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Objective. The purpose of our research is to systematically explore the multiple mechanisms of Hemerocallis fulva Flowers (HF) on
depressive disorder (DD). Methods. The components of HF were searched from the literature. The targets of components were
obtained from PharmMapper. After that, Cytoscape software was used to build a component-target network. The targets of DD
were collected from DisGeNET, PharmGKB, TTD, and OMIM. Protein-protein interactions (PPIs) among the DD targets were
executed to screen the key targets. Afterward, the GO and KEGG pathway enrichment analysis were performed by the KOBAS
database. A compound-target-KEGG pathway network was built to analyze the key compounds and targets. Finally, the potential
active substances and targets were validated by molecular docking. Resulfs. A total of 55 active compounds in HF, 646 compound-
related targets, and 527 DD-related targets were identified from public databases. After treated with PPI, 219 key targets of DD
were acquired. The gene enrichment analysis suggested that HF probably benefits DD patients by modulating pathways related to
the nervous system, endocrine system, amino acid metabolism, and signal transduction. The network analysis showed the critical
components and targets of HF on DD. Results of molecular docking increased the reliability of this study. Conclusions. It predicted
and verified the pharmacological and molecular mechanism of HF against DD from a holistic perspective, which will also lay a
foundation for further experimental research and rational clinical application of DD.

1. Introduction affect relationships with family and friends. However, the

specific pathophysiology basis of the development of de-

Depressive disorder (DD) is a severe and occasionally fatal
mental disorder that occurs in 4.4% to 20% of the general
population. It happens at any time peaking in older
adulthood, and it is more prevalent in women than in men.
According to the world health organization (WHO) re-
port, depression will be the second most burdensome
disease in terms of treatment and care costs by 2020 [1, 2].
Treatment for depression is necessary because depression
can interfere with one's daily life, which can significantly

pression remains unclear [3]. As a critical component of
complementary and alternative medicine, Traditional
Chinese Medicine (TCM) plays an essential role in treating
depression.

TCM is a multicomponent, multitarget, and multi-
pathway therapy, which can achieve its unique therapeutic
effect by adjusting the biological network of the human
body system. Therefore, it is difficult to detect the exact
mechanism of TCM only through traditional experimental


mailto:zsy5811321@126.com
mailto:jiayingsyphu@126.com
https://orcid.org/0000-0002-2444-1893
https://orcid.org/0000-0002-4407-9123
https://orcid.org/0000-0001-8826-7727
https://orcid.org/0000-0003-3081-8965
https://orcid.org/0000-0003-3799-7986
https://orcid.org/0000-0003-4251-6972
https://orcid.org/0000-0002-1289-4350
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7127129

methods [4]. With the rapid development of bioinformatics,
network pharmacology has become a new and efficient
method to systematically reveal the molecular and phar-
macological mechanisms of TCM [5]. Network pharma-
cology can reflect and elucidate the relationship among
multiple components, multiple targets, and multiple dis-
eases. At the same time, it abstracts the relationship into a
network model and illustrates the action of drugs on the
human biological network from a systematic perspective [6].

Hemerocallis fulva L. is a perennial herb of the Liliaceae
family [7], which is indigenous to Asia, and its flowers are
used as ornamental flowers, as well as for food and medicine.
It was first recorded in the publication Supplement to
Compendium of Materia Medica (Bencao Gangmu Shiyi).
The root, seeding, and flower of Hemerocallis fulva L. are
considered to have sweet, cool, and nontoxic properties and
to be associated with the spleen, liver, and bladder meridians
[8]. Previous investigations revealed its predominant
chemical constituents including alkaloids [9], flavones [10],
terpenes [11], steroidal saponins [12], and phenolic glyco-
sides [13]. According to previous studies, Hemerocallis fulva
Flowers (HF) have been used to treat various diseases in-
cluding depression [14, 15], inflammation [16], insomnia
[17], hepatosis [18], and cancer [19].

However, there were few research studies on the network
pharmacology of HF, and the mechanism of HF in treating
depression was not very clear. In this study, we proposed a
network pharmacology method aiming at uncovering the
active substances and mechanisms of HF in the treatment of
DD. Firstly, the components from HF were searched from
the literature. The components were filtered by the metrics of
oral bioavailability and drug-likeness. The targets were
predicted by PharmMapper. Secondly, protein-protein in-
teractions (PPIs) among the targets associated with DD
searched from the DisGeNET, PharmGKB, TTD, and
OMIM databases were predicted by the STRING database,
and the key targets of DD were acquired. Then, the inter-
section of the compound-compound target network and PPI
network of DD targets was taken to find overlapping targets.
After that, the GO and KEGG pathway enrichment analysis
were performed by KOBAS. The compound-target-pathway
(C-T-P) network was analyzed to obtain the key potential
active substances and targets. Lastly, the key targets were
further validated by molecular docking. The whole frame-
work is shown in Figure 1.

Based on network pharmacology technology, this study
aimed to explore the overall regulatory role of multicom-
ponent, multitarget antidepressants in the molecular-level
system of HF and to provide a theoretical basis for further
experimental study and rational clinical application of HF.

2. Materials and Methods

2.1. Chemical Database Collection and Active Components
Screening. To collect the compounds of HF, we searched the
TCM Integrated Database [20] (TCMID, http://www.
megabionet.org/tcmid/), which records a great deal of in-
formation about herbal ingredients, and the Traditional
Chinese Medicine Systems Pharmacology Database [21]
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(TCMSP, http://Isp.nwu.edu.cn/), a unique systemic phar-
macology platform for Chinese herbal medicine. Unfortu-
nately, few compounds were collected, except for some
simple amino acid compounds. So, we consulted a lot of
studies [9, 10, 22-28] to collect the compounds of HF. The
chemical structural formulas of HF compounds were drawn
with ChemBioDraw Ultra 14.0.

Absorption, distribution, metabolism, and excretion
(ADME) are used in drug discovery. Appropriate ADME
screening can ensure that these candidate compounds have
suitable pharmacokinetic properties. In this study, two
ADME-related parameters were employed to screen out the
active compounds in HF, including gastrointestinal (GI)
absorption and drug-likeness evaluated by Lipinski’s rule. GI
absorption and drug-likeness were obtained from Swis-
sADME (http://www.swissadme.ch/index.php) [29]. GI
absorption is a pharmacokinetic behavior that is critical to
evaluate the various stages of the drug discovery process. It
can be calculated using an accurate prediction model, the
Brain Or Intestinal EstimateD permeation method
(BOILED-Egg) [30]. Lipinski’s rule of five is a rule of thumb
to evaluate if a chemical compound with certain pharma-
cological or biological activities could be a likely orally active
drug in humans [31, 32]. All screen-out compounds should
follow Lipinski’s rule, and the GI absorption value of
compounds should be high.

2.2. Predicted Compound Targets for HF. The chemical
structural formulas of HF active compounds were saved as
“mol2.” formatted files and treated with the function of
MM2 to optimize the 3D molecular structures by Chem-
Bio3D Ultra 14.0. The 3D molecular structure files of HF
were imported into PharmMapper [33] (http://lilab.ecust.
edu.cn/pharmmapper/), which was an online server that
utilized pharmacophore mapping to approach for potential
drug target identification. In this study, the targets of each
compound obtained from PharmMapper were selected as
potential targets. The details about the selected targets are
described in Table S1.

2.3. Depressive Disorder Targets. The genes associated with
targets of DD were collected from DisGeNET [34] (http://
www.disgenet.org/), PharmGKB [35] (https://www.
pharmgkb.org/), TTD [36] (http://db.idrblab.net/ttd/), and
OMIM (https://omim.org/). We searched these platforms
with the keywords “depressive disorder,” “depression,” or
“major depressive disorder.” Humans’ protein targets were
selected in this study. The details about the selected targets
are described in Table S2.

2.4. Protein-Protein Interaction. STRING is a database,
which can predict protein-protein interactions. The inter-
actions include direct (physical) and indirect (functional)
associations. They stem from computational prediction,
from knowledge transfer between organisms, and from
interactions aggregated from other (primary) databases. The
data of protein-protein interaction (PPI) were obtained from
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FiGure 1: Workflow of the network pharmacology analysis of HF constituents against DD
2.5. Network Construction. Network construction was exe-
cuted as follows: (1) compound-compound target network
was structured by connecting active compounds and

the STRING database [37] (https://string-db.org/, ver. 11.0),
with the species limited to “Homo sapiens.” PPIs with
comprehensive scores >0.7 were reserved in this study.
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corresponding targets; (2) PPI network of DD targets was
built by linking DD targets; (3) compound-DD target-
KEGG pathway network was established by connecting
compounds, overlapping targets between compound
targets and core DD targets, and top 15 KEGG pathways.
In network interactions, nodes represent compounds,
targets, and KEGG pathways, while edges represent the
interaction of each other. The network visualization soft-
ware Cytoscape [38] (http://cytoscape.org/, ver. 3.7.2) was
used to show all the above networks. The software is well
suited for visualizing molecular interactions in networks.
Besides, the tool of NetworkAnalyzer [39] provides a
powerful set of data integration, analysis, and visualization
capabilities for analyzing complex networks. For each node
in the interactive network, three metrics are calculated to
evaluate its topology characteristics. “Degree” is defined as
the number of edges of node i. “Node betweenness” rep-
resents the number of shortest paths between pairs of nodes
passing through node i. “Closeness” is the reciprocal of the
sum of distances between node i and the other nodes.

2.6. Gene Ontology and KEGG Pathway Enrichment.
Gene Ontology (GO) is a bioinformatics project aimed to
unify the characteristics of genes and genetic products in all
species. Semantic lexical criteria that define and describe the
function of genes and proteins can be updated for further
study. GO has three classifications, including molecular
function (MF), biological process (BP), and cell component
(CC). MF describes the activity of gene products in molecular
biology, such as catalytic or binding activity. BP is a multistep
process composed of ordered molecular functions. CC refers
to organelles or gene product groups and represents the
role of gene products. Kyoto Encyclopedia of Genes and
Genomes (KEGG) is a database resource for under-
standing high-level functions and utilities of the biological
system, such as the cell, the organism, and the ecosystem,
from molecular-level information, especially large-scale
molecular datasets generated by genome sequencing and
other high-throughput experimental technologies.

KOBAS is a widely used gene set enrichment (GSE)
analysis tool [40]. The current version is KOBAS 3.0, which
was released at the end of 2019, covering 5,945 species with
incorporated knowledge. The enrichment module can accept
the gene list or gene expression data as input and generate
the enriched gene set, corresponding name, p value, en-
richment probability, and enrichment score according to
the results of various methods. In this study, KOBAS was
applied to perform GO and KEGG pathway enrichment
analysis. Enriched GO terms and pathways were defined as
those p value <0.05. The pvalue was corrected using the
method introduced by Benjamini and Hochberg [41]. It
controlled the false discovery rate, which was the expected
percentage of rejected assumptions. Therefore, this
method is more effective than others. The horizontal bar of
GO enrichment and bubble chart of KEGG pathway en-
richment were plotted by using the bioinformatic tool
(http://www.bioinformatics.com.cn/), which was a free
online data analysis platform.
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2.7. Molecular Docking Verification. Molecular docking
plays an important role in rational drug design. It is often
used to predict the binding sites and binding postures
between candidate drugs and targets, as well as to estimate
the binding affinity of molecules [42, 43]. Surflex-Dock is
an accurate docking program based on a protomol that
can be automatically generated or user-defined. In this
study, the Surflex-Dock plug-in included in the Sybyl-X
(version 2.0, TRIPOS Inc.) was used to perform molecular
docking. The binding ability was evaluated using a scoring
function analysis, and the higher docking score repre-
sented better binding ability. The files of protein molec-
ular structures were obtained from the PDB database
(https://www.rcsb.org/). For docking studies with Surflex-
Dock, the ligand-binding site protomol was generated
using the ligand from the PDB file. The visualization of
intermolecular forces between the candidate compound
and their potential target was performed on Discovery
Studio 2020 program.

3. Results

3.1. Compounds in HF and Pharmacokinetic Evaluation.
After consulting literature, 81 herbal compounds with
structural information were gathered. After the GI ab-
sorption and drug-likeness process, some compounds that
did not meet the ADME criteria were added back into the
database because of their high bioactivity proved in previous
studies [14, 44-52]. Eventually, 55 compounds were re-
served, which meant that these compounds might be the
active compounds of HF. The detailed information is shown
in Table 1.

3.2. Compound-Compound Target Network Analysis. The
compound-compound target network is depicted in
Figure 2, including 701 nodes (55 active compound nodes
and 646 compound target nodes) and 3112 edges. In this
network, the rectangle represented the target, and the oval
represented the compound. We found that many targets
were hit by multiple compounds; for example, vascular
endothelial growth factor A (VEGFA) and albumin (ALB)
were together modulated by multiple ingredients, including
hesperidin and quercetin-3-O-f-D-glucopyranoside. The
average number of targets per component is 56.6, and the
mean degree of components per target is 4.8. It clearly
showed that HF fit the multicomponent and multitarget
characteristics of TCM. Consequently, we not only obtained
an approximate observation of the relationship between
bioactive compounds and compound targets, but also dis-
covered the potential pharmacological effects of HF from
this network.

3.3. Disease PPI Network Construction. Based on the gene
database DisGeNET, PharmGKB, TTD, and OMIM, there
were a total of 527 candidate targets relevant to depressive
disorder. After PPI was acquired, there were 446 nodes and
3905 edges in the DD target PPI network (Figure 3). The
results of network analysis showed that there were 219 nodes


http://cytoscape.org/
http://www.bioinformatics.com.cn/
https://www.rcsb.org/

Evidence-Based Complementary and Alternative Medicine

TasLE 1: The information of active components in Hemerocallis fulva flowers (HF).

Molecular Molecular GI Conform to
ID Name - Structure . rules of
formula weight absorption o
Lipinski
0,
(-)-(15,35)-1-Methyl-1, 2, 3, 4-
HF0l  tetrahydro-f-carboline-3-carboxylic =~ C;3H;4N,0, 230.3 H High Yes
acid 3\
HF02 (+)-Dehydrovomifoliol C3H 305 222.3 High Yes
(3S,5R)-Butyl-3-hydroxy-2- .
HF03 oxopyrrolidine-5-carboxylate Col1sNOy 201.2 High Yes
HEF04 (S)-2,4-Dibutoxy-3-(hydroxymethyl) C1aHy0, 256.3 High Yes
cyclopent-2-en-1-one
HF05 (S)-Abscisic acid Cy5H,00,4 264.3 High Yes
HF06 2'-Deoxyadenosine C1oH3N505 251.1 High Yes
Hroy > 6-EPOXy-3 'hy‘;r_‘:;’;'%megas“gmen’ Ci13H,005 2243 High Yes
HF08 5-O-p-Coumaroyl-1,5-quinide lactone  C;cH;40; 320.3 High Yes
H(&JM
HF09 5-O-p-Coumaroylquinic acid butyl CroHcOs 3944 O High Yes
ester 51—10/\/\@\
o
HF10 5-O—p—C0umar0£?eL;1mc acid methyl C1yH05 3523 lm«iﬁj\/\@\ High Yes
oo
HF11 Apigenin Cy5H 005 270.3 () High Yes
HF12 Catechin C5H,404 290.1 High Yes

HF13 Chlorogenic acid Ci6H 1309 354.3 HOQ/\)OLOW& Low No
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TaBLE 1: Continued.

Molecular Molecular GI Conform to
ID Name ;i Structure . rules of
formula weight absorption o
Lipinski
o N
HF14 Chrysin Cy5H,004 254.3 O | High Yes
HO O,
o ) .
HF15 Daidzein Ci5H,004 254.3 O High Yes
HF16 Dehydrololiolide C1H 1405 194.2 ¢ High Yes
HF17 Ellagic acid C1.HOg 302.2 o O O o High Yes
HF18 -)-Epicatechin C;5H,40 201 [ T " y High Yes
(-)-Ep 15011406 Hoo"'z,OH g

HF19 Epigallocatechin gallate Cy,H 301, 458.4 % Low No

HO, o
HF20 Fulvanine D CyoH,sNOs 229.2 \d{% High Yes

HO
HF21 Galangin Cy5H,005 270.3 O \ High Yes
OH
O /N \ /o
HF22 Hemerocallisamine 1 C3H15N,04 298.3 oA Ny High Yes
o o
HEF23 Hemerocallisamine II C,0H5NO, 181.2 S /N\ A High Yes
HF24 Hemerocallisamine III CoH5NO, 213.2 "N/Q High Yes
/Z’;
HO,, /
0.
HEF25 Hemerocallisamine IV CioH5NOy 213.2 N High Yes

HEF26 Hemerocallisamine V CoH3NO, 199.2 /:?“‘Q High Yes

Ho,, R
HF27 Hemerocallisamine VI CoH;;NO, 197.2 /:é‘jg High Yes
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TaBLE 1: Continued.

Molecular Molecular GI Conform to

ID Name ;i Structure . rules of

formula weight absorption o

Lipinski
HF28 Hemerocallisamine VII C;1H{7NOs5 243.2 High Yes
HF29 Hesperidin CysH340,5 610.6 Low No
HF30 Hydroxydihydrobovolide C1H 505 198.3 High Yes
HF31 Isololiolide C1H 603 196.3 High Yes
HF32 Kaempherol C15H,00¢ 286.25 High Yes
HF33 Linoleic acid C,3H3,0, 280.5 High No
HEF34 Loliolide C1H,605 196.3 High Yes
HF35 Longitubanine A Ci1oH,6N,05 2443 q ' High Yes
HF36 Longitubanine B C1oH,6N,04 2283 q High Yes
HF37 Luteolin Cy5H;005 286.0 O High Yes

COOH
HF38 Lycoperodine-1 C;,H,N,0, 216.2 v | I High Yes
(‘) 0 O OH
Methyl 2,4-dihydroxy-6-(4- Ho .
HE39 hydroxyphenethyl)-3-methylbenzoate Ci7H1505 3023 O High Yes
HO O OH

HF40 Morin CysH,00; 3023 (1 High Yes
HF41 Myricetin Ci5H,;00g4 318.3 Low No
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TaBLE 1: Continued.

Molecular Molecular GI Conform to
ID Name ;i Structure . rules of
formula weight absorption o
Lipinski
HF42 Naringenin C15H1,05 272.3 \Q%J High Yes
DU
HF43 Naringin CyyH3,014 580.6 LY T Low No
A,
OH
HF44 Pinocembrin CysH 0, 256.3 @ High Yes

HF45 Prunasin C1,H,,NOg 295.3 Q\(J# High Yes

H CN
HF46 Pseudolaroside C C14H,505 314.3 ‘ho L High Yes
OH
OH O
OH
HF47 Quercetin C15H,00, 3023, g y 0 on High Yes
OH
OH
HO. 0.
HF48 Quercetin-3-O-rutinoside C,7H300,6 610.5 ] . o\gﬁ\ou Low No
0- HO ot
OH O l-%)(‘J‘H
" OH
HF49 Quercetin-3-O-f-D-galactopyranoside ~ C,H,,0;, 464.4 . HQ on Low No
OH on
HO. 0.
HF50 Quercetin-3-O-3-D-glucopyranoside C51H5004, 464.4 ] Low No

HE51 Rosin CysHy0Og 296.3 Q/vwﬁ High Yes

HF52 Salidroside C14H,,0, 300.3 \C\A"@i\ﬁi High Yes

J
HF53 Vitexin C51H50040 432.4 32/@05\@\% Low No

HF54 Wogonin C16H 1,05 284.3 High Yes

HF55 a-Linolenic acid C,5H300, 278.4 o High No
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F1GURE 2: Compound-compound target network (red ellipses represent compounds contained in HF, blue rectangles represent compound

targets).

whose degree value was higher than the median value, which
meant that these targets were likely to be the key targets in
the development of DD. The targets in the interior circle
showed more interactions with targets than those in the
exterior. After the intersection process, we found that there
were 18 overlapping targets between compound targets of
HF and key targets of DD. They are ALB, amyloid-beta
precursor protein (APP), androgen receptor (AR), voltage-
dependent L-type calcium channel subunit alpha-1C
(CACNAI1CQ), calcium-dependent protein kinase II alpha
(CAMK2A), corticoliberin (CRH), discs large MAGUK
scaffold protein 3 (DLG3), FK506 binding protein 4
(FKBP4), glutamate decarboxylase 2 (GAD2), monoamine
oxidase A (MAOA), monoamine oxidase B (MAOB), neural
cell adhesion molecule 1 (NCAM1), nitric oxide synthase 2

(NOS2), nuclear receptor subfamily 3 group C member 2
(NR3C2), Rac family small GTPase 1 (RAC1), superoxide
dismutase 2 (SOD2), transthyretin (TTR), and VEGFA,
which meant that these targets might be the key targets for
HF treating DD.

3.4. Potential Synergistic Mechanisms Analysis of HF Target-
DD Target Network

3.4.1. GO Enrichment Analysis. After GO enrichment anal-
ysis of 18 overlapping targets, a total of 42 GO entries were
found with the corrected pvalue <0.05. Figure 4 lists the top10
entries of each category, namely, BP, CC, and MF. BP included
regulation of circadian sleep/wake cycle (GO:0042749),
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F1GURE 3: PPI network of DD targets (yellow circles represent nonkey targets of DD, orange circles represent key targets of DD, red circles

represent overlapping targets between the compound target of HF and key targets of DD).

programmed cell death (GO:0012501), head development
(GO:0060322), metabolic process (GO: 0008152), and positive
regulation of calcium ijon transport (GO:0051928). CC in-
cluded main axon (GO:0044304), vesicle lumen (GO:
0031983), cation channel complex (GO:0034703), synapse
(GO:0045202), and vesicle (GO: 0031982). MF included pro-
tein binding (GO: 0005515), cation binding (GO: 0043169), and
hydrolase activity (GO:0016787). The GO entries mentioned
above were strongly associated with the central nervous system
and mental diseases. This demonstrated that HF probably
worked by engaging in the above biological processes, cellular
components, and molecular functions.

3.4.2. KEGG Pathway Analysis to Explore the Therapeutic
Mechanisms of HF on DD. The 18 overlapping targets were
further mapped to 34 pathways with p<0.05. The 34
pathways belonged to four categories: human diseases (9/
34), organismal systems (13/34), environmental information

processing (4/34), and metabolism (8/34). Thus, our findings
showed that HF integrated multiple signaling pathways to
the nervous system, endocrine system, amino acid meta-
bolism, signal transduction, and substance dependence.
Based on the results of pathway analysis, it was found that
these high-degree pathways were closely related to the DD,
such as serotonergic synapse and dopaminergic synapse. The
top 15 KEGG pathways are shown in Figure 5.

3.4.3. Compound-Target-KEGG Pathway Network Analysis.
The details of KEGG pathways are described in Table 2, and
the compound-target-pathway (C-T-P) network is shown in
Figure 6, which contained 52 nodes including top 15 KEGG
pathways, 10 targets related to top 15 KEGG pathways and 27
compounds, and 178 edges. The network was calculated to find
the major nodes of compounds and targets. Finally, 12
compound nodes with their values of degree more than av-
erage were selected as crucial compound nodes, namely,
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FIGURE 4: GO enrichment analysis for 18 overlapping targets.

KEGG enrichment analysis

Amphetamine addiction - o

Serotonergic synapse

Dopaminergic synapse

Arginine and proline metabolism

HIF-1 signaling pathway

Phenylalanine metabolism

Cushing syndrome

Alcoholism

Histidine metabolism

KEGG pathways
°

Calcium signaling pathway - o

Tyrosine metabolism

Metabolic pathways

Glycine, serine and threonine metabolism - °

Tryptophan metabolism - °

Cocaine addiction - °
y

0.00 0.03 0.06 0.09 0.12
Rich factor

F1Gure 5: KEGG enrichment analysis for 18 overlapping targets.

Count
« 2
@3
[ ¢!
®;

-log10 (p value)

11



12 Evidence-Based Complementary and Alternative Medicine
TaBLE 2: Pathways associated with 18 overlapping targets according to enrichment analysis base on KEGG.

ID Pathway pvalue Count Gene IDs

hsa05031 Amphetamine addiction 7.39E-09 4 MAOB, MAOA, CACNA1C, CAMK2A

hsa04726 Serotonergic synapse 5.65E-08 4 MAOB, APP, CACNA1C, MAOA

hsa04728 Dopaminergic synapse 9.39E-08 4 MAOB, MAOA, CACNA1C, CAMK2A

hsa00330 Arginine and proline metabolism 6.34E-07 3 MAOB, NOS2, MAOA

hsa04066 HIF-1 signaling pathway 6.10E-06 3 NOS2, VEGFA, CAMK2A

hsa00360 Phenylalanine metabolism 1.64E-05 2 MAOB, MAOA

hsa04934 Cushing syndrome 1.71E-05 3 CRH, CACNA1C, CAMK2A

hsa05034 Alcoholism 2.65E-05 3 MAOB, CRH, MAOA

hsa00340 Histidine metabolism 2.88E-05 2 MAOB, MAOA

hsa04020 Calcium signaling pathway 3.25E-05 3 NOS2, CACNA1C, CAMK2A

hsa00350 Tyrosine metabolism 6.73E-05 2 MAOB, MAOA

hsa01100 Metabolic pathways 6.98E-05 5 MAOB, NOS2, AR, MAOA, GAD2

hsa00260 Glycine, serine, and threonine metabolism 8.23E-05 2 MAOB, MAOA

hsa00380 Tryptophan metabolism 9.04E-05 2 MAOB, MAOA

hsa05030 Cocaine addiction 1.22E-04 2 MAOB, MAOA

105031

5204726

hsa04728

hsa00330

FIGURE 6: Compound-target-KEGG pathway network (red ellipses represent compounds contained in HF, blue rectangles represent

compound targets, purple rhombuses represent KEGG pathway).

naringin, (S)-2,4-dibutoxy-3-(hydroxymethyl)cyclopent-2-en-
1-one, 5-O-p-coumaroylquinic acid butyl ester, hesperi-
din, lycoperodine-1, (-)-(1S,3S)-1-methyl-1,2,3,4-tetrahydro-
B-carboline-3-carboxylic acid, hydroxydihydrobovolide, epi-
gallocatechin gallate (EGCG), prunasin, quercetin-3-O-$-D-
galactopyranoside, vitexin, and a-linolenic acid. It indicated
that these compounds might play a more important role than
others in the treatment of depressive disorder with HF. Five
target nodes with values of degree, betweenness, and closeness
more than average were selected as key target nodes, namely,
MAOA, MAOB, AR, CAMK2A, and GAD?2. It indicated that
these targets may be crucial to the treatment of depressive
disorder with HF.

3.5. Molecular Docking Results and Analysis. To verify the
top 5 key targets and their interacting compounds, the
molecular docking simulation was carried out by the Surflex-
Dock method. As the result in Table 3illustrated, most
compounds had strong interactions with their targets.
The average docking scores of compounds were more

than 6. The results confirmed that most of these potential
active compounds had strong binding affinities with the
key targets, and the present network pharmacology method
was reasonable. We take lycoperodine-1, (-)-(1s,3s)-1-
methyl-1,2,3,4-tetrahydro-f-carboline-3-carboxylic  acid,
and 5-O-p-coumaroylquinic acid butyl ester as examples to
show the visualization of intermolecular forces between
compounds and MAOA target, which are displayed in
Figure 7.

4. Discussion

Researchers have conducted a large number of studies to
explore the pathogenesis of depression, but its exact
pathogenesis is still unclear. The supposed pathogenesis of
depression is the epigenetic hypothesis, neurotransmitter
hypothesis, neurotrophic regeneration hypothesis, neuro-
kinin hypothesis, neuroendocrine dysfunction hypothesis,
and immune system abnormality hypothesis [53]. The
research strategy of network pharmacology provides a
unique and innovative pathway to study the mechanism of
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TaBLE 3: Results of molecular docking of 5 key targets.

1D Name Target PDB ID Total score
HFO01 (-)-(1s, 3s)-1-Methyl-1,2,3,4-tetrahydro-f-carboline-3-carboxylic acid MAOA 2bxr 6.764
HEF09 5-O-p-Coumaroylquinic acid butyl ester MAOA 2bxr 9.395
HF38 Lycoperodine-1 MAOA 2bxr 6.035
HF30 Hydroxydihydrobovolide MAOB 2bk3 6.579
HF04 (s)-2,4-Dibutoxy-3-(hydroxymethyl)cyclopent-2-en-1-one AR 3b68 8.112
HF09 5-0-p-Coumaroylquinic acid butyl ester AR 3b68 7.554
HF38 Lycoperodine-1 AR 3b68 4.619
HF43 Naringin AR 3b68 -0.167
HF53 Vitexin AR 3b68 4.508
HEF55 a-Linolenic acid AR 3b68 10.392
HF04 (s)-2,4-Dibutoxy-3-(hydroxymethyl)cyclopent-2-en-1-one CAMK2A 2vz6 7.689
HF19 Epigallocatechin gallate CAMK2A 2vz6 8.921
HF29 Hesperidin CAMK2A 2vz6 7.035
HF43 Naringin CAMK2A 2vz6 4.630
HF49 Quercetin-3-o0-f-d-galactopyranoside CAMK2A 2vz6 5.367
HFO01 (-)-(1s,3s)-1-Methyl-1,2,3,4-tetrahydro-f-carboline-3-carboxylic acid GAD2 20kk 5.580
HF04 (s)-2,4-Dibutoxy-3-(hydroxymethyl)cyclopent-2-en-1-one GAD2 20kk 6.110
HF09 5-O-p-Coumaroylquinic acid butyl ester GAD2 20kk 5.097
HF29 Hesperidin GAD2 20kk 4.159
HF38 Lycoperodine-1 GAD2 20kk 4.555
HF45 Prunasin GAD2 20kk 4.916

action of multicomponent and multitarget. HF is not only a
nutrient food but also a drug with antidepressant activity.
To elucidate the beneficial effects of HF on DD, the putative
active ingredients and underlying mechanisms were
comprehensively investigated using network
pharmacology.

In the present study, a total of 55 active compounds in
HF were screened by pharmacokinetic analysis, 646
compound-related targets were predicted by PharmMap-
per, and 527 DD-related targets were identified from public
databases. After treated with PPI, 219 key targets in the
development of DD were acquired. Among these targets, 18
targets were shared between compound-related and DD-
related targets. Most entries from GO enrichment play
important parts in the central nervous system, which affect
different steps of synthesis or transportation of neuro-
transmitters. The KEGG pathway analysis proved that
bioactive compounds from HF exerted a synergistic effect
on the treatment of DD through numerous pathways and
brain amino acid metabolism, such as amphetamine ad-
diction, serotonergic synapse, dopaminergic synapse, ar-
ginine and proline metabolism, HIF-1 signaling pathway,
phenylalanine metabolism, alcoholism, calcium signaling
pathway, tyrosine metabolism, and tryptophan
metabolism.

Furthermore, the top 5 key targets and top 12 key
compounds were screened from the C-T-P network. These
five screening targets have been shown to be highly corre-
lated with depression. Monoamine oxidases (MAQs) play a
crucial role during the development of various mental
diseases [8]. There are two MAO isozymes, MAOA and
MAOB. They are flavoenzymes, which bind to the outer
mitochondrial membrane and catalyze the oxidative
transformations of neurotransmitters like serotonin, nor-
epinephrine, and dopamine [54]. However, deficiency of

serotonin can lead to depression, so MAOA and MAOB
were two important targets for DD. Hung et al. [55] found
that loss of AR accelerated the development of depressive-
like behaviors in mice under chronic mild stress (CMS), and
mice with low androgen were more prone to depression-like
behaviors [56]. The gene of CAMK2A has been reported to
be associated with depression, and the expression of
CAMK?2A was significantly elevated in the depression tissues
by 29% [57]. The role of CAMK2A as a signaling molecule
inside neurons could influence the function of the brain in
learning and memory. The translation regulation of the
protein encoded by the gene could prove the long-term
regulation of potentiation and depression [58]. Glutamate
decarboxylase (GAD) is a rate-limiting enzyme for the
conversion of glutamic acid to gamma-aminobutyric acid
(GABA). GAD2 is an important enzyme that regulates
depression-related neurotransmitters, which shows en-
hanced availability in situations of stress, responding to
short-term demands for GABA [59]. GABAergic dys-
function in schizophrenia and mood disorders was re-
flected by decreased levels of GAD2 [60]. Therefore, HF
may improve depression symptoms by regulating in-
cluding but not limited to MAOA, MAOB, AR, CAMK2A,
and GAD2.

Meanwhile, some of the screened compounds had been
shown to antidepressant activity. It reported that naringin
was a neuroactive flavonoid. It possessed functional bene-
ficial neurobehavioral effects including anxiolytic, antide-
pressant, and memory enhancing [46]. Hesperidin, a well-
known flavanone glycoside mostly found in citrus fruits,
showed neuroprotective and antidepressant activity [61].
EGCG could attenuate the depressive status of mice, and the
underlying mechanism may be related to the reduction of
serum cortisol (CORT) and adrenocorticotropic hormone
(ACTH), downregulation of malonyldialdehyde (MDA),
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MAOA. (a) (-)-(1S,3S)-1-Methyl-1,2,3,4-tetrahydro-f-carboline-3-

carboxylic acid. (b) 5-O-p-Coumaroylquinic acid butyl ester. (c) Lycoperodine-1.

interleukin-1 beta (IL-1p), interleukin 6 (IL-6), indoleamine
2,3-dioxygenase (IDO), and upregulation of superoxide
dismutase (SOD) and glutathione peroxidase (GSH-PX) in
the hippocampus [62]. Quercetin-3-O-3-D-galactopyrano-
side may improve depression-like effects by regulating the
hypothalamic-pituitary-adrenal (HPA) axis and reducing
the level of oxidative stress in the hippocampus [63]. Can
et al. found that the antidepressant-like effect of vitexin was
mediated through an increase in catecholamine levels in the
synaptic cleft [64]. In a study of 150 elderly males from
Crete, omega-3 a-linolenic acid adipose tissue stores were
negatively correlated with depression [65]. The antide-
pressant-like effect of Hemerocallis extract was mainly re-
lated to flavonoids [14], which were similar to our findings.

Our study suggested that, along with these reported com-
pounds, some other putative active ingredients in HF might
also possess antidepressant-like effects with diverse under-
lying mechanisms. Besides that, we also found some po-
tential antidepressant compounds that have not been
reported in the existing literature. They were (-)-(1S,3S)-1-
methyl-1,2,3,4-tetrahydro-f$-carboline-3-carboxylic  acid,
(5)-2,4-dibutoxy-3-(hydroxymethyl)cyclopent-2-en-1-one,
5-O-p-coumaroylquinic acid butyl ester, lycoperodine-1,
hydroxydihydrobovolide, and prunasin. Subsequent exper-
iments could verify their activity.

Molecular docking experiment is a new method that uses
computer simulation of compound structure and related
disease targets to execute molecular docking, calculate and
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analyze the bioactivity of the compound, and screen the
material basis of pharmacodynamics. This method could
quickly and efficiently discover some new bioactive lead
compounds from the database. In this study, molecular
docking results showed that targets predicted by Pharm-
Mapper were reasonable. Most of the screened compounds
and their corresponding targets scored well. The structures
of lycoperodine-1 and (-)-(1S,3S)-1-methyl-1,2,3,4-tetrahy-
dro-f-carboline-3-carboxylic acid are similar to that of
harmine, which was a carboline alkaloid and also was a
MAOA inhibitor [66]. The similar scores of these com-
pounds are also due to their structural similarity, which can
prove the reliability of the molecular docking results.

5. Conclusion

In summary, the present study is the first one that combines
active components, target prediction, network analysis, and
gene enrichment analysis by a network pharmacology
method to elucidate the molecular and pharmacological
mechanism of HF against DD from a systematic perspective.
In this research, we showed multiple targets of HF against
DD for the first time. Based on this neural network model,
active components, targets, and pathways in depressive
disorder were initially explored to provide a preliminary
theoretical basis for the design of subsequently targeted
drugs. The results of molecular docking confirmed that the
present network pharmacology method was reasonable.
Nonetheless, more experiments should be implemented to
verify the validity of our findings in further pharmacological
and molecular research. Moreover, we hope that our study
will be useful for antidepression drug discovery.
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