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Background
The work of this paper is related to functional analytic study of Orlicz sequence space 
as well as composite Orlicz sequence spaces of real number over 2-normed spaces. 
From functional analytic point of view, the Orlicz sequence spaces are the special cases 
of Orlicz spaces studied in Krasnoselskii and Rutisky (1961). Lindenstrauss and Tzaf-
riri (1971) first investigated Orlicz sequence spaces in detail with certain aims in Banach 
space theory.

An Orlicz function is a function M: [0, ∞) →  [0, ∞), which is continuous, nonde-
creasing and convex with M(0) = 0, M(x) > 0 for x > 0, and M(x) → ∞ as x → ∞.

An Orlicz function M is said to satisfy Δ2-condition for all values of x, if there exists 
a constant L  >  0, such that M(2x)  ≤  LM(x) for all x  ≥  0. The Δ2-condition implies 
M(lx) ≤ Lllog2 LM(x) for all x > 0, l > 1. Also an Orlicz function satisfies the inequality 
M(λx) ≤ λM(x) for all λ with 0 < λ < 1 (Rao and Ren 1991).

If convexity of Orlicz function M is replaced by M(x + y) ≤ M(x) + M(y), then the 
function reduces to a modulus function. For more details about this function and its 
subsequent use, one may refer to Krasnoselskii and Rutisky (1961), Kamthan and Gupta 
(1981), Rao and Ren (1991), Ruckle (1973), Maddox (1986), Ghosh and Srivastava (1999), 
Srivastava and Kumar (2010), Altin (2009), Debnath and Saha (2015), and many others.

Lindenstrauss and Tzafriri (1971) used the idea of Orlicz function to construct the 
sequence space
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The space ℓM with the norm

becomes a Banach space which is called an Orlicz sequence space, where w is the fam-
ily of real or complex sequences. Güngör et al. (2004), Esi et al. (2004), Nuray and Gülcü 
(1995), Dutta and Bilgin (2011), Mursaleen et  al. (2001), Ahmad and Bataineh (2001), 
Bektas and Altin (2003), Parashar and Choudhary (1994), Savas (2010), Isik (2012), 
Dutta and Başar (2011), Karakaya and Dutta (2011), Tripathy and Dutta (2012), Dutta 
and Jebril (2013), Khan and Tabassum (2011), Debnath and Debnath (2014), and many 
others have used Orlicz function to construct several new sequence spaces.

Let X be a real linear space with dimension >1 and let ‖.,.‖ be a real-valued function on 
X × X satisfying the following conditions:

(N1) ‖x, y‖ = 0 if and only if x and y are linear dependent;
(N2) ‖x, y‖ = ‖y, x‖;
(N3) ‖αx, y‖ = |α|‖x, y‖ for any real number α;
(N4) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖.

Then ‖.,.‖ is called a 2-norm on X and (X, ‖.,.‖) is called a linear 2-normed space (Gähler 
1965). Some of the basic properties of the 2-norms includes that they are non-negative, 
and ‖x, y + αx‖ = ‖x, y‖ for every x, y ∊ X and any real number α.

A sequence {xn} in a linear 2-normed space (X,  ‖.,.‖) is called a Cauchy sequence 
if limn,m→∞‖xn  −  xm,  z‖  =  0 for all z  ∊  X. A sequence {xn} in a linear 2-nor-
med space (X,  ‖.,.‖) is called a convergent sequence if there is an x  ∊  X such that 
limn→∞‖xn − x, z‖ = 0 for all z ∊ X. A linear 2-normed space in which every Cauchy 
sequence is a convergent sequence is called a 2-Banach space.

The concept of 2-inner product spaces is closely related to linear 2-normed space. For 
a real linear space X of dimension d > 1, let 〈.,.|.〉 be a real-valued function on X × X × X 
which satisfies the following conditions:

(I1) 〈x, x|z〉 ≥ 0; 〈x, x|z〉 = 0 if and only if x and z are linearly dependent;
(I2) 〈x, x|z〉 = 〈z, z|x〉;
(I3) 〈x, y|z〉 = 〈y, x|z〉;
(I4) 〈αx, y|z〉 = α〈x, y|z〉 for any real number α;
(I5) 〈x + x/, y|z〉 = 〈x, y|z〉 + 〈x/, y|z〉.

Then 〈.,.|.〉 is called a 2-inner product on X and (X,  〈.,.|.〉) is called a 2-inner prod-
uct space. In Diminnie et  al. (1973), it is shown that �x, z� = �x, x|z�

1
2 is a 2-norm on 

(X, ‖.,.‖). Hence 2-inner product spaces are 2-normed spaces.

ℓM =

{

x ∈ w :

∞
∑

k=1

(

M

(

|xk |

ρ

))

< ∞, for some ρ > 0

}

.

�x� = inf

{

ρ > 0 :

∞
∑

k=1

(

M

(

|xk |

ρ

))

≤ 1

}
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The details about above and associated notions and results, we refer to the book by 
Freese and Cho (2001). Savas (2010) and Dutta (2010) can be seen for some use of the 
2-norm structure in construction of sequence spaces.

Let P be a subset of the set of all scalar valued sequences w. Now we recall the follow-
ing notions.

A scalar valued paranormed (Maddox 1970) sequence space (P,  gP), where gP is a 
paranorm on P is called monotone paranormed space if x =  (xk) ∊ P, y =  (yk) ∊ P and 
|xk| ≤ |yk| for all k implies gP(x) ≤ gP(y).

P is called normal or solid if y = (yk) ∊ P whenever |yi| ≤ |xi|, i ≥ 1 for some x = (xk) ∊ P.
A sequence space P with linear topology is called a K-space provided each of the maps 

pi: P → C, pi(x) = xi is continuous, i ≥ 1.
A sequence space P is said to be symmetric if (Xπ(k)) ∊ P whenever (Xk) ∊ P, where π is 

permutation of N.
A sequence space P is said to be convergence free if (Xk) ∊ P when (Yk) ∊ P and Yk = 0 

implies Xk = 0.
Let (P, gP) be a paranormed space and (an) ⊂ P, where an =

(

ank
)

. If ank → 0 as n → ∞ 
for each k implies gP(an) → 0 as n → ∞, then we say that the co-ordinate wise conver-
gence implies convergence in gP, e.g., c0, ℓ1, ℓ∞, etc.

The following inequalities (Maddox 1970) will be used throughout the paper.

Proposition 1 Let (pk) be a bounded sequence of strictly positive real numbers with 
0 < pk ≤ sup pk = H, D = max(1, 2H−1). Then

(i) |ak + bk |
pk ≤ D{|ak |

pk + |bk |
pk };

(ii) |�|pk ≤ max(1, [�]H )

The new class F(‖.,.‖, M, p, s) and some other classes
In this section, we construct the new sets to be investigated and give a few descriptions 
of such sets along with intended aims for results concerning the sets and their possible 
extensions and derivatives.

Let (F, gF) be a normal paranormed sequence space with paranorm gF which satisfies 
the following properties:

(i) gF is a monotone paranorm;
(ii)  coordinate wise convergence implies convergence in paranorm gF, which implies 

that for each (Xn) = (Xn
k ) ∈ F , n, k ∈ N,

Let M be a Orlicz function and (N, ‖.,.‖) be a 2-normed space. We now define the new 
class of sequences as follows for every z ∊ N:

where s ≥ 0 and {pk} is a bounded sequence of strictly +ve real numbers with inf pk > 0.

Xn
k → 0 as n → ∞ (for each k) ⇒ gF (X

n) → 0 as n → ∞

F(�., .�,M, p, s) =

{

X = (Xk ) : Xk ∈ N ,

(

k−s

[

M

(

�Xk ,Z�

ρ

)]pk
)

∈ F , for some ρ > 0

}
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This class give rises different other classes of sequences as follows:

where r is any positive integer.

and so on.
We define a function on F(‖., .‖,M, p, s) as follows which is proved to be a paranorm in 

the next section:
For X = (Xk)∊ F(‖.,.‖, M, p, s) and Z ∊ N, 

where T = max(1, H), H = supk pk < ∞ and inf pk > 0.
The above classes of sequences of real numbers give rise to many well known sequence 

spaces on specifying the space F, the Orlicz function M, the bounded sequence {pk} of 
positive real numbers, s ≥  0 and the base space (N, ‖.,.‖). Further, we can derive sev-
eral other similar classes for study. The main results of the paper are obtained using the 
properties of Orlicz functions, 2-norm spaces and most importantly that are of normal 
paranormed spaces with monotone paranorm and coordinate wise convergence prop-
erty. One may find it interesting and useful to study further the sets for several other 
algebraic and topological properties as well as convergence and completeness related 
and geometric properties. The last few results also hint for several other possible rich 
property of the sets.

Main results
In this section, we first examine the linearity of the sets defined above. Then the sets 
will be investigated for completeness under a suitably defined paranorm. Further, the 
sets will be examined for K-space property. The next few results will be given for the 
set F(‖.,.‖,  M,  p,  s) only as for other sets the proofs can be obtained applying similar 
arguments.

Theorem 1 The set F(‖.,.‖, M, p, s) is linear over the set of real numbers R.

Proof Let X = (Xk), Y = (Yk) ∊ F(‖.,.‖, M, p, s) and α,β ∈ R. Then there exist some posi-
tive numbers ρ1 and ρ2 such that for every z ∊ N

F
(

�., .�,Mr
, p, s

)

=

{

X = (Xk) : Xk ∈ N ,

(

k−s

[

Mr

(

�Xk ,Z�

ρ

)]pk
)

∈ F , for some ρ > 0

}

,

F(�., .�,M, s) =

{

X = (Xk) : Xk ∈ N ,

(

k−s

[

M

(

�Xk ,Z�

ρ

)])

∈ F , for some ρ > 0

}

F(�., .�, p, s) =

{

X = (Xk) : Xk ∈ N ,

(

k−s

[(

�Xk ,Z�

ρ

)]pk
)

∈ F , for some ρ > 0

}

(1)g(X) = inf







ρ
pk
T > 0 :

�

gF

�

k−s

�

M

�

�Xk ,Z�

ρ

��pk
��

1
T

≤ 1, k = 1, 2, . . .







,

(

k−s

[

M

(

�Xk ,Z)�

ρ1

)]pk
)

∈ F and

(

k−s

[

M

(

�Xk ,Z)�

ρ2

)]pk
)

∈ F
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Let us choose ρ = max{2|α|ρ1, 2|β|ρ2} so that

where D = max{1, 2H−1}. Thus αX + βY ∊ F(‖.,.‖, M, p, s) and completes the proof.

Theorem 2 F(‖.,.‖, M, p,  s) is a paranormed space under the function g given by the 
Eq. (1).

Proof Since gF is a paranorm on F, by definition g(X) ≥ 0, ∀X ∊ F(‖.,.‖, M, p, s). Clearly, 
ḡ(θ) = 0.

Again, by property (N3) in the definition of 2-norm, g(−X)  =  g(X) holds for all 
X ∊ F(‖.,.‖, M, p, s).

Also, by taking α = β = 1 in the previous theorem and using the fact that gF is mono-
tone, we get g(X + Y) ≤ g(X) + g(Y) for X = (Xk), Y = (Yk) ∊ F(‖.,.‖, M, p, s).

We are only left to show that g is continuous under scalar multiplication.
Let λ be any number. Then for some ρ > 0,

Let r = ρ/|λ|. Then

Since |�|pk ≤ max(1, |�|H ). So, |�|pk/T ≤ (max(1, |�|H ))1/T . Therefore, it converges to 
zero if g(X) converges to zero in F(‖.,.‖, M, p, s).

Now suppose λn → 0 as n → ∞ and let X = (Xk) ∊ F(‖.,.‖, M, p, s).
Let ɛ > 0 be arbitrarily chosen and let K be a positive integer such that for some ρ > 0,

k−s

[

M

(

�αXk + βYk ,Z�

ρ

)]pk

≤ k−s

[

M

(

�αXk ,Z� + �βYk ,Z�

ρ

)]pk

= k−s

[

M

(

|α|
�Xk ,Z�

ρ
+ |β|

�Yk ,Z�

ρ

)]pk

≤ k−s 1

2pk

[

M

(

�Xk ,Z�

ρ1

)

+M

(

�Yk ,Z�

ρ2

)]pk

< k−s

[

M

(

�Xk ,Z�

ρ1

)

+M

(

�Yk ,Z�

ρ2

)]pk

≤ Dk−s

[

M

(

�Xk ,Z�

ρ1

)]pk

+ Dk−s

[

M

(

�Yk ,Z�

ρ2

)]pk

∈ F ,

g(�X) = inf

{

ρpk/T > 0 :

[

gF

(

k−s

[

M

(

��Xk ,Z�

ρ

)]pk
)]1/T

≤ 1, k = 1, 2, . . .

}

= inf

{

ρpk/T > 0 :

[

gF

(

k−s

[

M

(

|�|�Xk ,Z�

ρ

)]pk
)]1/T

≤ 1, k = 1, 2, . . .

}

g(�X) = inf

{

(|�|r)pk/T > 0 :

[

gF

(

k−s

[

M

(

�Xk ,Z�

r

)]pk
)]1/T

≤ 1, k = 1, 2, . . .

}

gF

(

k−s

[

M

(

�Xk ,Z�

ρ

)]pk
)

< ε/2, for k > K
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which implies for k > N,

Let 0 < |λ| < 1, using convexity of M and the property (N3) of 2-norm, for k > K we get

Since M is continuous everywhere in [0, ∞) and by the definition of gF, it follows that for 
k ≤ K

is continuous at 0.
So, there is 0 < δ < 1 such that |φ(t)| < ɛ/2 for 0 < t < δ. Let L be such that |λn| < δ for 

n > L, then

for n > L and k ≤ K. Hence

for n > L and for all k. Hence λn X → θ as n → ∞.

Theorem 3 Let the base space (N, ‖.,.‖) be a 2-Banach space. Then F(‖.,.‖, M, p, s) is a 
complete paranormed space under the paranorm g given by (1), where F is a K-space.

Proof Let (Xi) be a Cauchy Sequence in F(‖.,.‖,  M,  p,  s). Then g(Xi  −  Xj)  →  0 as 
i, j → ∞. For any given ɛ > 0, let r and x0 be such that ε

rx0
> 0 and M(

rx0
2 ) ≥ supk≥1 k

s/pk.

Now g(Xi − Xj) → 0 as i, j → ∞ implies that there exist N0 ∈ N such that

[

gF

(

k−s

[

M

(

�Xk ,Z�

ρ

)]pk
)]1/T

≤ ε/2

gF

(

k−s

[

M

(

��Xk ,Z�

ρ

)]pk
)

= gF

(

k−s

[

M

(

|�|
�Xk ,Z�

ρ

)]pk
)

< gF

(

k−s

[

|�|M

(

�Xk ,Z�

ρ

)]pk
)

< gF

(

k−s

[

M

(

�Xk ,Z�

ρ

)]pk
)

< (ε/2)T

ϕ(t) = gF

(

k−s

[

M

(

�tXk ,Z�

ρ

)]pk
)

[

gF

(

k−s

[

M

(

��nXk ,Z�

ρ

)]pk
)]1/T

< ε/2

[

gF

(

k−s

[

M

(

��nXk ,Z�

ρ

)]pk
)]1/T

< ε

g(Xi − Xj) <
ε

rx0
for all i, j ≥ N0
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Then we have for i, j ≥ N0 such that for every z ∊ N,

Hence we have for every z ∊ N,

Since F is a K-space, pk ≥ 0 and we can choose s suitably so that

for each k and for i, j ≥ N0 and z ∊ N.
Therefore,

Thus we get

for each k and for i, j ≥ N0 and for every z ∊ N.
Therefore 

(

Xi
k

)

 becomes a Cauchy sequence in N. Since (N, ‖.,.‖) is complete, there 
exist X =  (Xk) ∊ N such that Xi

k → Xk as i → ∞ for each k. Since M is continuous it 
shows that

for each k, z ∊ N and for some ρ > 0. Consequently,

for each k, z ∊ N and for some ρ > 0.
Let

inf











ρpk/T > 0 :






gF






k−s



M





�

�

�Xi
k − X

j
k ,Z

�

�

�

ρ









pk












1/T

≤ 1, k = 1, 2, . . .











<
ε

rx0

gF






k−s



M





�

�

�
Xi
k − X

j
k ,Z

�

�

�

g
�

Xi − Xj
�









pk





≤ 1, for i, j ≥ N0

k−s



M





�

�

�Xi
k − X

j
k ,Z

�

�

�

g
�

Xi − Xj
�









pk

≤ 1

M





�

�

�
Xi
k − X

j
k ,Z

�

�

�

g(Xi − Xj)



 ≤ ks/pk ≤ M
� rx0

2

�

∥

∥

∥Xi
k − X

j
k ,Z

∥

∥

∥ <
ε

rx0

rx0

2
=

ε

2

M





�

�

�
Xk − X

j
k ,Z

�

�

�

ρ



 → 0 as i → ∞

k−s



M





�

�

�Xk − X
j
k ,Z

�

�

�

ρ









pk

→ 0 as i → ∞

α
j
k = k−s



M





�

�

�Xk − X
j
k ,Z

�

�

�

ρ









pk
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Then since M is non-decreasing, by suitable choice of δ (depending on j and k),

where 0  <  δ  <  1. Since F is normal, it follows that (αi) ∊  F for each i. Also αi
k → 0 as 

i → ∞ implies that gF(αi) → 0 as i → ∞. Hence Xi → gX as i → ∞ in F(‖.,.‖, M, p, s). 
Again

Since (Xi) ∊ F(‖.,.‖, M, p, s) and F is a normal space, it seems that X = (Xk) ∊ F(‖.,.‖, M, p, s). 
Hence it is complete.

Theorem 4 F(‖.,.‖, M, p, s) is a K-space if F is a K-space.

Proof Let us define a mapping

by Pn(X) = Xn, ∀n ∈ N. To show Pn is continuous.
Let (Xm) be a sequence in F(‖.,.‖, M, p, s) such that Xm → g0 as m → ∞. Then for some 

suitable choice of ρ > 0,

Since F is a K-space, this implies that for each k and as m tending to ∞,

for some ρ > 0. Since M is an Orlicz function, it follows that

Consequently, Xm → 0 in N. Hence the proof.

Relationship results
In this section, we shall investigate the relationship among the spaces defined in second 
section and their possible variants under different conditions.

α
j
k < δk−s



M





�

�

�X
j
k ,Z

�

�

�

ρ









pk

k−s

[

M

(

�Xk ,Z�

ρ

)]pk

= k−s

[

M

(
∥

∥Xi
k +

(

Xk − Xi
k

)

,Z
∥

∥

ρ

)]pk

≤ Dk−s

[

M

(
∥

∥Xi
k ,Z

∥

∥

ρ

)]pk

+ Dαi
k(where D = max{1, 2H−1})

≤ D(1+ δ)k−s

[

M

(
∥

∥Xi
k ,Z

∥

∥

ρ

)]pk

Pn : F(�., .�,M, p, s) → N

[

gF

(

k−s

[

M

(
∥

∥Xm
k ,Z

∥

∥

ρ

)]pk
)]1/T

→ 0 as m → ∞

k−s

[

M

(
∥

∥Xm
k ,Z

∥

∥

ρ

)]pk

→ 0

∥

∥Xm
k ,Z

∥

∥ → 0 as m → ∞.
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In the next two results, we shall shows how the addition and composition of two dif-
ferent Orlicz functions effect the spaces in term of their relationship of size.

Theorem 5 Let M1 and M2 be two Orlicz functions. Then

where F is a normal sequence space.

Proof Let X = (Xk) ∊ F(‖.,.‖, M1, p, s) ∩ F(‖.,.‖, M2, p, s). Then we can choose ρ1, ρ2 > 0 
such that

and

Let us choose ρ = max(ρ1, ρ2). Then

Now the proof follows immediately as F being normal.

Theorem 6 Let M1 and M2 be Orlicz functions satisfying Δ2-condition. Then we have 
the following inclusion

Proof Let X = (Xk) ∊ F(‖.,.‖, M1, p, s). Since M2 is continuous from the right at 0, there 
exists 0 < η < 1 such that for any arbitrary ɛ > 0, M2(t) < ɛ whenever 0 ≤ t ≤ η.

Let us define the sets

for some ρ > 0.
If k ∊ N2,

F(�., .�,M1, p, s) ∩ F(�., .�,M2, p, s) ⊆ F(�., .�,M1 +M2, p, s),

(

k−s

[

M1

(

�Xk ,Z�

ρ1

)]pk
)

∈ F

(

k−s

[

M2

(

�Xk ,Z�

ρ2

)]pk
)

∈ F

k−s

[

(M1 +M2)

(

�Xk ,Z�

ρ

)]pk

≤ k−sD

{[

M1

(

�Xk ,Z�

ρ1

)]pk

+

[

M2

(

�Xk ,Z�

ρ2

)]pk
}

∈ F , where D = max

(

1, 2
H−1

)

F(�., .�,M1, p, s) ⊆ F(�., .�,M2 ◦M1, p, s) if s > 1.

N1 =

{

k ∈ N : M1

(

�Xk ,Z�

ρ

)

≤ η

}

N2 =

{

k ∈ N : M1

(

�Xk ,Z�

ρ

)

> η

}

M1

(

�Xk ,Z�

ρ

)

<
1

η
M1

(

�Xk ,Z�

ρ

)

< 1+

[

1

η
M1

(

�Xk ,Z�

ρ

)]
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Since M2 is non-decreasing and convex it follows that

Again since M2 satisfies Δ2-condition, we have

So,

where D1 = max{1, [Lη−1M2(2)]H}.
For, k ∊ N1,

and therefore,

Hence from (2) and (3) we have

for all k. Then the proof follows by the normality of F.
We have the well known inclusion c0 ⊂ c ⊂ ℓ∞. The following result shows that if F is 

replaced by these three spaces, the corresponding extended versions also preserve this 
inclusion.

Theorem 7 Let M be an Orlicz function. Then

Proof The first inclusion follows immediately from the definitions. For second inclu-
sion, let X = (Xk) ∊ c(‖.,.‖, M, p, s). Then for some ρ = 2η > 0, we have

M2

[

M1

(

�Xk ,Z�

ρ

)]

< M2

[

1+
1

η
M1

(

�Xk ,Z�

ρ

)]

<
1

2
M2(2)+

1

2
M2

[

2
1

η
M1

(

�Xk ,Z�

ρ

)]

M2

[

M1

(

�Xk ,Z�

ρ

)]

<
1

2
L

[

1

η
M1

(

�Xk ,Z�

ρ

)]

M2(2)

+
1

2
L

[

1

η
M1

(

�Xk ,Z�

ρ

)]

M2(2)

= Lη−1M2(2)M1

(

�Xk ,Z�

ρ

)

(2)k−s

[

M2

(

M1

(

�Xk ,Z�

ρ

))]pk

≤ k−sD1

[

M1

(

�Xk ,Z�

ρ

)]pk

M1

(

�Xk ,Z�

ρ

)

≤ η ⇒ M2

[

M1

(

�Xk ,Z�

ρ

)]

< ε

(3)k−s

[

M2

[

M1

(

�Xk ,Z�

ρ

)]]pk

< k−s[ε]H

k−s

[

M2

[

M1

(

�Xk ,Z�

ρ

)]]pk

≤ k−s[ε]H + k−sD1

[

M1

(

�Xk ,Z�

ρ

)]pk

∈ F

c0(�., .�,M, p, s) ⊂ c(�., .�,M, p, s) ⊂ ℓ∞(�., .�,M, p, s)
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Thus X = (Xk) ∊ ℓ∞ (‖.,.‖, M, p, s).
Our next result is to examine the effect of the parameter p on the relationships of some 

spaces.

Theorem 8 Let M be a Orlicz function. Then

(i) If 0 < inf pk ≤ pk < 1 then c0(‖.,.‖, M, s) ⊂ c0(‖.,.‖, M, p, s);
(ii) If 1 ≤ pk ≤ suppk < ∞, then c0(‖.,.‖, M, p, s) ⊂ c0(‖.,.‖, M, s).

Proof (i) Let X = (Xk) ∊ c0(‖.,.‖, M, s). Since 0 < inf pk ≤ pk < 1 the proof follows from 
the following inequality

Proof (ii) Let 1 ≤  pk ≤  suppk  < ∞ and X =  (Xk)  ∊  c0(‖.,.‖,  M,  p,  s). Then for each 
0 < ɛ < 1 there exists a positive integer L such that

Since 1 ≤ pk ≤ suppk < ∞, the proof follows from the following inequality

The Orlicz functions are often used to extend sets of sequences in order to study alge-
braic and topological properties using the rich properties of Orlicz functions. The fol-
lowing result gives us a equality connection of composite Orlicz sequence spaces with 
those of spaces defined without Orlicz function.

Theorem 9 Let M be a Orlicz function satisfying Δ2-condition and 0 < A1 ≤ M(t)/t ≤ A2 
for t > 0, where A1 and A2 are constants. Then

k−s

[

M

(

�Xk ,Z�

ρ

)]pk

= k−s

[

M

(

�Xk − L+ L,Z�

ρ

)]pk

≤ k−s

[

M

(

�Xk − L,Z� + �L,Z�

ρ

)]pk

≤ k−sD

[

M

(

�Xk − L,Z�

η

)]pk

+ k−sD

[

M

(

�L,Z�

η

)]pk

≤ k−sD

[

M

(

�Xk − L,Z�

η

)]pk

+ k−sDmax

{

1,

[

M

(

�L,Z�

η

)]H
}

[

M

(

�Xk ,Z�

ρ

)]pk

≤ M

(

�Xk ,Z�

ρ

)

.

k−s

[

M

(

�Xk ,Z�

ρ

)]pk

≤ ε < 1 ∀k ≥ L

k−s

[

M

(

�Xk ,Z�

ρ

)]

≤ k−s

[

M

(

�Xk ,Z�

ρ

)]pk

F
(

�., .�,Mr , p, s
)

= F(�., .�, p, s), r is a positive integer.
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Proof Let us take the left part of the inequality. Then we get

So, we have

Since M satisfies Δ2-condition,

for some constant L > 0. From (4) and (5) we get

Hence, after r steps we get

Let X = (Xk) ∊ F(‖.,.‖, Mr, p, s). Then 
(

k−s
[

Mr
(

�Xk ,Z�
ρ

)]pk
)

∈ F .
On taking t = �Xk ,Z�

ρ
 in (6), we get

Since F is normal, it follows that (k−s[�Xk ,Z)�]
pk ) ∈ F . Consequently, 

X = (Xk) ∊ F(‖.,.‖, p, s).
Next, let us consider the right part of the inequality. Then we get

which implies

for some constant L > 0.
Let X = (Xk) ∊ F(‖.,.‖, p, s). Then

t ≤
1

A1
M(t)

(4)t ≤
1

A1
M(t) <

(

1+

[

1

A1

])

M(t)

(5)M(t) < M

[(

1+

[

1

A1

])

M(t)

]

≤ L

(

1+

[

1

A1

])log2 L

M2(t),

t < L

(

1+

[

1

A1

])1+log2 L

M2(t)

(6)

t < L
r−1+(r−2) log2 L+(r−3)(log2 L)

2
+(r−4)(log2 L)

3
+···+(log2 L)

r−2

×

(

1+

[

1

A1

])1+log2 L+(log2 L)
2
+(log2 L)

3
+(log2 L)

4
+···+(log2 L)

r−1

M
r(t)

k−s

�

�Xk ,Z�

ρ

�pk

<











Lr−1+(r−2) log2 L+(r−3)(log2 L)
2
+(r−4)(log2 L)

3
+···+(log2 L)

r−2

�

1+

�

1

A1

��1+log2 L+(log2 L)
2
+(log2 L)

3
+(log2 L)

4
+···+(log2 L)

r−1






H

k−s

�

Mr

�

�Xk ,Z�

ρ

��pk

M(t) ≤ A2t < (1+ [A2])t

(7)
M

r(t) < L
1+log2 L+(log2 L)

2
+···+(log2 L)

r−2

(1+ [A2])
1+log2 L+(log2 L)

2
+(log2 L)

3
+···+(log2 L)

r−1

t,

(

k−s[�Xk ,Z�]
pk
)

∈ F
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From the inequality (7) and proceeding similarly as in the previous part we have

for each k ∈ N. Hence X = (Xk) ∊ F(‖.,.‖, Mr, p, s), F being normal.
In composite Orlicz sequence spaces, the following result gives a connection between 

such spaces which depend on the number of participating Orlicz functions and satisfy-
ing certain condition.

Theorem 10 Let M be an Orlicz function satisfying Δ2-condition and M(t)/t ≤ A for 
t ≥ 0, where A is a constant. If r, n ∈ N such that r > n then

Proof Let r − n = ℓ > 0. Now

Since M satisfying Δ2-condition, we have after rth step,

for some constant L > 0.
Therefore

Let X = (Xk) ∊ F(‖.,.‖, Mn, p, s). Then

Replacing t by ‖Xk, Z‖/ρ on both sides of (8) we get

This implies

k−s

[

Mr

(

�Xk ,Z�

ρ

)]pk

<

[

L1+log2 L+(log2 L)
2+···+(log2L)

r−2

(1+ [A2])
1+log2 L+(log2 L)

2+(log2 L)
3+···+(log2 L)

r−1
]H

k−s

[

�Xk ,Z�

ρ

]pk

∈ F

F
(

�., .�,Mn, p, s
)

⊆ F
(

�., .�,Mr , p, s
)

M(t) ≤ At < (1+ [A])t

Mr(t) < L1+log2 L+(log2 L)
2
+···+(log2 L)

r−2

(1+ [A])1+log2 L+(log2 L)
2
+(log2 L)

3
+···+(log2 L)

r−1

t,

(8)

M
r(t) = M

n+l(t) = M
n[Ml(t)]

< M
n

[

L
1+log2 L+(log2 L)

2
+···+(log2 L)

l−2

(1+ [A])1+log2 L+(log2 L)
2
+(log2 L)

3
+···+(log2 L)

l−1

t

]

≤

(

L
1+log2 L+(log2 L)

2
+(log2 L)

3
+···+(log2 L)

l+(n−2)

(1+ [A])(log2 L)
n
+···+(log2 L)

l+(n−1)
)

M
n(t)

(

k−s

[

Mn

(

�Xk ,Z�

ρ

)]pk
)

∈ F

M
r

(

�Xk ,Z�

ρ

)

≤

(

L
1+log2 L+(log2 L)

2
+(log2 L)

3
+···+(log2 L)

l+(n−2)

(1+ [A])(log2 L)
n
+···+(log2 L)

l+(n−1)
)

M
n

(

�Xk ,Z�

ρ

)

k−s

[

Mr

(

�Xk ,Z�

ρ

)]pk

≤

(

L1+log2 L+(log2 L)
2
+(log2 L)

3
+···+(log2 L)

l+(n−2)

(1+ [A])(log2 L)
n
+···+(log2 L)

l+(n−1)
)H

k−s

[

Mn

(

�Xk ,Z�

ρ

)]pk

∈ F
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It follows that X = (Xk) ∊ F(‖.,.‖, Mr, p, s) due to the normality of F. Hence the proof.

Further properties
In this section, we shall investigate essentially few more properties. These properties 
may influence the readers to study further such spaces for several other algebraic and 
topological behaviours including those of dual spaces.

The space F(‖.,.‖, M, p, s) is not convergence free in general. In order to establish it, it 
is easy to construct an example. Hence we have the following result.

Remark 1 The space F(‖.,.‖, M, p, s) is not convergence free in general.

Proof Consider F = ℓ∞, s = 0, pk = 1, for each k ∈ N , M(x) = x2, for all x ∈ [0,∞), and  
let us take the 2-norm ‖x, y‖ = supi∊N supj∊N|xiyj − xjyi|, where x = (x1, x2, …) and y = (y1, 
y2, …) ∊ ℓ∞.

Let us take (Xk) ∊ F(‖.,.‖, M, p, s) defined as follows:

and for k odd, Xk = 0.
Let us define a sequence (Yk) as follows:

Then Xk = 0 implies Yk = 0, but (Yk) ∉ F(‖.,.‖, M, p, s).
However, the space F(‖.,.‖, M, p, s) is solid and symmetric in general. The following 

two results establish our claim with proof.

Theorem 11 The space F(‖.,.‖, M, p, s) is solid(normal) in general.

Proof Let X = (Xk) ∊ F(‖.,.‖, M, p, s), and Y = (Yk) be such that 

Since M is non-decreasing,

for some ρ > 0. Hence Y = (Yk) ∊ F(‖.,.‖, M, p, s), since F is normal and the space is solid.

Theorem 12 The space F(‖.,.‖, M, p, s) is symmetric in general.

Proof Let X = (Xk) ∊ F(‖.,.‖, M, p, s), and Y = (Ymk
) be an arrangement of the sequence 

(Xk) such that Xk = Ymk
 for each k ∊ N. Then

For k even, Xk =
1

k + 1

For k odd, Yk = 0 and for k even, Yk = k + 1

�Yk ,Z� ≤ �Xk ,Z� for everyZ ∈ N .

k−s

[

M

(

�Yk ,Z�

ρ

)]pk

≤ k−s

[

M

(

�Xk ,Z�

ρ

)]pk

∈ F

(

k−s

[

M

(
∥

∥Ymk
,Z

∥

∥

ρ

)]pk
)

=

(

k−s

[

M

(

�Xk ,Z�

ρ

)]pk
)

∈ F
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Hence these spaces are symmetric in general.
There is a close connection between Banach spaces and 2-Banach spaces. Now we 

shall try to reflect this connection in our definition of the spaces as well as in the com-
pleteness result.

Consider the norm ‖.‖ defined on a linear 2-normed space (X, ‖.,.‖) by the function

for any fixed y, z ∊ X and ‖y, z‖ ≠ 0. Then the function ‖.‖ is a norm on X (Freese and 
Cho 2001).

We recall the following result and for details, we refer to (Freese and Cho 2001).

Proposition 13 If (X, ‖.,.‖) is a linear 2-normed space possessing Property (K) (Freese 
and Cho 2001, p. 16) and having a norm defined on it by ‖a‖ = ‖a*, a‖ + ‖b*, a‖ for a* 
and b* in X such that ‖a*, b*‖ ≠ 0, then X is a 2-Banach space if and only if X is a Banach 
space relative to this norm.

For the sake of comparison between natural norm and the norm obtain from 2-norm 
as described above, we shall call the later as derived 1-norm or simply derived norm.

Using this concept of derived 1-norm, we can redefine our sets over derived 1-norm 
instead of 2-norm and we will get the similar results of this paper. If the 2-normed space 
(N, ‖.,.‖) possesses the Property (K), we can modify our completeness result as follows.

Proposition 14 Let the 2-normed space (N, ‖.,.‖) possesses the Property (K). Then 
F(‖.,.‖,  M,  p,  s) is a complete paranormed space under the paranorm g given by (1), 
where F is a K-space provided N is a Banach space.

Conclusions
1. This new generalized class of Orlicz paranormed sequence space unifies many basic 

sequence spaces introduced by earlier authors;
2. The topological structure and different topological properties of this space character-

ize the general topological behavior of many sequence spaces introduced by earlier 
authors;

3. The inclusion relations between various spaces of sequences signify that some of 
the sequence spaces become identical or can be embedded to some other sequence 
spaces under certain conditions;

4. Some properties of the spaces investigated in the last section may attract further 
study on other aspects of such spaces.

5. Various results on 2-normed spaces may also be used to study several other conver-
gence and completeness related properties of the spaces.
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