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For efficient processing, spatiotemporal spike patterns representing similar input must
be able to transform into a less similar output. A new computational model with
physiologically plausible parameters shows how the neuronal process referred to as
“pattern separation” can be very well achieved by single neurons if the temporal
qualities of the output patterns are considered. Spike patterns generated by a varying
number of neurons firing with fixed different frequencies within a gamma range are
used as input. The temporal and spatial summation of dendritic input combined with
theta-oscillating excitability in the output neuron by subthreshold membrane potential
oscillations (SMOs) lead to high temporal separation by different delays of output
spikes of similar input patterns. A Winner Takes All (WTA) mechanism with backward
inhibition suffices to transform the spatial overlap of input patterns to much less
temporal overlap of the output patterns. The conversion of spatial patterns input into
an output with differently delayed spikes enables high separation effects. Incomplete
random connectivity spreads the times up to the first spike across a spatially expanded
ensemble of output neurons. With the expansion, random connectivity becomes the
spatial distribution mechanism of temporal features. Additionally, a “synfire chain” circuit
is proposed to reconvert temporal differences into spatial ones.

Keywords: synfire chain, subthreshold membrane potential oscillations, temporal coding, expansion recoding,
pattern separation

INTRODUCTION

A key task navigating the world is to distinguish between similar but different objects, places,
or contexts. The neuro-computational function thought to underlie this ability is referred to as
“pattern separation.” It is defined as the process by which similar neuronal input is converted
into a less similar output that represents the input. Indeed sometimes the pattern separation
gained popularity as a research topic (Drew, 2010; Leal and Yassa, 2018), however, up to date
it has been studied almost exclusively on the bases of spatial patterns. Many functional and
structural neural circuit mechanisms have been found, each of which contributes to the spatial
pattern separation. Expansion recoding, sparse synaptic connectivity to the output neurons, and
Winner Takes All (WTA) competition through inhibition have so far mainly been considered as
relevant mechanisms for spatial pattern separation: Marr (1971), O’Reilly and McClelland (1994),
Chistiakova and Volgushev (2009), Aimone et al. (2011), Yassa and Stark (2012), Rolls (2012, 2013,
2016), Cayco-Gajic and Silver (2019), and Sakon and Suzuki (2019) as review.

Spatial or/and Temporal Separation
Given the spatiotemporal characteristics of most physical stimuli, sensory information is
encoded both spatially and temporally. Temporal precision seems to be critical for the accurate

Frontiers in Computational Neuroscience | www.frontiersin.org 1 April 2022 | Volume 16 | Article 858353

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.858353
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncom.2022.858353
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.858353&domain=pdf&date_stamp=2022-04-29
https://www.frontiersin.org/articles/10.3389/fncom.2022.858353/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-858353 April 29, 2022 Time: 12:42 # 2

Löffler and Gupta Temporal Pattern Separation

representation of physical sensory stimuli, which at least is shown
by spike-timing-dependent plasticity (STDP). Therefore, we now
focus on differences in the temporal properties of processed
patterns, especially on the delays of neuronal answers to input
patterns as a kind of temporal coding.

The explicit application of temporal coding to the models of
pattern separation has rarely been done, although much evidence
has been reported that temporal coding is useful for pattern
separation. The local properties of activated neurons (spatial
coding) or frequency changes (rate coding) up to date are mainly
used as criteria for the separation of patterns.

In fact, there is growing evidence for temporal encoding
strategies in neural networks. Indeed, there is an increasing
evidence of their direct involvement in separation processes.
Thus, Lisman and Jensen (2013) directly relate to the pattern
separation by spiking breaks produced by gamma frequency
arrest. They assume that different spatial information is
represented in different gamma subcycles of a theta cycle.

Pernía-Andrade and Jonas (2014) suggest that rate coding
schemes in dentate gyrus granule cells, which are ascribed to
pattern separation, would be inadequate compared with temporal
coding schemes. Their results are consistent with the idea that a
temporal coding scheme is used in dentate gyrus granule cells.

Madar et al. (2019) provided the first experimental evidence
of temporal coding strategies for pattern separation in the
hippocampus. Examining the temporal properties of input and
output patterns rather than differences in firing rates or firing
locations, the authors showed that the suprathreshold responses
of some gyrus cells were highly decorrelated compared with
their inputs. The authors presented different ways to measure
the similarity between spike trains and suggested that pattern
separation could be achieved by multiplexed neural codes.

Our model uses spike patterns as input, generated by different
numbers of neurons firing at different high gamma frequencies.
Input similarity is measured by spatial overlap. As an output, we
measure both the temporal and spatial properties of patterns in
the output. We propose that the separation is primarily made
by time to first output spike. This temporal property arises in
each individual output-neuron and is used as the basis for the
separation processes. Only in a further step is the temporal code
extended by a spatial code through expansion recoding or by
synfire chain.

In essence, our model shows that temporal encoding
by time-delays to the first spike allows the individual
output neurons to differentiate their input, especially when
this process is assisted by rising subthreshold membrane
potential oscillations (SMOs). We propose that the first
step in separating spatially overlapping input patterns is
achieved through temporal encoding: depending on the
spatiotemporal input and the theta phase of SMOs, output
neurons will fire sooner or later. Only through a second
mechanism, the temporal properties of activated neurons
extended by a spatial code, namely, through expansion recoding
and sparse connectivity in combination with a competing
inhibition process.

As an additional option for the interaction between temporal
and spatial properties of patterns, a neural mechanism is

used to convert temporal differences into spatial ones using a
simple synfire chain model (Abeles, 1982; Ikegaya et al., 2004;
Hosaka et al., 2008; Larson et al., 2010). Such models suggest a
succession of end-to-end excitatory neurons (neuronal chain).
An input spike propagates along the chain of neurons with
synaptic delays.

Separation by Dentate Gyrus
Spatial pattern separation was ascribed to the dentate gyrus
of the hippocampus (Berron et al., 2016). The study about
temporal pattern separation from Madar et al. (2019) also
examined how the input-output transformation of multiple
hippocampal cell types works in the terms of pattern
separation. The assignment of pattern separation to the
dentate gyrus should also apply to temporal properties. The
results of Pernía-Andrade and Jonas (2014) agree with this
idea because dentate granule cells use a temporal coding
scheme. Braganza et al. (2020) point out that in addition to
the feedback, inhibition sparsity and temporal oscillations
in the dentate gyrus have a critical influence on a proposed
pattern separation function. However, it should be noted
that pattern separation is not unique to this area of the
brain. Similar phenomena also manifest in other neural
circuits, e.g., the cerebellar cortex and insect mushroom
body. However, recent studies from human single-neuron
recordings have suggested that there may be no pattern
separation in the human hippocampus (Quiroga, 2020). Others
insist that experimental evidence does not rule out pattern
separation in the hippocampus (Rolls, 2021; Suthana et al.,
2021).

MATERIALS AND METHODS

Model
A spiking neural network (SNN) model is presented to
demonstrate a prototypical approach of pattern separation.
It consists of 3 neuronal ensembles: the input neurons (I-
neurons), the representation neurons (R-neurons), and the time
to space extension neurons (E-neurons), each accomplishing
a specific task (Figure 1). Beside the input function of the
ensemble of I-neurons (as shown in section “Summation in
R-Neurons”), the other two ensembles solve the following tasks:
spatial and temporal separation as key part of the ensemble of
R-neurons and time to space transformation as an additional
option of the ensemble of E-neurons. Separation is generated
between I-neurons and R-neurons, extension from time to space
(temporal parameters are complemented by spatial parameters)
is generated between R-neurons and E-neurons.

The random connectivity between I-neurons and R-neurons
is organized as follows: eight I-neurons have excitatory synapses
with every six dendrites of 1–128 R-neurons, representing an
expansion factor (EF) of 0.125–16. Each of the dendritic branches
of R-neurons is connected by 3 synapses from I-neurons. The
connections of the single dendritic branches are diluted, i.e., they
receive input only from 3 to 6 I-neurons, not of all. For example,
as shown in Figure 8.
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FIGURE 1 | Model of spatiotemporal separation with 3 neuronal ensembles: I-neurons (I), R-neurons (R), and E-neurons (E). In total, 8 I-neurons are randomly
connected to a varied number of R-neurons generating separation (Figure 8). R-neurons are fully connected to the global inhibitory neuron Ih that is reconnected to
all R-neurons. R-neurons are fully connected to E-neurons, generating time to space transformation by the help of ET-neurons as “synfire wave.” The activation of
ET-neurons is initiated by the T-neuron (T). The activation of the first ET-neuron (ET) is propagated to the neighboring ET-neuron. Spiking ET-neurons activate the
parallel E-neurons where times of excitatory postsynaptic potentials (EPSPs) “travel” from one neuron to the next.

For simulations, 3–6 of 8 I-neurons propagate high-gamma
aligned spike trains to the 6 dendritic branches of 1–128
R-neurons. A total of 3 synapses are formed per branch. This
results in 18 synapses per R-neuron from 8 randomly selected
I-neurons. So first, we are using a dense connectivity of average
2.25 connections per I-neuron. Additionally, we investigate the
separation effects if sparse connectivity is applied. For sparse
connectivity, 3–6 of 8 I-neurons propagate the spike trains to
the 6 dendritic branches of R-neurons but only one synapse is
formed per branch. This results in only 6 synapses per R-neuron
form 8 randomly selected I-neurons, a sparse connectivity of
average 0.75 connections per I-neuron a third of the former
dense connectivity.

Neural Mechanisms Underlying
Separation
Definition of Overlap
Largely, pattern separation is defined as a putative process that
the brain organizes to transform similar inputs into less similar
outputs (e.g., Sakon and Suzuki, 2019). Separation is performed
as a reduction of overlap from input and output patterns. An
example is shown in Figure 2. This definition up to date relates
mainly to the spatial dimension of separation. We extend the
definition of the output overlap to the temporal dimension. The
input overlap still remains defined by the spatial dimension.

After the presentation of input patterns, their spatial overlap
(OI) is compared with the spatial or temporal overlap of output

patterns (OR).

OI =
nIP12

nIP1+ nIP2
(1)

Where, OI is the similarity of a pair of input patterns calculated
by their spatial overlap. nIP12 is the number of activated I-neurons
present in both matched patterns, nIP1 is the number of activated
neurons in input pattern 1, and nIP2 is the number of activated
neurons in input pattern 2.

The similarity of output patterns is calculated by the relation of
the number of spiking neurons present in both matched patterns
to the total number of spiking representation neurons. Spatial
and temporal overlap is calculated separately.

OR =
nRP12

nRP1+ nRP2
(2)

Where, OR is the similarity of a pair of output patterns
calculated by their overlap. nRP12 is the number of spiking
R-neurons existing in both patterns, nP1is the number of spiking
R-neurons in output pattern 1, and nRP2 is the number of
spiking R-neurons in output pattern 2. If spatial separation is
measured, similarity is defined by the amount of identical locations
of emerging spikes. If temporal separation is measured, similarity is
defined by the number of synchronously spiking output neurons.

The OI of all possible pairs of input patterns (without equal
ones) and OR of all possible pairs of corresponding output
patterns are matched. The separation power (SP) is calculated by
the percentage of reduction of overlap of all partially or totally
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FIGURE 2 | Spatial overlap of input patterns (OI), output patterns (OR), and
separation power (SP) calculated for a pair of 8 I-neurons: pair A consists of 4
spiking neurons (designated by a red star) and pair B consists of 5 spiking
neurons. In total, 3 pairs (6 neurons) fire together. OI amounts to 0.667. The
corresponding representation pair contains one time 3 and one time 4 spiking
neurons. One pair (2 neurons) spike together. OR amounts to 0.285. This
leads to a separation power of SP = 57%.

different input patterns.

SP =
OI − OR

OI
(3)

Where, SP is the separation power during designated conditions.
It computes the reduction of similarity in the output patterns when
compared with the input patterns. OI is the averaged overlap of
input patterns. OR is the averaged overlap of output patterns.

Summation in Representation Neurons
Each I-neuron fires with a predefined gamma frequency between
90 and 160 Hz (corresponding Interspike intervals (ISIs): 6.3–
11.1 ms). Thus the frequencies between I-neurons differ by an
integer multiple of 1.1 Hz. It is assumed that activated I-neurons
start to fire at the same time shortly before the start of the
separation process. Therefore, the first input time of a single
I-neuron corresponds to ISI of its spiking frequency. The spatial
positions of activated I-neurons define the spatial input overlap
and determine the similarity of the input patterns (SI).

Random connectivity implies that R-neurons are activated by
different strength and at different times by I-neurons. For the
sake of simplicity, synaptic weights from I-neurons to R-neurons
are assumed to be equal (at the value of 0.4). The excitatory
postsynaptic potentials (EPSPs) are generated by Formula (5) and
sub linearly added by Formula (6) in the same branch. EPSPs
of all dendritic branches are linearly added by their way to the
soma but weakened by a passive decay factor of Upass = 0.5. The
summation processes of EPSPs plays a role for the separation as
they integrate the temporal and spatial input and diversify the
point in time at which the somatic spiking threshold is exceeded.

The spikes of I-neurons require a constant time of 1 ms
for the propagation to the dendrites of R-neurons. Delays
from the branches of R-neurons to the soma depend on
their location meaning the spatial distance of the branches
from the soma. The delays vary from 2 to 16 ms. Branch
1 spikes are delayed by 2 ms, branch 2 are delayed by
4 ms, and so on. Varying delays modify the time of somatic
spikes in relation to the specific combination of activated
dendritic branches.

The level of activation of an individual R-neuron depends
on the input from combined EPSPs from I-neurons. The input
to R-neurons is modified individually by the existing random
connections of active I-neurons. The activation of R-neurons is
a result of spatial and temporal summation EPSPs. The spatial
summation within a single branch is sub-linear and processed by
Formula 6. This sub-linear summation allows a larger number of
activated I-neurons (3–6) to be used. The more EPSPs and the
faster the somatic membrane potential rises, the earlier an action
potential is generated by exceeding the spiking threshold.

The different connectivity of R-neurons leads to earlier or
later spikes in the individual R-neurons. If the neuron that fires
the earliest best represents the input, then the selection of this
neuron is not only a temporal but also a spatial characteristic of
the output. The temporal separation is supplemented by a spatial
separation if several R-neurons with different connections from
the input are present in the output level.

Subthreshold Membrane Potential Oscillations
The somatic membrane potential of R-neurons is additionally
varied by SMOs at theta range (5 Hz with an amplitude of 8 mV).
The EPSPs of I-neurons reach R-neurons during the through of
theta-SMOs. This is achieved by performing a theta phase reset
at 75 ms prior to the start of input. The descending phase of a
5 Hz-SMO begins 50 ms later and the lowest excitability is at the
time of 150 ms. The excitability reaches the initial level at 200 ms.
Then, the excitability increases for another 50 ms. During the
input presentation, the temporal and spatial summation of EPSPs
on R-neurons is supplemented by the increasing excitability. Even
if the input is small growing excitability will generate a spike at the
latest on the peak of SMO. In this way, SMOs increase the range
of input power that can create a spike. Due to the combination of
increasing excitability and the variety of input power, the times of
the first spikes between the through and the peak value of SMO
(half theta cycle) are stretched.

Winner Takes All-Competition
R-neurons compete with each other if the first spiked R-neuron
reduces the membrane potential of others by inhibition. The
fastest activated R-neuron (caused by the connectivity of
active I-neurons) fires first. The winning R-neuron represents
the current input. It can happen that more than one
R-neuron wins together.

Learning
R-neurons can repeatedly win, if they have additional
connections from I-neurons activated by a new input. This
reduces the SP. However, this weakening of the SP can be

Frontiers in Computational Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 858353

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-858353 April 29, 2022 Time: 12:42 # 5

Löffler and Gupta Temporal Pattern Separation

FIGURE 3 | Left: Membrane-potential courses by simulation. Courses of two dendritic branches each connected with 4 (red and green) I-neurons are shown. Each
I-neuron fires with a specific frequency resulting in subliminally summed EPSPs at the single branch. The somatic potential of the R-neuron is a combination of the
summed input from the dendrites and the somatic SMO (5 Hz), resulting in a ramping activity course. The neuron will spike when increasing membrane potential
reaches the spiking threshold. After spiking an inhibitory feedback potential reduces the membrane potential to prevent further spiking. Right: The percentage of
overlap of pairs of output patterns is shown in relation to the percentage of overlap of the corresponding pairs of input patterns. Separation is demonstrated by
values below the diagonal marking zero separation.

compensated by heterosynaptic long-time depression (hsLTD)
as a learning mechanism. HsLTD reduces the synaptic weights of
connections when postsynaptic firing is generated by the inputs
of other synapses. The reduction of the synaptic weights from
inactive input units to a firing R-neuron decreases the probability
that another input pattern leads to the firing of same R-neuron,
since the later input pattern uses connections from I-neurons
with reduced synaptic connections. Therefore, hsLTD works
like an “immunization” of the present winner neuron against
further gains. In other words, by “immunization” it is meant
that the learning effect has reduced the weight of some synapses
from previous gains.

Synfire Chain
We discriminate between temporal and spatial separation. For
temporal separation without additional spatial separation, the
question arises as to how the temporal precision of spike times
(as generated by R-neurons) can be used for the succeeding
processes. In our model an extension from temporal to spatial
separation is implemented by the ensemble of E-neurons
(Figure 6) as a simple synfire chain. The sequences of ET-neurons
connected by feedforward connections spread EPSPs. In addition,
each ET-neuron is connected to a single parallel E-neuron. The
arriving spikes from the ET-neurons enhance the subthreshold
membrane potential of the parallel E-neuron. Thus, an EPSP
spreads like a wave from one E-neuron to the next. Since spikes
in the ET-neurons are temporally ordered according to their
sequence, this ordering is transmitted to E-neurons as traveling
subthreshold EPSPs. The input into E-neurons from R-neurons
alone as well as the input of ET-neurons only produces subliminal
excitation in subthreshold excitation, but the combination of
both produces a spike. After generating a spike in R-neurons, a

spike is generated in the time-specific E-neuron as it coincides
with an EPSP from an ET-neuron. The time course of EPSPs in
an E-neuron is simulated by Formula 5. The synaptic weights
are conveniently chosen at the value of 5.8 between ET-neurons
(to be suprathreshold) and between R-neurons and E-neurons at
the value of 2.0. A time-neuron (T-neuron) starts the successive
spikes of ET-neurons at the beginning of the input (at 10 ms).
Time cells firing at specific moments within a cognitive task or
experience have been described by Umbach et al. (2020) found
in the hippocampus and entorhinal cortex. As shown in refs.
Kitamura et al. (2015) and Salz et al. (2016).

Simulation Parameters
The goal of the simulation is to show pattern separation in
a prototypical way in a small SNN that combines the just
described conditions.

The simulation program is written by the author (H.L.) in
Python 3.7. Parameters for somatic, dendritic, synaptic, and
oscillation properties are shown in Supplementary Data Sheet 1.
The simulations are calculated with a time resolution of 1 ms. The
values and functions of the simulation are determined as follows:

EPSPs
EPSPs (e.g., generated if spikes from I-neurons are propagated to
the dendrites of R-neurons) are modeled in the form of an alpha
function:

f (EPSP) = k ∗ w ∗ δt ∗ g−
δt
τ (4)

where, k = 0.8 at dendrites for R-neurons and k = 5.6 at soma for
E- and ET-neurons, g = 2.7 for E-neurons and 1.35 for R-neurons.
The decay time of EPSPs at R-neurons is duplicated from 3.5
to∼7 ms for enhancing temporal summation. τ = 1. w is the initial
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FIGURE 4 | Impact of EF to SP: two kinds of separation measurement: red: spatial separation; green: temporal separation; Abscissa: EF; Ordinate: SP as a
reduction of overlap. Left: Dense connectivity, Right: Sparse connectivity. Sparse connectivity reduces the temporal but not the spatial SP.

synaptic weight: w(I-R) = 2.0. w(ET-ET) = 5.8. w(R-ET) = 0.4.
w(R-E) = w(ET-ET) – w(R-ET) = 5.4. δt is the time difference.

The general inhibition after spiking a winning R-neuron
globally reduces the membrane-potential of all other R-neurons
by program code. For convenience, the reduction in membrane
potentials of R-neurons is not realized by an inhibitory
interneuron fully connected with all R-neurons but rather by a
general downgrade of the membrane potential of all R-neurons
by 20 mV after an R-neuron produced a spike.

Sublinear Summation at Branches
The height of the xth summed EPSP is computed by:

EPx
= EP1

∗(1−
x− 1

k
) (5)

where EPx is the height of xth EPSP, EP1 is the height of the first
EPSP and k = 12. x varies between 1 and 8 and k = 12, reducing
the amount of the 8th EPSP to 40%.

Subthreshold Membrane Potential Oscillations
Somatic subthreshold theta oscillations in R-neurons are
explicitly modeled by phase-shifted sine functions f(OP):

f(OP) = h ∗ sin(0.002 ∗ π ∗ fq ∗ (t − j ∗ ph)) (6)

where, h = 8.0 mV is the oscillation amplitude of R-neurons.
Formula (7) holds for somatic oscillations in R-neurons. Fq = 5 Hz.
For R-neurons j∗ph remains constantly at 75 ms enabling the
arrival of spikes from I during the low period of the SMO. The
spikes of single I-neurons start after the first ISI.

Heterosynaptic Long-Time Depression
Heterosynaptic long-time depression reduces the synaptic
weights of inactive dendritic synapses following a somatic spike.
For the sake of simplicity, depression is calculated by a fraction of
actual weight:

w′ = w ∗ hs (7)

where, w’ is the reduced w; hs = 0.3 is the reduction factor for w.
Further parameters for somatic, dendritic, synaptic, and

oscillation properties are shown in Supplementary Table 1.

RESULTS

With SNN-parameters as described above, 20 testing packages
are scrolled through. Within the same package, the random
connections from I-neurons to the dendrites of R-neurons
remain constant, but new packages have new random
connections. Each test package displays 20 input peak patterns.
In a simulation with 20 packages, 400 time-accurate input-spike
trains are therefore presented. For each package, 190 pairs of
input pattern can be matched between I- and R-neurons. The
resulting SP relates to an average of all 400 input presentations
and is based on 3,800 compared patterns. Using the simulation
procedure, the probabilistic results of separation are generated
because the results are calculated by 20 different randomly
selected terms of connection.

Exemplarily dendritic and somatic membrane potential
courses and calculated overlap values for pairs of input patterns
are shown in Figure 3.

Temporal or Spatial Separation
As Figure 4 shows, spatial separation clearly depends on EF.
However, spatial separation effects of SP = 60% are observed
even without any expansion and for EF values of less than
1, a partial spatial separation remains. For two times as
many R-neurons as I-neurons (EF = 2) and the spatial SP is
already about 80%. It increases to 90% and more when EF
increases to 16.

Large differences between the spatial and temporal
measurements of separation (Figure 4) are observed. The
temporal separation along is always very high (over 90%). It is
largely independent of EF. Surprisingly, even a single R-neuron
separates the input temporally by about 95%, which means
that different inputs (also very similar) produce different times
of spikes in a single R-neuron. The repetitions of same input
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(averagely 5 per package) always result in identical spike times.
The average spatial overlap of input patterns of about 60% is
reduced to about 6% temporal overlap of output patterns in
R-neurons representing SP = 90%.

Since spatial separation has mainly been studied so far,
the distinction between temporal and spatial separation opens
up new avenues for our understanding of the information
processing in the brain. In particular, the high-temporal
SP of a single neuron opens up new neuronal processes
to represent similar objects as different without learning
mechanisms.

Two kinds of connectivity (as described in section
“Model”) are used: sparse connectivity (0.75 synapses per
I-neuron) reduces the temporal SP compared with dense
connectivity (2.25 synapses per I-neuron) whereas the spatial SP
remains about the same.

Key Parameters
The differences between spatial and temporal separation along
EF raise the question of key influences on both measurements
of separation. Expansion does not seem to affect the temporal
separation. However, it increases spatial separation: a higher
number of R-neurons allows the early activation of a neuron that
is better connected than any other for a given input.

We then examined whether partially random connectivity
from I-neurons to R-neurons is essential for temporal separation.
Complete connectivity is implemented by linking the 3 dendritic
branches of a single R-neuron through all 8 I-neurons. We then
examined whether partially random connectivity from I-neurons
to R-neurons is essential for temporal separation. SP is calculated
in the same way as previous simulations. Full connectivity as well
as incomplete random connectivity result in the same temporal
SP = 93%. All identic input patters result in identical output.

In addition, it is sometimes reported that sparse connectivity
is conducive to the pattern separation. So we simulated our model
with sparse connectivity. Sparse connectivity boosts temporal but
not spatial SP. However, if “sparseness” is defined as “reducing
the fraction of active neurons, that make up a “sparse” population
code” (Cayco-Gajic and Silver, 2019), then sparseness is also a
very important feature for separation in our model. In particular,
backward inhibition significantly reduces activity above the
threshold of R-neurons and produces a sparse population code
in all simulations of our model.

Our results show that neither EF nor incomplete random,
but also not sparse connectivity are key parameters for temporal
separation. However, EF and incomplete random connectivity are
prerequisites for spatial separation.

To study the influence of input parameters on the summation
over time, we independently varied the number of activated
I-neurons and their firing frequencies. Their individual
SP was measured.

Separation of Quantities
By increasing the number of activated I-neurons, the time to
the first spiking of R-neurons is reduced. The output times,
therefore represent the strength of the input in an inverse
manner. This relationship is a consequence of the summation

of the input spikes and is accompanied by an increase in
potential by SMO. However, when the I-neurons fire at different
frequencies, this strong relationship is reduced. Therefore we
simulated our model with full connectivity and with the same
frequencies of 90 Hz for all I-neurons. If the connections
between I- and R-neurons were random, the relationship between
output times and input strength would also be affected. A high
correlation would only be given by a statistical mean of as
many output neurons as possible. With full connectivity, different
but fixed output times (between 11 and 113 ms) are generated
by a single R-neuron. Each number (1–8) of the activated
I-neurons produces a different output time. This was also true
for the average output times when using 128 R-neurons with
random connectivity.

The output times are transferred to the firing of various
E-neurons with the help of the synfire chain arrangement. Our
model allows counting the number of activated I-neurons by
temporal separation. Each number of activated I-neurons is
represented by a specific E-neuron.

Separation of Frequencies
By increasing the frequency of activated I-neurons, the time
to the first spiking of R-neurons is shortened. The output
times should therefore correspond to the input frequency. To
check this, all I-neurons fire at the same frequency and this
frequency is systematically varied. We simulated our model with
full connectivity and with frequencies of I-neurons between 50
and 150 Hz with an interval of 10 Hz. In this arrangement,
different output times (between 23 and 89 ms) are calculated
from a single R-neuron in relation to the spiking frequencies of
three I-neurons. Using the synfire chain arrangement, different
frequencies of I-neurons lead to the spiking of different
E-neurons as the output. The input frequency is represented
by specific E-neurons. Our model allows the representation of
frequencies by temporal separation.

Separation of Objects
In a further step, an attempt is made to simulate a simple visual
object as input using 8 I-neurons that fire at different frequencies.
With this we want to find out whether our model also represents
objects separately with the input parameter for objects used there.
We assume that different properties of environmental objects are
represented by the activities of a few I-neurons. As the properties
of simplified objects, 3 possible shapes, 3 possible colors, and 2
possible sizes are used. Each object is defined by 3 properties,
one for shape, one for color, and one for size. The activation of
I-neurons 1, 2, or 3 represents 3 possible forms of the object, the
activation of neuron 4, 5, or 6 represents 3 possible colors, and
the activation of neuron 7 or 8 represents 2 sizes of the object.
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By combining the three properties, our model aims to produce
well-separated representations of 16 different objects. Examples
of two objects given activated I-neurons as input are shown here:

Separation power is tested by presenting all 18 possible objects
(plus 2 randomly chosen repeats), each represented by 3 activated
I-neurons in our model. The 20 objects are presented in the
form of 20 packages, each with a new random connectivity. To
reduce the average times in the output from the end of the time
domain (caused by activation of only 3 I-neurons) toward its
center, the synaptic weights from I-neurons to R-neurons are
doubled (from 2 to 4). The SP is measured in two ways: first, as
a percentage of correct repetitions of output patterns when the
same objects are presented. This criterion by Madar et al. (2019)
is named as "input reliability" that is the ability of a neuron to
reproduce the same output pattern on the repetitions of input
pattern. Second: as a percentage of different output times of the
single R-neuron in relation to the number of 18 different input
objects. The transformation of spiking times of the R-neurons
into spatially different E-neurons is accomplished with the help
of a “synfire wave.”

The first result: input reliability is perfect. Approximately
100% of repetitions are represented by equal output times of
R-neurons and equal E-neurons.

The second result: the average number of different spike
times for 18 different objects is 14. This means that 78% of
the different objects are represented by different output times
(and subsequently also by different E-neurons). It should be
noted that 77% of correct object identification is generated
without any learning mechanisms and is based on the spiking
times of a single R-neuron. While the spatial overlap of the
18 different input objects is 35% and the spatial overlap
of the output patterns of a single R-neuron numbers only
to 3.6%. Therefore, similar to previous results the mean
temporal SP is 90%.

Impact of Heterosynaptic Long-Time
Depression
The separation effects shown so far do not require any learning
mechanisms. They are generated by different excitation with
constant synaptic weights. In particular, hsLTD has previously
been proposed to facilitate spatial separation effects. This is
confirmed in our model (Figure 5). However, this promoting
effect of hsLTD is only observed for spatial separation with
EF > 1. The temporal separation does not seem to be affected
by hsLTD. For EFs of 2 and more, the spatial measurements of
SP are over 90%.

Extension of Temporal to Spatial
Separation
Input patterns have produced a time-separated output in
R-neurons. In our model the R-neurons temporal output is
perfectly converted into a spatial one using “traveling EPSPs” by
a synfire chain circuit as described above (as shown in section
“Synfire Chain” and Figure 6). Depending on the output time,

FIGURE 5 | Impact of heterosynaptic long-time depression (hsLTD) on pattern
separation: red: spatial separation with hsLTD; green: temporal separation
with hsLTD; white: spatial separation without hsLTD.

a different E-Neuron fires. The temporal overlap corresponds
exactly to the spatial overlap (Figure 7). There must be as many
output neurons available as different input times can occur (about
100 in our simulations).

Summary of Results
The simulations of our model provide the following results for
pattern separation:

• The separation of patterns can be studied in relation to
a spatial or temporal aspect of the output. Therefore, the
temporal or spatial overlap within the output patterns is
measured relative to the spatial overlap within the input
patterns generated by a varying number of differently firing
neurons. The comparison of the two measurements shows
that spatial separation has additional requirements.
• The spatial SP increases with EF and only reaches more than

90% at EF = > 8. The temporal measurement even to this
SP level can be reached with the help of a single R-neuron.
This corresponds to EF of 0.125. In addition, spatial SP
requires random connectivity and cannot be produced with
full connectivity.
• Sparse connectivity reduces temporal but not spatial SP.
• The number of activated I-neurons and their frequencies

affect the output times of R-neurons. These input
parameters show up in our model as significant influences
for the temporal separation.
• Objects represented by the combination of activated

I-neurons can be separated via the temporal output of
a single neuron. The temporal separation can then be
expanded to include a spatial dimension. The temporal
overlap of a single R-neuron and the spatial overlap of
E-neurons is reduced by about 90% compared with the
spatial overlap of I-neurons. Repeated presentations of the
same objects always activate the same R-neuron. In total,
18 different objects were used to activate on average 14
different E-neurons. Temporal SP is 90%.
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FIGURE 6 | Time to space extension mechanism by synfire chain. I: I-neurons sending spatiotemporal pattern to the dendrites of R-neurons. R: single R-neuron
representing the input by temporally precise spike generation. E: E- neurons. Each E-neuron receives the input from the R-neuron and an additional input from the
parallel ET-neuron. Only the simultaneous input from R and ET leads to a spike in E-neuron. T: T-neuron, initiates sequential spikes in ET-neurons.

FIGURE 7 | Example of temporal separation in R-neurons (left) and spatial separation in E-neurons (right). Output overlap (y-axis) vs. input pattern overlap (x-axis) is
shown. In both cases SP = 91.3%.

• Heterosynaptic long-time depression does not further
improve temporal SP, but improves spatial SP when EF > 1
• With the help of a synfire chain, a perfect transformation

from a temporal to a spatial separation can be achieved.

The model is reasonably robust to variations in the gamma
and theta frequencies used: SMO-theta frequencies of 3 HZ in
R-neurons (instead of 5 HZ) and gamma frequencies of the
input between 60 and 130 HZ (instead of 90–160 Hz) lead to
a reduction in the SP of only about 15%. Both high and low
theta oscillations in the human hippocampus have recently been
identified by Goyal et al. (2020).

DISCUSSION

The presented model establishes a new way to study the
separation process of patterns by distinguishing temporal and
spatial aspects. It turns out that times to the first output spike
allow for high separation even in the absence of expansion and

even within a single neuron. As shown in Figure 4, the temporal
SP comes to more than 90% and is independent of the number
of participating R-neurons. This high temporal separability of
a single neuron is energy-saving and is able to be present
at many circuits where somatic SMOs and summation across
dendrites exist. The input-output transformation of our model
does not depend on synaptic modification. The different numbers
of activated I-neurons, different frequencies of I-neurons, and
different delays in propagation of EPSPs from dendritic branches
to the soma seem to create the temporal separation force. The
separation is processed in conjunction with theta SMOs in the
R neurons and a temporal WTA network mechanism. We offer
time to the first spike as a crucial aspect of the temporal code
relevant to pattern separation. Madar et al. (2019) suggested that
separation can be realized by varying the temporal characteristics
of output spike trains as spike times, the firing rate, the number
of bursts, and the number of spikes in a burst.

Separation processes in the brain are not localized to a specific
region (Cayco-Gajic and Silver, 2019). Separation processes
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presumably take place in all sensory channels and also on the
different levels of processing. Our model is simplified to best
represent an exemplary separation process with its temporal and
spatial aspects.

The following neuronal mechanisms applied by our model
are physiologically plausible even if they have not yet been
directly investigated in relation to pattern separation in the
presented combination.

• Winner Takes All-mechanism of a time-based
competition, WTA-networks are often used in
computational models. The WTA-computation is an
intrinsic property of recurrent networks that are abundant
in cortex. Several studies have discussed the computing
power of spiking WTA networks (Oster et al., 2009).
Braganza et al. (2020) outlined a computer model related to
backward inhibition in the dentate gyrus and investigated
its ability to perform pattern separation. They found a
moderate feedback inhibition mediated pattern separation
effect during theta-modulated input but a substantial
separation, particularly from very similar inputs during
gamma oscillations (as used in our model). The impact of
backward inhibition for separation is also shown by Wick
et al. (2010).
• Gamma aligned input spike trains and theta oscillations

of excitability in output-neurons are the forms of
coding that are clearly demonstrated in the hippocampus
(Lisman and Jensen, 2013).
• Theta phase-related input to R-neurons is essential to

realize WTA-competition in our model. The input has to
arrive during the low period of the theta SMO. Such phase-
related activities often have been found in the hippocampus.
For example, pyramidal neurons recorded in the CA1
pyramidal cell layer of awake animals discharge on average
in the negative phase of the theta cycle (Buzsaki, 2002).
The results of Pernía-Andrade and Jonas (2014) show
that the onset of action potentials in hippocampal granule
cells is phase-locked to the descending part of the theta
and gamma wave. They suggest that action potentials are
generated at specific phases of the theta-gamma cycle, and
their results are consistent with the idea that a temporal
coding scheme is used.
• A sublinear summation of the synaptic input to a

single branch of R neurons is used. This mechanism
is not essential for the proposed separation process,
but allows input by a larger number of I-neurons (3–
6 in our model) without premature spiking effects.
Reports have shown that sublinear summation is a
prominent dendritic operation, extending the range of
subthreshold input-output transformations conferred by
dendrites (Tran-Van-Minh et al., 2015). Findings indicate
that a sublinear integration of synaptic inputs is possible in
multiple neuron types.
• Delays of propagation of EPSP to the soma depending on

the spatial distance of synapses at R-neurons. Propagation
delays of spikes (arriving at dendritic synapses) on their way
to the soma and EPSP attenuation are taken into account.

FIGURE 8 | Example of implemented connections between I- and R-neurons.
A single R-neuron with 6 dendritic branches (only two are shown) is excitatory
connected through 6 I-neurons (violet). A total of 4 I-neurons are activated (red
squares). Their spikes are propagated to the R-neuron (red dotted
connections).

Agmon-Snir and Segev (1993) calculated the time delay
and speed of propagation of electrical signals in a passive
dendritic tree. The delay contributed by the dendrites in a
modeled layer 5 cortical pyramidal cell is l0–17 ms for distal
apical arbors and 1.5 ms for the basal dendrites. The net
delay is reduced by 6–10 ms for the apical arbors and by
1–1.3 ms for the basal arbor. In our model, implemented
delays are again not essential for the separation process even
if they can enhance the SP.
• As an only learning effect related to pattern separation,

we study the impact of hsLTD sometimes considered as
relevant for pattern separation (O’Reilly and McClelland,
1994).

In summary, the model presented uses a combination of
neural mechanisms to effect a pattern separation. Specific to our
model is that the first step of separation is based on spatial and
temporal summation effects of membrane potentials in output-
neurons. The summation leads to different delays of first spiking.

Delay Code
Information processing through delay times is not entirely new.
Henze et al. (2002) proposed that the information in single
granule cells is converted into a time delay code by CA3
pyramidal cells and interneurons. Higher granule cell spike
frequencies produce shorter delays. A similar magnitude of
activation temporally discharges CA3 targets together, thereby
increasing their connectivity to one another. In contrast, our
model uses the different distribution of spike times. First spikes
in R-neurons are distributed in time and different delays separate
the spatially overlapping input patterns. Sufficient summation
effects are required to differentiate the input patterns. Temporal
summation can be improved by longer EPSPs. Indeed, higher
EPSP decay time constants were found in the hippocampus,
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where separation processes are likely. The decay time constant
in dentate gyrus granule cells is about 6 ms and in hippocampal
CA3 neurons is 11 ms (Kowalski et al., 2016). We use a decay
time constant of 7 ms for R-neurons, for the other neurons in our
model we use 3.5 ms.

Phase Code
According to our model, EPSPs by input patterns arrive the
R-neurons during the ascending part of theta SMOs. Due to this
temporal position of the input in relation to the theta phase, the
lower cumulative values of membrane potential can also become
overthreshold due to the increasing oscillation.

Theta oscillations are present in all subregions of the
hippocampus and in the granule cells of the dentate gyrus.
Increased activity patterns in the target cells of the dentate
gyrus or the CA3 region due to input from the entorhinal
cortex in the ascending phase of theta waves probably could
be indicative of the proposed separation mechanisms. In fact,
the overall population of active pyramidal cells fires the most
action potentials per theta cycle just after theta cycle bottom
(Mizuseky et al., 2009). However, this might be oversimplified
to validate our model. Theta oscillations can be generated
intrinsically (e.g., Fellous and Sejnowski, 2000 in the CA3 field)
or extrinsically by synaptic circuits (e.g., by rhythmic perisomatic
inhibition). The physiological mechanisms that evoke theta
field potential and the temporal coordination of individual
neurons across anatomically sequential subregions through theta
oscillations are not yet fully understood. Population activity in
hippocampal subregions does not merely reflect their input but
also represents the result of autonomous local computation.
Mizuseky et al. (2009) found an offset by a half-theta cycle
of downstream dendritic excitation of CA3- and dentate gyrus
neurons although the peak of population activity in the upstream
entorhinal cortex structure corresponded well with the timing
of dendritic excitation. Theta dynamic seems to allow for a
considerable degree of independence of local circuit computation
in the successive stages of the EC-hippocampal system.

Expansion Recoding
It has always been assumed that expansion recoding plays a key
role in pattern separation (Marr, 1971). The expansion can be
quantified by the ratio of the size of the input population to the
population of the expanded layer. In complete contrast to this,
our simulations show that at least high temporal separation can
occur through individual neurons and even taking place with a
reduction. Spatiotemporal patterns are in a first step separated in
the millisecond range of a rising theta wave (∼100 ms). Different
spike times replace the commonly used different neurons. Only
for the transfer of temporal into spatial separation a moderate
expansion is required as a second step, which can be done by
different mechanisms, e.g., by synfire waves or by competing
WTA with random diluted connectivity. Thus by an expansion
factor of 2 a spatial SP of 90% is achieved if supported by
hsLTD. That is consistent with Cayco-Gajic and Silver (2019),
who suggested that different structural and functional properties
can cause pattern separation.

Implementation in Hippocampus
In the following we try hypothetically to locate our model
in the circuits between entorhinal cortex, dentate gyrus, and
hippocampal CA3-region, where significant separation processes
are thought to be processed. For this purpose, our model is
expanded in a modular way: 8 I-neurons together with 16
R-neurons form a unit that is combined to form a larger system
of n modules. Every module processes a pool of I-neurons to
the R-neurons. R-neurons are trained to be equivalent to the
CA3 pyramidal neurons. Their input comes mainly from the
perforant path of the entorhinal cortex, from mossy fibers of
dentate gyrus, and from CA3 pyramidal neurons themselves
by recurrent axons. The entorhinal input is relatively weak
rarely exceeding the spiking threshold of pyramidal neurons
by itself. The dentate input is arrived by a small number of
strong synapses (mossy terminals synapse with 11–15 different
CA3 pyramidal cells, Acsády et al., 1998) and does not exceed
the spiking threshold on its own. Only the combination of
both inputs is able to trigger spikes in CA3 cells. Whether this
happen depends on the random connectivity of both inputs.
In any case, the random and sparse connectivity from the
dentate gyrus limits the field of possible activated CA3 neurons.
It determines the effective factor of expansion by the input
from the entorhinal cortex. Only in CA3 neurons receiving
input from the dentate gyrus, the input from the EC is able to
become suprathreshold and to represent the entorhinal input via
separation. Subsequently, the activation of individual pyramidal
cells leads to autoassociative feedback circuits that can generate
memories and pattern completion of the input.

Our separation model works within a single theta phase of
SMO of about 100 ms. New theta phases produce new separated
representations of the next input. Separation can take place
sufficiently rapidly to be complete within one theta cycle.

Increase in Entropy
High temporal SP increase favors the stochastic activity of
neurons during information processing, resulting in an increase
in entropy, which forms a correlation of perception as
hypothesized by Gupta and Bahmer (2019). Note that an increase
in SP will lead to a decrease in the probability of joint activity
of pairs of neurons if separation is also accompanied by the
control of the pairs of neurons by different sets of influences.
The decrease in the probability of joint activity will increase the
entropy and decrease the mutual information. However, note
that the increase in entropy or surprisal information if combined
with an increase in mutual information serves as key bases of
perception. Thus, the separation allows new time windows for an
increase in mutual information given only the presence of specific
stimuli. Therefore, the proposed model provides an important
mechanism for an increase in entropy during information
processing underlying the cognitive functions of the brain.

Time to Space
We are surprised at the high temporal separation by a single
neuron. Nevertheless, temporal differences in the representation
patterns after separation are sometimes only one or a few
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milliseconds. The question arises as to how such small temporal
differences can be further processed in a meaningful way.
Using synfire chain processes, we make a new proposal how
temporal patterns can be extended by neurons to spatial
patterns for further processing. To do this, we use systematically
altered excitability between neighboring neurons. The temporal
separation by single neurons can be perfectly converted back
into an additional spatial separation. A very different way of
processing small differences in time is expansion, which was
seen as central to the separation process. Incomplete random
connectivity spreads the times to the first spike across a spatially
extended ensemble of neurons. A competing WTA-mechanisms
selects the neurons with the shortest delay. There are probably
other ways of converting temporal differences into spatial ones.

We hypothesize that additional determinants not considered
here, such as the diversity of synaptic weights on dendritic
branches can influence the SP. Thus Rolls (2016) noted that
pattern separation could be produced by a fully connected
competitive net without learning in which the synaptic weights
are set to random values.

CONCLUSION

A model is presented that defines the pattern separation
mainly via the temporal dimension of neural activity. Spatially
different input patterns lead to an output with different
delays due to the spatial and temporal summation processes
of membrane potential. SMOs can amplify differences in
the delay of output spikes. The output as spikes with
different delays can be processed downstream under different
conditions. According to our model, the process of spatial
separation, which has been mainly investigated up to now,

presents itself as a reverse transformation of the time delay
into spatial differentiation. The expansion performed by
incomplete random connections seems to be responsible for
this purpose. By our model, the original separation occurs in
individual neurons by summing up the membrane potentials of
incoming spikes over time. Other forms of back-transforming
the temporal separation by delays into a spatial separation,
e.g., by “synfire wave” are also possible. In any case, the
time dimension should be more integrated into pattern
separation research.
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