MF), and (D) cellular components (CC). 
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subunit,” “cytosol,” “spliceosome,” “proteasome,” and 
“mitochondrial membrane” in all or more than half of 
the aged AGMs (Figure 3C). Individual GO terms were 
“RNA splicing” and “protein folding associated with 
protein quality control” (Figure 3A). In the case of 
downregulated genes, significant GO-term enrichment 
was not detected. 

Characterization of common aging-related genes in 
aged AGMs 
 
We attempted to identify the common aging-related 
gene expression patterns among nine aged AGMs. 
Common DEGs over time were selected using the same 
criteria used to select individual DEGs. Each individual 

 

 
 

Figure 2. Cumulative individual DEGs in aged AGMs. The number of DEGs increased with chronological age. A030 to A009 were in 
reverse order of chronological age. A030 was the youngest, while A009 was the oldest. 

 

 
 

Figure 3. PANTHER GO slim analysis of individual aging-related DEGs. (A) BP, (B) MF, and (C) CC enrichment. Each GO term was 
sorted using the following parameters: –log10(p-value) > 2.5 and enrichment > 5. Gradient colors indicate the degree of enrichment. 
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was regarded as a biological replicate. To identify the 
common aging-related DEGs, we performed Venn 
diagram analysis (Figure 4). The common aging-related 
DEGs were defined as overlapping genes in each DEG 
set. We identified 997 upregulated genes, which were 
annotated using the PANTHER classification system 
(Figure 4A). We selected GO terms using two criteria, 
i.e., -log(p-value) > 2.5 and enrichment fold > 5. The 
highest overrepresented biological processes were 
“ribosome biogenesis,” “ribonucleoprotein complex 
biogenesis,” “purine ribonucleotide metabolic process,” 
“oxidative phosphorylation,” and “ATP metabolic 
process” (Figure 5A). Overrepresented molecular 
functions were “structural constituent of ribosome” and 
“rRNA binding” (Figure 5B). The most overrepresented 
cellular components were “cytosolic ribosome,” 
“cytosolic small and large ribosomal subunit,” “U5 
snRNP,” “spliceosomal snRNP complex,” and 
“proteasome core complex” (Figure 5C). In the case of 
downregulated genes (485 genes), we did not observe 
GO terms that met the appropriate criteria. 
 
We identified 165 common aging-related genes 
contributing to KEGG pathways. KEGG pathways were 
selected using the criteria -log(p-value) > 2.5. Figure 5D 
shows the gene number distribution for various KEGG 
pathways. Among the KEGG pathways, the most 
represented was “ribosome pathway,” followed by 
“degenerative diseases pathways such as Huntington’s 
disease, Alzheimer’s disease, and Parkinson’s disease,” 
“oxidative phosphorylation pathway,” “proteasome 

pathway,” “non-alcoholic fatty liver disease pathway,” 
and “spliceosome pathway.” 
 
Time series analysis and candidate aging genes 
 
To investigate the global temporal transcriptional 
patterns, time series analysis was performed. We 
defined the DEGs across a time series as genes that are 
differentially expressed between two time points. Then, 
we performed time series expression profile clustering 
to identify common temporal expression patterns. DEGs 
were clustered into nine groups, i.e., up-up (29 genes), 
up-unchanged (1,034 genes), up-down (327 genes), 
unchanged-up (519 genes), unchanged-unchanged 
(21,977 genes), unchanged-down (167 genes), down-up 
(1,080 genes), down-unchanged (944 genes), and down-
down (not detected) (Supplementary Figure 3). Based 
on the time series clustering, up-up cluster genes were 
selected as the candidate aging genes (Table 1). In 
particular, the changes in the expression of nine genes 
(RPL37A, RPS21, RPL37, RPS26, RPS27A, RPL13A, 
GLRX3, RPL32, and TMA7) showed a more 
cumulatively increased pattern than those in the other 
candidate aging genes. 
 
DISCUSSION 
 
To our knowledge, the longitudinal whole transcriptome 
study reported here is the first to examine aging in aged 
NHPs. In this study, we used aged AGMs to investigate 
the transcriptome over a period of two years to identify 

 

 
 

Figure 4. Venn diagrams showing the DEG overlap from pairwise comparisons of each time point. Venn diagrams were 
constructed using Venny online software. (A) Nine hundred and ninety-seven upregulated genes were shared across DEG sets. (B) Four 
hundred and eighty-five downregulated genes were shared across the DEG sets. 
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aging-related genes and potential aging-related 
pathways. Intriguingly, all our results indicated similar 
major biological processes, such as translation-
associated ribosomal biogenesis, during normal aging. 
Specifically, 29 candidate aging genes with increased 
expression over time were identified. Our results also 
suggest that candidate aging genes may serve as new 
potential targets for aging or aging biomarkers. 
 
Old World monkeys (e.g. Macaque species and AGMs) 
serve as robust aging models because they display a 
realistic aging course with time compression [22, 23]. 
AGMs have a relatively long lifespan (average, 20 
years; maximum lifespan, ~31 years in captivity) [19]. 
In the case of rhesus monkeys (a Macaque species), the 
average lifespan in captivity is approximately 26 years 
[22, 24]. OWMs age in a manner similar to that 
observed in humans, but at a rate that is approximately 
three times faster than human aging [22]. Rhesus 
monkeys are generally considered old after 

approximately 20 years of age. Indeed, rhesus monkeys 
show significant signs of physical decline, such as 
reduced mobility and skin atrophy, by their late 20s 
[25]. At these later ages, they also develop many 
disorders common in older humans, including cancer, 
cataracts, osteopenia, and cardiovascular disease. 
Aging-related changes in OWMs more closely 
approximate similar changes observed in humans than 
those observed in shorter-lived aging models [18]. 
Though aging research using OWMs involves many 
difficulties, including high cost, specialized facilities, 
and NHP scientific specialists, OWMs provide a 
powerful aging model. Because of this, studies on aging 
using monkeys often have small sample sizes and are 
generally cross-sectional rather than longitudinal. 
Despite such difficulties, research on aging using 
OWMs remains the attractive translational approach to 
understand human aging, the mechanisms underlying 
aging, and aging-related disease [18]. In this study, we 
investigated the changes at the transcriptome level over

 

 
 

Figure 5. PANTHER GO slim analysis and KEGG pathway analysis of common aging-related DEGs. (A) BP, (B) MF, (C) CC 
enrichment, and (D) KEGG pathways. Each GO term and KEGG pathway were sorted using the following parameters: –log10(p-value) > 2.5 and 
enrichment > 5. 
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Table 1. Candidate aging genes. 

Gene Name Accession no. Description Chr Srart End Strand 
1st DEGs 2nd DEGs 

p-value Log2FC p-value Log2FC 
RPL37A ENSCSAG00000000609 ribosomal protein L37a 1 82546802 82547077 - 0.0043 0.60 5.00E-05 1.15 
RPS21 ENSCSAG00000016013 ribosomal protein S21 2 1841865 1843087 - 0.0076 0.81 5.00E-05 1.37 
RPL37 ENSCSAG00000016909 60S ribosomal protein 

L37 
4 39586974 39590110 - 5.00E-05 1.20 5.00E-05 1.80 

RPL6 ENSCSAG00000018863 60S ribosomal protein 
L6 

5 39187341 39188207 + 0.0001 1.24 0.00585 0.62 

RPS26 ENSCSAG00000019637 ribosomal protein S26 6 40596460 40596804 - 0.0107 0.75 0.0002 0.83 
BAX ENSCSAG00000002776 BCL2-associated X 

protein 
6 42186238 42194115 + 0.01115 0.58 0.0398 0.39 

RPS27A ENSCSAG00000000427 ribosomal protein S27a 7 2002541 2003068 + 0.0012 0.86 5.00E-05 1.07 
H2AFZ ENSCSAG00000000395 H2A histone family 

member Z 
7 65001927 65002313 - 0.0064 0.66 0.0032 0.57 

NDUFS5 ENSCSAG00000000098 NADH dehydrogenase 
(ubiquinone) Fe-S 

protein 5 

7 117309172 117309649 + 5.00E-05 1.79 0.0014 0.79 

CHCHD2 ENSCSAG00000018548 coiled-coil-helix-coiled-
coil-helix domain 

containing 2, 
mitochondrial 

8 53292182 53292871 + 0.03975 0.47 0.02065 0.44 

RPL36 ENSCSAG00000018603 ribosomal protein L36 8 97021222 97021592 + 5.00E-05 0.90 0.0032 0.53 
RPL13A ENSCSAG00000019054 ribosomal protein L13a 9 13383840 13384448 - 0.046 0.48 0.00585 0.57 
CHCHD1 ENSCSAG00000008922 coiled-coil-helix-coiled-

coil-helix domain 
containing 1 

9 57589462 57590554 - 0.0117 1.79 0.02235 0.78 

GLRX3 ENSCSAG00000004419 glutaredoxin 3 9 122737379 122781391 + 0.03215 0.47 0.00305 0.55 
MRPL51 ENSCSAG00000010565 mitochondrial 

ribosomal protein L51 
11 6532431 6533536 - 0.0002 0.94 5.00E-05 0.82 

RPL32 ENSCSAG00000018921 60S ribosomal protein 
L32 

11 79856860 79857264 - 0.01655 0.55 5.00E-05 0.89 

C12orf75 ENSCSAG00000002966 chromosome 12 open 
reading frame 75 

11 100538647 100575739 + 0.0104 1.75 0.01225 1.04 

MDH1 ENSCSAG00000014691 malate  
dehydrogenase 1, NAD 

14 43406499 43425095 - 0.00365 0.58 0.01465 0.44 

RPS4 ENSCSAG00000019456 40S ribosomal protein 
S4 

14 69231717 69232508 - 5.00E-05 2.16 0.0125 0.62 

SUPT4H1 ENSCSAG00000005761 suppressor of Ty 4 
homolog 1 (S. 

cerevisiae) 

16 35047934 35054239 + 0.0409 0.44 0.03495 0.40 

COX7A2 ENSCSAG00000014488 cytochrome c oxidase 
subunit VIIa 

polypeptide 2 (liver) 

17 45771 51669 + 0.00015 1.17 0.00025 0.83 

TOMM6 ENSCSAG00000011289 Mitochondrial 
importreceptor subunit 

TOM6 homolog 

17 30373701 30375892 - 0.0104 0.60 0.035 0.38 

ATP5O ENSCSAG00000019522 ATP synthase, H+ 
transporting, 

mitochondrial F1 
complex, O subunit 

21 116427583 116428215 - 0.00015 0.77 0.00285 0.54 

TMA7 ENSCSAG00000018802 translation machinery 
associated 7 homolog 

(S. cerevisiae) 

22 30956078 30956269 - 0.00775 1.06 5.00E-05 1.72 

PFDN1 ENSCSAG00000012913 prefoldin subunit 1 23 42892401 42953491 - 0.02735 0.46 0.0103 0.45 
MRPS14 ENSCSAG00000011897 mitochondrial 

ribosomal protein S14 
25 54231643 54240472 + 0.00015 1.26 0.0118 0.66 

RPL39 ENSCSAG00000019753 60S ribosomal protein 
L39 

26 48140075 48140227 - 5.00E-05 4.37 0.0015 1.26 

SNURF ENSCSAG00000006401 SNRPN upstream 
reading frame protein 

26 57098072 57103910 - 0.00915 1.31 0.0268 0.86 

MRPL46 ENSCSAG00000017201 mitochondrial 
ribosomal protein L46 

29 7025442 7033219 - 0.0371 0.51 0.03695 0.42 
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a period of two years. For AGMs, two years are 
equivalent to nearly six to seven human years, so our 
AGM models can be considered equivalent to 50-70-
year-old humans. During our study, we did not observe 
any other aging-related diseases except physical decline 
in our AGMs models. Thus, to our knowledge, we 
provide the first demonstration of transcriptome changes 
during normal aging using aged primate models. 
 
While chronological age is the amount of time after 
birth, biological age is measured by physical or 
functional assessments. Biological age is influenced by 
various factors, including nutrition, stress, lifestyle, 
disease, and genetic background [3]. Although 
chronological age is the same, biological age could be 
different. Because of the different rates of aging, it is 
difficult to identify accurate indicators of aging using 
chronological age alone [26]. In longitudinal studies, 
serial samples allow comparisons in the same individual 
at different time points, rather than among other 
individuals at different ages. Thus, longitudinal studies 
that observe the same individual throughout their 
lifespan provide better understanding of aging. Our 
longitudinal study using aged AGM model allowed us 
to control for numerous environmental factors, so we 
could accurately analyze the changes in gene expression 
over time. 
 
Previous studies suggest a direct connection between 
dysregulated ribosome biogenesis and aging. For instance, 
attenuated protein synthesis via caloric restriction or 
genetic manipulation of ribosome biogenesis-related genes 
is known to increase the lifespan of multiple organisms, 
including C. elegans, mice, and humans [27–29]. 
Therefore, promoting ribosome biogenesis could 
accelerate aging. Indeed, a recently published study 
revealed increased ribosomal biogenesis and activity as 
hallmarks of premature aging in human fibroblasts [30]. In 
our study, gene expression was clustered relatively well at 
each time point (Figure 1). This result suggests the 
existence of gene groups involved in the aging process 
over time. Indeed, we identified individual aging-related 
DEGs and common aging-related DEGs. The findings 
from the GO enrichment analyses indicated enrichment of 
biological processes involved in ribosome biogenesis and 
translation (Figures 3, 5). This is consistent with the 
finding that cytosolic ribosomal proteins are upregulated 
with age in various human tissues, including brain [31], 
kidney [32], and muscle [33]. Moreover, a 10-year 
longitudinal study demonstrated that a similar number of 
DEGs are expressed between the ages of 70 and 80 in 
human whole blood [8]. These DEGs showed significant 
enrichment for multiple aging-related pathways, including 
protein metabolism and oxidative phosphorylation. Many 
of these processes have been previously described in aging 
[30, 34, 35]. Individual GO terms were “RNA splicing” 

and “protein folding associated with protein quality 
control” (Figure 3A). These results suggest that the 
processes involved in common natural aging are associated 
with ribosome biogenesis and translation, and those 
involved in individual aging are associated with RNA 
splicing, protein folding, and protein quality control. 
Moreover, 29 candidate aging genes were associated with 
ribosomes, cytoplasmic translation, and mitochondrial 
translational termination. The expression of these genes in 
whole blood was consistently associated with these 
processes, with increased gene expression over the period 
of two years (Table 1). Increased expression of ribosome 
and translation-associated genes, including the 29 aging 
candidate genes identified in this study, appears to be a 
potential biomarker of aging that requires further 
functional analysis. 
 
Several hypotheses have been suggested to explain the 
process of aging. Some gene-centric theories have been 
suggested; these primarily focus on harmful changes in 
the genome that accumulate during the life cycle [36], 
including DNA mutation and shortened telomeres. 
Other epigenetic theories have been suggested; these 
focus on how changes in the DNA and DNA-binding 
proteins affect gene expression [37]. These epigenetic 
changes include DNA methylation, histone 
modification, and loss of chromosomal organization. 
Other theories of aging suggest declining quality of 
control systems during protein synthesis and 
degradation and chaperone systems [38]. The decline in 
protein quality control is involved in abnormal protein 
accumulation, because protein production and disposal 
become increasingly compromised with age. However, 
we already know that due to the complexity of the aging 
process, an integrated approach is needed to better 
understand the mechanism of aging. In this respect, 
genomics, transcriptomics, epigenomics, proteomics, 
and metabolomics could provide crucial evidence for 
explaining the complex and interconnected changes that 
occur during aging, though current knowledge of these 
molecular interactions is still limited. 
 
Previous research showed that errors in DNA repair and 
inaccurate replication lead to the accumulation of DNA 
mutations and epimutations with age [39, 40]. Genomic 
instability via accumulated DNA damage in aging may 
also promote specific epigenetic alterations, such as 
global loss of chromatin compaction through the 
recruitment of chromatin modifiers, including 
Polycomb, SIRT1, SIRT6, and methyltransferases [40]. 
The accumulation of epimutations via chromatin 
modifications in aging may also induce changes in gene 
expression, thus inducing transcriptional instability [4]. 
Although we have focused on temporal transcriptome 
changes with aging in this study, we suggest a 
hypothesis called the “snowball effect via ribosomal 
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biogenesis,” when considered with previous aging 
studies [41] (Figure 6). In this model, alterations in 
ribosomal biogenesis play a role in gradually increasing 
the effects on aging. The accumulation of DNA 

mutations induces epimutations during aging, thereby 
inducing transcriptional instability. Because the rate of 
protein translation is proportional to the rate of 
ribosome biogenesis, upregulated protein synthesis is 

 

 
 

Figure 6. The aging snowball effect model. (A) In the case of young cells, transcriptional programs are tightly controlled by epigenetic 
regulators. As a result, balanced cellular protein synthesis and recycling are maintained in the ‘normal healthy state.’ However, 
transcriptional instability increases concomitantly with age. The accumulation of DNA mutations can trigger the recruitment of chromatin 
modifiers, which results in abnormal chromatin structure and transcriptional instability. Thus, the ‘aged state’ becomes an imbalanced state 
wherein cellular protein synthesis and recycling are dysregulated. (B) Aging is the result of accumulated dysregulation and damage that 
results in a “snowball” effect. Accumulated dysregulation and damage is promoted by upregulated protein synthesis during aging. 
Upregulated protein synthesis has an increasingly greater impact on cellular aging, similar to a snowball rolling down a hill. Individual aging 
processes could be affected by targeting protein quality control systems, provided that this is the common aging process. 
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related to disrupted global proteostasis [42]. While a 
normal healthy state maintains balanced cellular protein 
synthesis and recycling, aging induces an imbalanced 
state of protein synthesis and recycling (Figure 6A). In 
the common aging process, upregulated protein 
synthesis exhibits an increasingly greater impact on 
cellular aging, similar to a snowball rolling down a hill. 
Some individual aging processes would be affected via 
interventions of protein quality control systems (Figure 
6B). Intervention of protein quality control systems 
would have induced individual difference in aging.  
 
In summary, we present the first longitudinal 
characterization of transcriptional changes in aging 
NHPs. Our findings indicate that translation-related 
genes, such as those involved in ribosome biogenesis, 
are upregulated in normal aging. We identified 29 
candidate aging genes that could serve as an attractive 
target for the treatment of aging, or could function as 
biomarkers for aging. However, this is just the 
beginning of our understanding of the aging process. To 
substantially explain our aging hypothesis, our next step 
involves a comprehensive approach to collect integrated 
-omics evidence using genomics, transcriptomics, and 
epigenomics.  
 
MATERIALS AND METHODS 
 
Ethical approval 
 
All animal procedures were conducted based on the 
Guidelines of the Institutional Animal Care and Use 
Committee (KRIBB-AEC-14007, KRIBB-AEC-15031, 
and KRIBB-AEC-16067) at the Korea Research 
Institute of Bioscience and Biotechnology (KRIBB). 
 
Animals and sampling 
 
Nine naturally-aged AGMs were used in this study. 
Their characteristics are summarized in Supplementary 
Table 1. All animals were provided by the National 
Primate Research Center (NPRC) of Korea. In our 
experiments, specific pathogen-free (SPF) animals were 
used. All animals were subjected to a complete physical 
assessment, including viral, bacterial, and parasite 
examinations. On physical examination, SPF animals 
were examined for coat condition, appearance, weight, 
sex, and date of birth. Enzyme immunoassays were 
performed to detect viruses, such as simian herpes B 
virus (BV), simian T-cell lymphotropic/leukemia virus 
(STLV)-1 and -2, simian immunodeficiency virus 
(SIV), simian retrovirus (SRV)-1, -2, and -5, and simian 
virus 40 (SV40). In addition, tests were performed to 
detect Mycobacterium tuberculosis (TB), Shigella spp., 
Salmonella spp., and pathogenic E. coli. In our SPF 
animals, all these tests were negative. The monkeys 

were housed indoors in individual cages and fed 
commercial monkey chow2 (Harlan) supplemented 
daily with various fruits, and supplied water ad libitum. 
Environmental conditions were controlled to provide a 
constant temperature of 24 ± 2° C, 50 ± 5% relative 
humidity, 100% fresh air at ≥12 room changes/h, and a 
12 h light:dark cycle. Each monkey was given access to 
environmental enrichment such as approved toys, 
perches, or music to promote psychological well-being. 
Animal health was monitored by the attending 
veterinarian consistent with the recommendations of the 
Weatherall Report. Nine naturally aged AGMs were 
exposed in the same environment during the study. 
These monkeys were in individual cages of the same 
indoor room and were provided the same food 
conditions, such as commercial monkey feed and fruits. 
 
Peripheral blood samples from nine aged AGMs of 
varying ages from 15-23 years old were collected three 
times over a period of two years (Supplementary Table 
1). The collected whole blood samples were analyzed 
the cell type composition by hematology analyzer 
(Hemavet950, Drew Scientific, USA) (Supplementary 
Figure 4). We performed paired t-test to considerate 
about potential confounding effects from collected 
blood samples at each time point. As a result of paired t-
test, there was no statistical difference in blood cell 
counts between each group except monocyte at TP1 vs 
TP2 (Supplementary Table 4). Furthermore, blood 
samples were collected by venipuncture and stored in 
PAXgene tubes (PreAnalytiX, Hombrechtikon, 
Switzerland) for RNA extraction and sequencing. 
Peripheral blood sampling processes and methods were 
always same at each time-point. 
 
RNA extraction and high-throughput paired-end 
RNA sequencing 
 
Total RNA was extracted using PAXgene Blood RNA 
Kits (Qiagen, Hilden, Germany). RNase-free DNase 
(Qiagen, GmbH, Hilden, Germany) was used to 
eliminate DNA contamination from the total RNA 
preparations. The quality of the prepared total RNA was 
evaluated using an Agilent 2100 Bioanalyzer (Agilent, 
USA). Each total RNA had an RNA integrity number 
(RIN) >7.5. cDNA libraries for RNA-seq were prepared 
from RNA samples using oligo d(T) primer. 
Constructed libraries were sequenced using an Illumina 
HiSeq 2000 sequencer (Illumina, USA). We performed 
paired t-test to considerate about potential confounding 
effects from RNA extraction and RNA sequencing of 
samples at each time point. As a result of paired  
t-test, there was no statistical difference in total RNA 
quality between each group (Supplementary Table 5). 
Although, RNA extraction, library preparation, and 
sequencing were performed at each time-point, were 
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always performed by the same technician to minimize 
confounding effects. 
 
RNA-seq data processing 
 
Images generated by the HiSeq 2000 were converted 
into nucleotide sequences by a base-calling pipeline and 
stored in FASTQ format. Low-quality reads were 
removed prior to mapping and assembly. Three criteria 
were used to filter out raw dirty reads, i.e., 1) reads with 
more than 10 % ‘N’ bases; 2) low-quality reads which 
had more than 40 % QA ≤ 20 bases; and 3) reads with 
an average quality score < 20. All subsequent analyses 
used clean reads. 
 
Clean reads were mapped to the reference Chlorocebus 
sabaeus transcriptome sequences from the Ensembl 
database (ChlSab1.1), using Bowtie2 and Tophat 2.0.1. 
Mismatches ≤ 3 base pairs were allowed in each read 
alignment. FPKM values for each gene were calculated, 
and DEGs were identified using this value as described 
in the Results section. For genes with more than one 
alternative transcript, the longest transcript was used to 
calculate the FPKM value. 
 
Gene expression analysis 
 
Hierarchical clustering analysis was performed using 
Cluster 3.0. All FPKM values were increased by 1 and 
log2 transformed. The data were adjusted by centering 
genes at the median. Clustering was performed using 
differential distance metrics and average linkage as the 
method. TreeView Software was used to visualize  
the clustering results. Differential gene expression 
analysis was performed using Cuffdiff. The differential 
expression p-values were adjusted using the Benjamini 
and Hochberg procedure, resulting in the false discovery 
rate (FDR), which was set to an FDR < 0.05 cutoff.  
Venn diagrams were constructed using online Venny 
software (http://bioinfogp.cnb.csic.es/tools/venny/) to 
identify aging-associated genes. Then, aging-associated 
genes were defined as the intersecting DEGs between 
each time point. For time series expression analysis,  
p-values were used as the main filter to identify genes 
with differential expression across the time points. 
Therefore, genes with log2FC > 0 and p-value < 0.05 
were classified as being upregulated, while genes with 
log2FC < 0 and p-value < 0.05 were classified as being 
downregulated. 
 
Functional annotation 
 
GO slim terms were analyzed using the PANTHER 
Classification System (http://www.pantherdb.org/) 
version 14.0. Functional annotation and KEGG pathway 
analysis were performed using DAVID (Database for 

Annotation, Visualization, and Integrated Discovery, 
version 6.8; http://david.abcc.ncifcrf.gov). 
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AGM: African green monkey; DEGs: differentially 
expressed genes; GO: gene ontology; NHPs: non-human 
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Kyoto Encyclopedia of Genes and Genomes; OWMs: 
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leukemia virus; SIV: simian immunodeficiency virus; 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 
 

 
 

Supplementary Figure 1. Overview of the experimental design and data analysis steps used for the study. 
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Supplementary Figure 2. Venn diagrams showing the overlap of differentially expressed genes (DEGs) from pairwise 
comparisons of each time point in each individual. Venn diagrams were constructed using Venny online software. 

 



www.aging-us.com 862 AGING 

 
 

Supplementary Figure 3. Time series DEG analysis. DEGs were clustered into nine groups according to differential expression patterns 
across a time series, i.e., up-up (29 genes), up-unchanged (1,034 genes), up-down (327 genes), unchanged-up (519 genes), unchanged-
unchanged (21,977 genes), unchanged-down (167 genes), down-up (1,080 genes), down-unchanged (944 genes), and down-down (not 
detected). Time points are plotted on the X-axis, and average fold change is plotted on the Y-axis. 

 

 
 

Supplementary Figure 4. Distribution of blood cells. Cell type frequency estimates (in %). Triple pairs of columns were three time-
points samples of the same individual. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Table 3. 
 
Supplementary Table 1. Sample information used in this study. 

Species Identical 
No. 

Sex 
(F/M) Birth 1st year (TP1) 2nd year (TP2) 3rd year (TP3) 

Age Age Age 

Chlorocebus aethiops 

A009 M February 5, 1991 23 24 25 
A014 F April 20, 1992 22 23 24 
A017 F August 8, 1992 22 23 24 
A022 F November 12, 1993 21 22 23 
A023 F December 18, 1993 21 22 23 
A024 F March 27, 1994 20 21 22 
A026 F  June 16, 1994 20 21 22 
A028 F August 27, 1995 19 20 21 
A030 M October 1, 1999 15 16 17 

 

Supplementary Table 2. Summary of the whole-transcriptome sequencing data used in this study. 

Sample Total read 
number  Clean reads  Clean bases 

% 
>=Q20 
bases 

GC(%) 
Uniquely 
mapped 

reads 

Mapping 
rate (%) 

A009_TP1 45,301,314 43,323,392 (95.6%)  4,332,339,200  98.76% 55.74% 36,488,069 84.2% 
A014_TP1 47,470,650 45,024,446 (94.8%)  4,502,444,600  98.71% 55.90% 37,676,100 83.7% 
A017_TP1 46,834,102 44,680,648 (95.4%)  4,468,064,800  98.77% 54.81% 38,165,871 85.4% 
A022_TP1 46,924,778 44,894,386 (95.7%)  4,489,438,600  98.80% 54.55% 39,893,408 88.9% 
A023_TP1 59,568,668 56,200,418 (94.3%)  5,620,041,800  98.47% 55.45% 48,230,648 85.8% 
A024_TP1 49,561,172 47,576,264 (96.0%)  4,757,626,400  98.81% 56.02% 39,524,017 83.1% 
A026_TP1 51,322,386 48,434,668 (94.4%)  4,843,466,800  98.50% 53.54% 41,257,942 85.2% 
A028_TP1 44,904,020 42,838,080 (95.4%)  4,283,808,000  98.72% 55.15% 36,417,864 85.0% 
A030_TP1 48,547,742 46,015,192 (94.8%)  4,601,519,200  98.59% 58.99% 37,872,906 82.3% 
A009_TP2 57,665,986 56,416,626 (97.8%)  5,698,079,226  97.49% 56.26% 52,126,315 92.4% 
A014_TP2 59,140,718 57,749,646 (97.6%)  5,832,714,246  97.69% 56.76% 52,795,462 91.4% 
A017_TP2 54,164,580 52,825,084 (97.5%)  5,335,333,484  97.32% 51.93% 45,950,900 87.0% 
A022_TP2 54,043,820 52,595,934 (97.3%)  5,312,189,334  97.12% 54.43% 46,766,815 88.9% 
A023_TP2 55,098,080 53,515,516 (97.1%)  5,405,067,116  97.15% 55.58% 47,224,418 88.2% 
A024_TP2 62,305,174 60,598,090 (97.3%)  6,120,407,090  97.23% 54.68% 54,512,504 90.0% 
A026_TP2 60,312,888 58,368,442 (96.8%)  5,895,212,642  96.91% 51.75% 50,263,252 86.1% 
A028_TP2 58,472,078 56,823,852 (97.2%)  5,739,209,052  97.24% 55.50% 50,034,000 88.1% 
A030_TP2 54,537,530 52,875,002 (97.0%)  5,340,375,202  97.16% 55.24% 47,169,159 89.2% 
A009_TP3 58,391,966 57,430,426 (98.4%)  5,800,473,026  97.94% 56.96% 50,712,008 88.3% 
A014_TP3 43,120,278 42,268,894 (98.0%)  4,269,158,294  97.82% 55.95% 37,376,907 88.4% 
A017_TP3 50,063,882 49,285,080 (98.4%)  4,977,793,080  97.99% 55.34% 43,765,097 88.8% 
A022_TP3 58,666,010 57,690,134 (98.3%)  5,826,703,534  97.89% 56.70% 50,868,104 88.2% 
A023_TP3 51,392,162 50,689,146 (98.6%)  5,119,603,746  97.28% 55.87% 44,505,333 87.8% 
A024_TP3 51,849,460 51,032,314 (98.4%)  5,154,263,714  97.97% 57.34% 45,655,035 89.5% 
A026_TP3 52,834,220 52,040,756 (98.5%)  5,256,116,356  97.24% 54.81% 45,127,840 86.7% 
A028_TP3 50,839,704 50,039,096 (98.4%)  5,053,948,696  97.98% 56.48% 44,695,945 89.3% 
A030_TP3 59,264,442 58,377,208 (98.5%)  5,896,098,008  98.00% 57.34% 52,561,099 90.0% 
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Supplementary Table 3. Pearson’s correlation coefficient in each sample. 

 
Supplementary Table 4. Summary of paired t-test results for blood cell types. 

Cell types p-value (Paired t-test) 
TP1 vs. TP2 TP1 vs. TP3 TP2 vs. TP3 

Neutrophil 0.594 0.901 0.681 
Eosinophil 0.058 0.801 0.058 
Basophil 0.240 0.624 0.167 
Lymphcyte 0.065 0.418 0.420 
Monocyte 0.022 0.443 0.096 

 

Supplementary Table 5. Summary of paired t-test results for total RNA quality. 

Total RNA  
quality 

p-value (Paired t-test) 
TP1 vs. TP2 TP1 vs. TP3 TP2 vs. TP3 

RIN 0.806 0.403 0.486 
Concentration 0.497 0.519 0.279 

 


