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A B S T R A C T   

Lung adenocarcinoma (ADC) is the most common non-small cell lung cancer. Surgical resection is the primary 
treatment for early-stage lung ADC while lung-sparing surgery is an alternative for non-aggressive cases. Iden
tifying histopathologic subtypes before surgery helps determine the optimal surgical approach. Predominantly 
solid or micropapillary (MIP) subtypes are aggressive and associated with a higher likelihood of recurrence and 
metastasis and lower survival rates. This study aims to non-invasively identify these aggressive subtypes using 
preoperative 18F-FDG PET/CT and diagnostic CT radiomics analysis. We retrospectively studied 119 patients 
with stage I lung ADC and tumors ≤ 2 cm, where 23 had aggressive subtypes (18 solid and 5 MIPs). Out of 214 
radiomic features from the PET/CT and CT scans and 14 clinical parameters, 78 significant features (3 CT and 75 
PET features) were identified through univariate analysis and hierarchical clustering with minimized feature 
collinearity. A combination of Support Vector Machine classifier and Least Absolute Shrinkage and Selection 
Operator built predictive models. Ten iterations of 10-fold cross-validation (10 ×10-fold CV) evaluated the 
model. A pair of texture feature (PET GLCM Correlation) and shape feature (CT Sphericity) emerged as the best 
predictor. The radiomics model significantly outperformed the conventional predictor SUVmax (accuracy: 83.5% 
vs. 74.7%, p = 9e-9) and identified aggressive subtypes by evaluating FDG uptake in the tumor and tumor shape. 
It also demonstrated a high negative predictive value of 95.6% compared to SUVmax (88.2%, p = 2e-10). The 
proposed radiomics approach could reduce unnecessary extensive surgeries for non-aggressive subtype patients, 
improving surgical decision-making for early-stage lung ADC patients.   

1. Introduction 

Lung adenocarcinoma (ADC) is the most common histologic type of 
non-small cell lung cancer (NSCLC). Invasive ADC can be classified into 
five histopathologic subtypes based on their dominant growth patterns: 
lepidic, acinar, papillary, micropapillary (MIP), and solid [1], and Pre
dominantly solid or MIP subtypes are aggressive with poorer prognosis, 
higher recurrence rate, vascular invasion, pleural invasion, lymph node, 
and distant metastasis [2–13]. The 2021 WHO Classification of Lung 
Tumors includes a new International Association for the Study of Lung 
Cancer (IASLC) grading system for invasive lung ADC based on the 
predominant histologic pattern of the tumor and the presence of 

high-grade components [14,15]. 
Surgical resection is the gold standard of treatment for early-stage 

NSCLC, with lobectomy being the standard mode of surgery since 
1960 [16,17]. Advances in imaging and staging have allowed the 
detection of smaller tumors earlier, and rekindled interest in sublobar 
resection such as segmentectomy or wedge resection [18]. In two Phase 
III trials in patients clinically staged as T1N0 (tumor size ≤ 2 cm and 
pathologically confirmed node-negative), sublobar resection was found 
to be superior or not inferior to lobectomy with respect to disease-free 
and overall survival, though a two-fold increase in local relapses was 
reported in one trial [18,19]. Until now, there is no consensus on the 
appropriate indication for sublobar resection versus lobectomy in 
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small-sized lung tumors [20–22]. Considering the worse prognosis of 
solid and MIP subtypes, lobectomy may be a more suitable option for 
patients with these aggressive subtypes [9,23]. 

Preoperative identification of aggressive subtypes could aid surgeons 
in selecting the optimal surgical procedures. Core biopsy has been used 
for identifying the dominant ADC subtype, which can be a prognostic 
factor for treatment response to stereotactic body radiation therapy [7]. 
However, core biopsy is an invasive procedure and can produce incon
sistent results due to sampling errors [24]. 

Radiomic features extracted from medical images have shown 
promise in lung tissue classification, oncogenetics correlation, treatment 
response, and disease prognosis of lung cancer [25]. Using radiomic 
features from CT and PET/CT may provide a non-invasive preoperative 
method to identify those ADC subtypes with worse prognosis. CT 
radiomics can quantify the size, shape, margin, and internal density of 
tumors as imaging biomarkers of lung ADCs. 

She et al. successfully differentiated indolent forms of adenocarci
noma from more invasive types, offering a potential tool for tailored 
interventions [26]. Fan et al. developed a radiomics signature to discern 
between invasive and non-invasive lesions, promising improved pre
operative discrimination [27]. Park et al. leveraged a CT-based radiomic 
model to classify prognostic subtypes, showcasing its potential in 
refining adenocarcinoma classification. [28] Yang et al. recently intro
duced a CT-based nomogram for preoperative prediction of novel IASLC 
grading, demonstrating its utility in identifying high-grade ADCs and 
guiding treatment strategies [29]. These studies collectively highlight 
the significant role of radiomics in refining the assessment and man
agement of lung ADCs. 

Several studies have used CT features of ground-glass nodules 
(GGNs) to differentiate invasive ADC from pre-invasive lesions. For 
example, Lee et al. retrospectively investigated CT features for differ
entiating between invasive ADC and pre-invasive lesions appearing as 
GGNs. In pure GGNs, less than 10 mm lesion was a highly specific 
discriminator (sensitivity: 53.33%, specificity: 100%) [30]. In part-solid 
GGNs, pre-invasive lesions such as atypical adenomatous hyperplasia 
and adenocarcinoma in situ (AIS) were accurately identified (area under 
the curve [AUC]: 0.91) using the smaller lesion size, smaller solid pro
portion, non-lobulated border, and non-spiculated margin [30]. Son 
et al. claimed that quantitative analysis of preoperative CT imaging 
metrics could help distinguish invasive ADC from AIS or minimally 
invasive adenocarcinoma (AUC: 0.78) [31]. Chae et al. performed 
texture analysis to differentiate pre-invasive lesions from invasive ADC 
that manifest as part-solid GGNs. Higher kurtosis and smaller mass 
(adjusted odds ratios: 3.319 and 0.092, respectively) were significant 
predictors of pre-invasive lesions [32]. Furthermore, Song et al. pre
dicted cases with MIP components greater than 5% of the entire tumor 
using tumor grade, sphericity, and entropy of co-occurrence matrix with 
an AUC of 0.61 [33]. 

PET/CT radiomics has emerged as a powerful tool in lung cancer 
research and management. The potential of quantitative image analysis 
for various aspects of lung cancer care has been explored, including 
computer-assisted diagnosis, survival prediction, and treatment 
response assessment. In particular, accurate identification of histologic 
subtype plays a pivotal role in shaping patient outcomes and guiding 
therapeutic decisions [34]. Ensuring the reproducibility and robustness 
of radiomics-derived features presents a critical challenge [35,36]. 
Variations from image acquisition, preprocessing, and tissue heteroge
neity can introduce uncertainties. Standardized approaches in feature 
extraction and preprocessing are crucial for reliable radiomic analyses. 
Metrics like the Intraclass Correlation Coefficient (ICC), Overall 
Concordance Correlation Coefficient (OCCC), and Coefficient of Varia
tions (COV) assess feature variability and robustness. 

Studies have investigated lung adenocarcinoma growth patterns 
using radiomics. Shao et al. applied an 18F-FDG PET/CT-based radiomics 
model to detect early invasive adenocarcinoma patterns. They analyzed 
93 GGNs (lepidic, N = 18 and acinar-papillary, N = 75). Using selected 

radiomic features from both PET and CT scans, a rad-score was calcu
lated, resulting in an AUC of 0.790, which is comparable to the AUC of 
0.675 for the CT attenuation value of the ground-glass opacity compo
nent (CTGGO). The incorporation of rad-score with edge information in 
a joint model resulted in a minor improvement in AUC to 0.804. Their 
model combining CT parameters and PET/CT radiomics showed prom
ise in predicting risk patterns and improving risk stratification and 
treatment planning [37]. Xiong et al. focused on identifying adenocar
cinomas with lepidic growth in pure GGNs (>10 mm). By integrating 
clinical data, CT parameters, and radiomics, they improved identifica
tion. The radiomics-only and combined models outperformed the 
baseline model’s AUC of 0.762 and the radiologist’s highest AUC of 0.6, 
achieving test AUCs of 0.804 and 0.820, respectively [38]. 

This study aimed to identify early-stage lung ADC with aggressive 
subtypes, specifically predominant solid or MIP components, using 
preoperative 18F-FDG PET/CT and CT radiomics analysis. To our 
knowledge, this is a pioneer radiomics study that combines the PET/CT 
and CT to address this important clinical question. 

2. Materials and methods 

Institutional Review Board approval was obtained for this retro
spective study. Consecutive patients with preoperative CT and 18F-FDG 
PET/CT between 2008 and 2011 were reviewed from the institution’s 
database. Only patients with lung adenocarcinoma ≤ 2 cm on CT were 
included. Preoperative clinical risk factors including age, sex, smoking 
history, family history of lung cancer, prior malignancy history, and 
chronic obstructive pulmonary disease (COPD)/Emphysema were 
recorded. Histopathology subtyping of tumors was performed by expe
rienced pathologists using hematoxylin and eosin-stained specimens 
according to the 2011 classification proposed by the IASLC, the Amer
ican Thoracic Society (ATS), and the European Respiratory Society 
(ERS) [1]. The presence of lepidic, papillary, acinar, MIP, and solid 
components was documented in 5% increments, and the dominant 
subtype was defined as the morphologic component with the highest 
proportion. Tumors with MIP or solid pattern as the dominant compo
nent were labeled as aggressive subtypes. Table 1 provides a summary of 
patient characteristics. One patient was excluded from the analysis due 
to missing weight information needed to calculate standardized uptake 
values (SUV). 

Helical CT images were obtained using a GE LightSpeed16 CT 
scanner (GE Healthcare, Chicago, IL) with the following parameters: 
tube voltage of 120kVp, current of 120–380 mA, and pitch of 
0.984–1.750. The images were reconstructed to a 512 × 512 matrix with 
a slice thickness of 5 mm and pixel size ranging from 0.762 to 0.838 mm. 

Table 1 
Patient Characteristics.  

Characteristic Cohort (N = 120) 

Age (years)  
Mean 67.0 
Range 40–90 

Sex, N (%)  
Male 46 (38.3%) 
Female 74 (61.7%) 

Histopathological subtype, N (%)  
Lepidic 37 (30.8%) 
Acinar 47 (39.2%) 
Papillary 12 (10.0%) 
MIP 5 (4.2%) 
Solid 19 (15.8%) 
Aggressive subtypes (SolidþMIP) 24 (20.0%) 

Clinical risk factors  
Smoking 100 (83.3%) 
Family history of lung cancer 32 (26.7%) 
Prior history of lung cancer 23 (19.2%) 
Prior malignancy other than lung cancer 67 (55.8%) 
COPD/Emphysema 14 (11.7%)  

W. Choi et al.                                                                                                                                                                                                                                    



Computational and Structural Biotechnology Journal 21 (2023) 5601–5608

5603

A physician visually reviewed the CT images for radiologic signs that 
may contribute to the prediction model, including tumor location 
(upper/middle lobe vs. lower lobe), pleural traction sign, tumor opacity 
(solid, part-solid, or ground-glass opacity), and speculated tumor 
margin. All PET/CT images were acquired using routine clinical proto
col. Before the injection of FDG, the blood glucose of each patient was 
below 200 mg/dL after a 6-hour fasting period. All patients were scan
ned on a GE Discovery LS PET/CT system (GE Healthcare, Chicago, IL) 
60 min after injection of 400–555 MBq FDG. PET images were recon
structed using the OSEM method to a 128 × 128 matrix with a slice 
thickness of 4.25 mm and pixel size of 3.9 mm. A low-dose CT scan 
(120–140 kV, 80 mA) was obtained and used for attenuation correction 
of the PET image data. 

2.1. Tumor segmentation 

Tumor segmentation was performed on both CT and PET/CT images. 
For CT, a nuclear medicine physician manually contoured the tumor on 
axial images. For PET/CT, a background subtracted lesion (BSL) seg
mentation method was used [39] (Fig. 1). This method estimates the 
background FDG uptake by fitting a Gaussian curve to the histogram 
from the area surrounding the tumor, and the tumor border is deter
mined by thresholding at two standard deviations above the mean of 
background activity. The BSL method is suitable for small lesions and is 
relatively resistant to lung motion during PET acquisition [40]. The 
nuclear medicine physician (CL) reviewed the BSL segmentation results 
and occasionally made manual modifications for lesions with low FDG 
uptake. In some low FDG-avidity cases, the PET/CT segmentation may 
mistakenly connect to adjacent background activity such as medias
tinum or liver, and the volume of interest used to initiate the BSL al
gorithm had to be repeatedly selected until the resultant segmentation 
closely matched the corresponding nodules on diagnostic CT. The seg
mentation was performed without knowledge of each case’s clinical 

details and exact pathological subtypes. 

2.2. Radiomic feature extraction 

A total of 214 radiomic features were extracted from both diagnostic 
CT and 18F-FDG-PET/CT images using PyRadiomics [41], with 107 
features per scan. Furthermore, we utilized PyRadiomics [41] to extract 
filter-based features (Laplacian of Gaussian, Wavelet, Square, Square 
Root, Logarithm, Exponential, Gradient, Local Binary Pattern 2D and 
3D), resulting in 1302 features for each scan and 2604 in total, leading to 
a grand total of 2818 features. Additionally, we extracted a set of 206 
radiomic features from the same images with in-house software using 
the Insight Segmentation and Registration Toolkit (ITK) [42,43]. To 
correct for the partial volume effects (PVE) of the tumor in PET, the 
recovery coefficient method was used before calculating the maximum 
standardized uptake value (SUVmax) and radiomic features [44]. 

The PyRadiomics features comprise First Order Statistics, Shape- 
based 2D and 3D, Gray Level Co-occurrence Matrix (GLCM) [45], 
Gray Level Run Length Matrix (GLRLM) [46,47], Gray Level Size Zone 
Matrix (GLSZM) [48], Neighboring Gray Tone Difference Matrix 
(NGTDM) [49], and Gray Level Dependence Matrix (GLDM) [50]. These 
features characterized the intensity, shape, and texture of the tumor. 
First order statistics features quantified the level of intensity and dis
tribution of voxel-wise CT attenuations or SUV of the PET/CT in a tumor. 
Shape features described geometric characteristics such as volume, 
diameter, elongation, and flatness of a tumor. Texture features quanti
fied the spatial patterns of tissue density in CT or SUV in the PET/CT, 
such as homogeneity, coarseness, and correlation of intensity in a tumor, 
using GLCM, GLRLM, GLSZM, NGTDM, GLDM. The in-house radiomics 
quantified both diagnostic CT and PET/CT image intensities with 
normalization into 32 levels for contrast stretching due to the wide 
dynamic range of CT attenuation and continuous values of FDG uptake 
when constructing the GLCM and GLRM. The length of runs was 

Fig. 1. Examples of the segmentation of aggressive types (solid and MIP) and other types (papillary, acinar, and lepidic) of invasive lung ADC on diagnostic CT and 
18F-FDG PET/CT. Red: the manual segmentation on diagnostic CT and Green: the automatic contour using background subtracted lesion (BSL) segmentation on 
FDG PET. 

W. Choi et al.                                                                                                                                                                                                                                    



Computational and Structural Biotechnology Journal 21 (2023) 5601–5608

5604

normalized by the diagonal length of the tumor’s bounding box to make 
the GLRM scale-invariant. Finally, the average value of each texture 
feature was computed over all 13 spatial directions to obtain rotation
ally invariant features. 

2.3. Prediction model 

The prediction model integrated radiomic features and clinical pa
rameters to identify tumors with aggressive subtypes. Three pre
processing steps were taken before constructing the prediction model to 
eliminate unnecessary features. Initially, we excluded unreliable radio
mic features by employing intra-class correlation (ICC) to remove non- 
robust features. For this purpose, we applied supervoxel-based contour 
perturbation to each contour ten times. Subsequently, we calculated 
ICC1k (average absolute raters) and ICC2k (average random raters) and 
removed unreliable features by thresholding (ICC1k or ICC2k < 0.9). 

Next, univariate analysis was applied to each radiomic feature, using 
the AUC of ROC and p-value computed by Wilcoxon rank-sum test. False 
discovery rate (FDR) correction was applied due to the multiple com
parisons problem (q-value). The significant levels for both p-value and q- 
value are ≤ 0.05. 

Finally, distinctive radiomic features were identified using the 
Ward’s hierarchical clustering method [51]. The hierarchical feature 
cluster tree was divided into several prominent clusters (feature groups) 
by cutting at a threshold of the Spearman correlation coefficient ρ ≥ 0.7. 
Distinctive features were selected as representative features with the 
smallest within-cluster correlation or as independent of all other fea
tures. Redundant features were removed from subsequent analysis. 

The distinctive features chosen during the preprocessing were used 
to train a support vector machine (SVM) classifier using a 10-fold cross- 
validation (CV). Within each fold of the model building process, least 
absolute shrinkage and selection operator (LASSO) was used to rank and 
select important features using a nest 10-fold CV (inner-loop). An SVM 
classifier was then built to predict aggressive subtypes using a radial 
basis kernel function. The hyperparameters were optimized by using a 
grid search algorithm within combinations of γ = {0.0001, 0.001, 0.01, 
0.1, 1, 10} and C= {0.001, 0.01, 0.1, 1, 10, 100, 1000}. The outer loop 
was repeated ten times to obtain the model accuracy (10 ×10-fold CV). 
The 10 × 10 CV evaluated 100 models with different shuffled training 
and test datasets. 

In each repetition, the patients were randomly divided into ten folds. 
One fold was selected as the test set, while the remaining nine folds were 
allocated to the training set. This process was repeated ten times by 
shuffling the entire dataset. To mitigate the effects of imbalanced data, 
we employed randomized oversampling to balance the training sets in 
the 10 × 10-fold CV. 

During the SVM classifier training, we utilized the forward sequen
tial feature selection (forward-SFS) method to choose ten different 
models that have from one optimal feature to ten optimal features. This 
method was based on the top ten most important features. These fea
tures were selected and ranked using the LASSO selection. The forward- 
SFS algorithm is a greedy method that iteratively identifies and adds the 
best new feature to a selected feature set. The procedure starts with no 
features and determines the most significant feature that maximizes the 
internal validation score when an estimator is trained on the single 
feature. After selecting the first feature, the process repeats by adding a 
new feature to the selected features. This process continues until ten 
features are included in the model. We also retain the optimal model at 
each number of features to compare model performance based on the 
number of features. When we add a new feature from the unselected 
feature list, we prioritize its importance according to the LASSO feature 
ranking. Finally, we chose models with ten different numbers of 
features. 

3. Results 

Among the 119 evaluable patients, 23 had aggressive subtypes (18 
solid and 5 MIP). Table 2 shows the comparison of SUVmax, tumor size, 
and visual radiologic characteristics between aggressive and non- 
aggressive subtypes. There was no statistically significant difference 
between the two groups except for SUVmax, which had an AUC of 0.72 (q 
= 0.018). The mean SUVmax was higher for aggressive subtypes (8.1 
± 5.2) than non-aggressive subtypes (4.2 ± 2.8). 

Univariate analysis revealed that 78 features were statistically sig
nificant predictors of outcome, including 3 CT features and 75 PET 
features. Table 3 shows the top 10 features were all derived from PET 
scans, comprising 6 texture features and 4 shape features. PET shape 
features provide a coarse shape analysis compared to CT shape features, 
due to the larger PET voxel size (4 mm). PET texture features analyze the 
patterns of FDG uptake in the PET scans. Specifically, GLCM Correlation 
measures linear dependencies between intensity levels. GLCM Cluster 
Shade quantifies skewness in the intensity distribution. Least Axis 
Length determines the smallest tumor diameter in 3D. GLDM Depen
dence Entropy evaluates randomness between neighboring voxels. 
GLRLM Run Length Non-Uniformity assesses variability in homoge
neous tumor regions. Mesh Volume estimates the 3D surface that en
velops the tumor. Voxel Volume sums the volume of significant voxels. 
Surface Area computes the 3D boundary area. GLSZM Small Area Low 
Gray Level Emphasis identifies small regions with low intensity. GLSZM 
Gray Level Non-Uniformity Normalized examines variations in intensity 
across tumor zones. 

In multivariate analysis, the best SVM-LASSO model consisted of a 
pair of texture feature and shape feature: PET GLCM Correlation and CT 
Sphericity. PET GLCM Correlation is a measure of linear dependency of 
intensity levels, and it is high when high intensity levels are well 
distributed in a small region like a focal uptake in FDG PET. CT Sphe
ricity quantifies the roundness of a shape in 3D CT by calculating how 
closely it approximates a sphere. The PET GLCM Correlation was 
significantly higher for aggressive subtypes (0.37 ± 0.3) than non- 
aggressive subtypes (0.11 ± 0.23), and CT Sphericity was higher for 
aggressive subtypes (0.69 ± 0.06) than non-aggressive subtypes (0.65 
± 0.08) as shown in Fig. 2. Table 4 shows the comparison of prediction 
accuracy using tumor size, SUVmax, and the SVM-LASSO model with 
three different feature sets (PyRadiomics – original image, PyRadiomics 
– including filtered images, and in-house radiomics tool). The SVM al
gorithm was used to create models based on tumor size and SUVmax 
without feature selection using LASSO. These models were subsequently 
compared to SVM-LASSO radiomics models for their predictive accu
racy. We accomplished this by implementing 10 × 10-fold CV and 
hyperparameter optimization, with subsequent analysis conducted 
using the finalized model. The SVM-LASSO model with PyRadiomics 
features from original images had a sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), and accuracy 

Table 2 
SUVmax and visual radiological predictors for predicting of aggressive lung ADC 
subtypes. Partial volume effect (PVE) was corrected using the recovery coeffi
cient method.  

Predictor AUC q-value ρ 

SUVmax  0.72  0.018  0.41 
Tumor size  0.54  0.75  0.16 
Location (upper 1/lower 0)  0.58  0.35  -0.13 
Part-Solid  0.53  0.83  0.05 
Spiculation  0.50  1.00  0.0007 
Pleural  0.46  0.68  -0.07 

AUC: area under the receiver operating characteristic curve, a plot of sensitivity 
and false positive rate (1 – specificity), q-value: False discovery rate adjusted 
Wilcoxon signed rank test p-value, ρ: Spearman correlation between the pre
dictor and aggressive subtype.  
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with the 10 × 10-fold CV of 84.1%, 83.3%, 55.0%, 95.6%, and 83.5%, 
respectively. All were significantly higher than those of SUVmax (55.7%, 
79.3%, 39.2%, 88.2%, and 74.7%, respectively) or tumor size (40.4%, 
56.3%, 18.3, 79.6%, and 53.2%, respectively). Adding more than two 
features to the models decreased their accuracy. SVM-LASSO using the 
other feature sets (PyRadiomics features including filtered images and 
our in-house radiomics tool) showed lower performance than the best 
model, but still significantly higher than SUVmax. Statistical tests were 
utilized to evaluate diagnostic test performance. The McNemar test, for 
paired nominal data, was utilized to analyze sensitivity, specificity, and 
accuracy, providing insights into the marginal homogeneity of two 
dichotomous variables. [52]. In addition, the Moskowitz and Pepe test 
was employed to compare PPV and NPV, giving a comprehensive eval
uation of the predictive power of the diagnostic tests [53]. Differential 
AUCs were assessed using DeLong’s ROCs test, which demonstrated the 
discriminatory capabilities of the analyzed techniques [54]. 

Table 5 illustrates that the best SVM-LASSO model for predicting the 
solid subtype had an accuracy of 80.6 ± 1.5%, sensitivity of 82.7 
± 6.4%, and specificity of 80.3 ± 2.0% using the same features (PET 
GLCM Correlation and CT Sphericity). However, the identification of the 
MIP subtype using radiomics was challenging, with a much lower PPV of 
42.0 ± 2.5% and a large variation in sensitivity of 86.0 ± 16.5%. 

4. Discussion 

The appropriate selection of lobectomy vs. sublobar resection for 
early lung ADC remains an area of debate [55]. Sublobar resections 
preserve more lung reserve, while lobectomy provides better paren
chymal margins and lymphatic clearance. Sublobar resection is 
reasonable for tumors ≤ 2 cm. However, higher rates of lymph node 
metastases have been noticed in tumors with solid or MIP subtypes, even 
when the tumor sizes are small [56–58]. Thus, lobectomy is more 
favored for tumors with solid or MIP subtypes [58]. The dilemma of 
resection methods for small lung tumors highlights the importance of 
histopathological subtyping of lung ADC before surgical resection. 

There are few studies that predict lung ADC subtypes before tumor 
resection. The SUVmax of PET has been shown to have a close association 
with lung ADC subtypes and grading. MIP and solid subtypes tend to 
have higher SUVmax than the other subtypes [59–62]. However, the 
discriminative power of SUVmax is inevitably limited by the partial 
volume effect for small tumors [44], and as a single-point estimate, 
SUVmax fails to characterize intratumoral heterogeneity [63–65]. 
Despite the important role of PET in the diagnosis and staging of lung 
ADC, it has been reported that false negative results are common in 
tumors ≤ 2 cm [66]. The tumor-size-dependent sensitivity of PET may 
explain the improved but still low sensitivity and PPV of our models. Our 
radiomics model achieved high specificity, high NPV, and good accuracy 
in predicting aggressive subtypes of lung ADC. Compared with the 
SUVmax based SVM model, the SVM-LASSO model using PET GLCM 
Correlation and CT Sphericity significantly improved accuracy 
(Table 4). 

The accuracy of our model relied heavily on its ability to identify the 
solid subtype, rather than the MIP subtype because the number of the 
MIP subtype cases is much smaller. The compact sheets of malignant 
cells and lack of alveolar space in the solid subtype make its spatial 
structure distinct from the other four subtypes. Univariate analysis 
revealed that 99 radiomic features were significant in predicting the 
solid subtype (7 CT, 92 PET, and none of the clinical parameters, with an 
AUC of 0.68–0.83), but no feature was significant in predicting the MIP 
subtype although the AUC for the best 10 features of the MIP subtype 
(0.86–0.90) is higher than that of the solid subtype. 

Meanwhile, SVM-LASSO identified three features (2nd Cancer, PET 
GLCM Correlation, and PET GLSZM Small Area Low Gray Level 
Emphasis) that can accurately predict MIP dominant subtypes with a 
high accuracy of 87.2% as shown in Table 5. The limited number of MIP 
cases and their low representation in the training set, compounded by 
the intratumoral heterogeneity of growth patterns, posed challenges in 
accurately capturing MIP subregions during model building. Conse
quently, sensitivity exhibited significant variability and PPV demon
strated lower performance. Additionally, the fine structural distinctions 

Table 3 
Top 10 important radiomics features obtained by univariate analysis for 
aggressive lung ADC.   

Type Features Categories AUC q- 
value 

ρ 

1 PET GLCM Correlation Texture 0.79 0.0017 0.39 
2 PET GLCM Cluster Shade Texture 0.78 0.0026 0.38 
3 PET Least Axis Length Shape 0.77 0.0030 0.42 
4 PET GLDM Dependence 

Entropy 
Texture 0.76 0.0036 0.35 

5 PET GLRLM Run Length Non 
Uniformity 

Texture 0.75 0.0043 0.41 

6 PET Mesh Volume Shape 0.75 0.0046 0.43 
7 PET Voxel Volume Shape 0.75 0.0046 0.44 
8 PET Surface Area Shape 0.75 0.0046 0.43 
9 PET GLSZM Small Area Low 

Gray Level Emphasis 
Texture 0.75 0.0047 -0.27 

10 PET GLSZM Gray Level Non 
Uniformity Normalized 

Texture 0.75 0.0047 -0.27 

AUC: area under the receiver operating characteristic curve, a plot of sensitivity 
and false positive rate (1 – specificity), q-value: False discovery rate adjusted 
Wilcoxon signed rank test p-value, ρ: Spearman correlation between the pre
dictor and aggressive subtype.  

Fig. 2. The box plots depicting SUVmax (q=0.018), PET GLCM Correlation (q=0.0017) and CT Shape Sphericity (q=0.18) demonstrate significant differences be
tween aggressive and non-aggressive subtypes. The median is indicated by the central mark. 
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between MIP tufts and papillary fibrovascular cores, discernible under 
high-power filed microscope with a 0.2 µm resolution, are beyond the 
capability of texture features derived from PET/CT, which operates at a 
much coarser resolution (3–5 mm). Further dedicated research on MIP is 
imperative to enhance outcomes for patients with MIP-dominant ADC 
and address its poor prognosis. 

CT has traditionally been the primary diagnostic tool for lung cancer, 
as small lung ADCs can exhibit diverse sizes, shapes, margins, and in
ternal densities (non-solid, part-solid to mostly solid) [67]. Although CT 
texture analysis has been used for prognostic stratification by identifying 
invasive lung ADC among GGNs [30,31] or among part-solid nodules 
[32], our study found that none of the CT features were as effective as 
PET features in predicting solid and MIP subtypes in the univariate 
analysis. However, CT Sphericity was selected as the second feature 
along with PET GLCM Correlation in SVM-LASSO model to complement 
PET texture feature. 

Currently, lung ADC subtyping using preoperative core biopsy sam
pling or intraoperative frozen section is not routinely performed due to 
increased cost and invasiveness, which can result in sampling errors [68, 
69]. In contrast, imaging phenotype analysis as a biomarker for lung 
ADC histology has the advantages of being non-invasive and 
cost-effective. Our study used preoperative imaging modalities to build 
the prediction model, enabling the evaluation of the entire tumor to 
avoid sampling errors. Previous studies have also used imaging features 
to predict aggressive subtypes of ADC, with Song et al. describing the CT 
characteristics of MIP as more homogenous and less spherical periphery 
than solid [33], and Yang et al. demonstrating high accuracy of CT 
radiomics in predicting solid and MIP subtypes with sensitivity, speci
ficity, and accuracy of 83.3%, 98.7%, and 91.6%, respectively [70]. 

However, Yang’s model only analyzed tumors with a high percentage 
(>70%) of dominant histopathological subtype, and their results may 
not be applicable to tumors with < 70% of dominant histopathological 
subtype. 

The large difference between the resolutions of PET/CT images 
(3–5 mm) and light microscope (0.2 µm) may have compromised the 
accuracy of prediction models. The interspersed distribution of aggres
sive subtypes in the tumor also limit the sensitivity of the model, as well 
as other conventional indicators such as solid component on CT, SUVmax 
of PET, and preoperative core biopsy. Due to the unsatisfactory PPV of 
55.0%, the model cannot aid surgeons in selecting lobectomy for a pa
tient who is predicted as aggressive subtype. However, with a high NPV 
of 95.67%, the model may aid surgeons in selecting sublobar resection 
for a patient who is predicted as non-aggressive subtype. 

The study was limited by the modest patient cohort and retrospective 
nature. Manual segmentation of tumors on CT can suffer significant 
inter- and intra-observer variability. Although automatic segmentation 
algorithms may be technically difficult due to the indistinct and fuzzy 
borders of these small tumors, they may be worth exploring in future 
studies. Another limitation is that all patients were recruited from one 
cancer institute, resulting in a higher prevalence of patients with prior 
lung cancer, malignancy, or family history of lung cancer than the 
general population. The variance or inconsistency between different 
institutes should be validated in a multi-institute study. 

5. Conclusion 

In conclusion, we developed a radiomics model to predict aggressive 
subtypes of lung ADC using preoperative 18F-FDG PET/CT and 

Table 4 
Accuracy of the Tumor Size, SUVmax and SVM-LASSO models with different feature sets to predict aggressive lung ADC. All the metrics were obtained through the 
10 × 10-fold cross-validation.   

Sensitivity Specificity PPV NPV Accuracy AUC 

a. Conventional 
Tumor Size 

40.4 ± 5.5% 56.3 ± 2.0% 18.3 ± 2.6% 79.6 ± 1.4% 53.2 ± 1.9% 0.60 ± 0.05 

b. Conventional 
SUVmax 

55.7 ± 1.8% 79.3 ± 1.1% 39.2 ± 2.0% 88.2 ± 0.6% 74.7 ± 1.2% 0.64 ± 0.01 

c. SVM-LASSO 
PyRadiomics 
original only 

84.1 ± 5.9% 83.3 ± 2.3% 55.± 1.6% 95.6 ± 3.7% 83.5 ± 2.2% 0.84 ± 0.03 

p-value b vs. c 5e-10 0.04 3e-8 2e-10 9e-9 0.001 
d. SVM-LASSO 

PyRadiomics 
with filters 

63.0 ± 6.5% 85.0 ± 2.2% 50.3 ± 5.1% 90.6 ± 1.6% 80.8 ± 2.6% 0.79 ± 0.02 

p-value b vs. d 0.02 0.003 2e-4 0.02 2e-4 0.04 
e. SVM-LASSO 

in-house radiomics 
67.4 ± 3.1% 86.0 ± 1.1% 53.7 ± 2.1% 91.7 ± 1.0% 82.4 ± 1.0% 0.78 ± 0.01 

p-value b vs. e 6e-6 6e-5 2e-8 7e-8 1e-8 0.01  
Selected Features of the SVM-LASSO model N 

c. PET GLCM Correlation, CT Shape Sphericity 2 
d. CT Logarithm GLDM Large Dependence High Gray Level Emphasis, PET LBP2D Firstorder Total Energy, PET Wavelet LHL GLCM Cluster 

Shade, PET Logarithm GLCM Contrast, CT Wavelet LLH Firstorder Maximum 
5 

e. PET Mean of Cluster Shade 1 

PPV: positive predictive value, NPV: negative predictive value, AUC: area under the receiver operating characteristic curve, a plot of sensitivity and false positive rate 
(1 – specificity), p-value: McNemar test for sensitivity, specificity, and accuracy comparison, Moskowitz and Pepe test for PPV and NPV comparison, DeLong’s ROCs 
test for AUC comparison, N: the number of the selected features. 

Table 5 
Accuracy of the SVM-LASSO models for the prediction of solid and MIP dominant lung ADC respectively, and selected features.  

Subtype Sensitivity Specificity PPV NPV Accuracy AUC 

Solid 
(N = 18) 

82.7 ± 6.4% 80.3 ± 2.0% 42.0 ± 2.5% 96.4 ± 1.3% 80.6 ± 1.5% 0.82 ± 0.03 
PET GLCM Correlation, CT Shape Sphericity 

MIP 
(N = 5) 

86.0 ± 16.5% 87.2 ± 2.1% 23.2 ± 4.1% 99.2 ± 0.9% 87.2 ± 2.3% 0.87 ± 0.09 
2nd Cancer, PET GLCM Correlation, PET GLSZM Small Area Low Gray Level Emphasis 

PPV: positive predictive value, NPV: negative predictive value, AUC: area under the receiver operating characteristic curve, a plot of sensitivity and false positive rate 
(1 – specificity) 
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diagnostic CT. The model achieved an accuracy of 83.5% with good 
sensitivity of 84.1%, high specificity of 83.3%, and high NPV of 95.6%. 
The proposed radiomics approach with high NPV can help surgeons 
improve surgical decision-making in patients with early lung ADC to 
avoid unnecessary extensive surgery such as lobectomy in patients with 
non-aggressive subtypes suitable for sublobar resection. 

CRediT authorship contribution statement 

Wookjin Choi: Conceptualization, Methodology, Software, Writing - 
original draft. Chia-Ju Liu: Conceptualization, Data curation, Writing - 
original draft. Sadegh Riyahi Alam: Investigation, Validation, Writing - 
review & editing. Jung Hun Oh: Investigation, Validation, Writing - 
review & editing. Raj Vaghjiani: Investigation, Validation, Writing - 
review & editing. John Humm: Investigation, Resources, Writing - re
view & editing. Wolfgang Weber: Investigation, Resources, Writing - 
review & editing. Prasad S. Adusumilli: Conceptualization, Supervision, 
Resources, Writing - review & editing. Joseph O. Deasy: Supervision, 
Resources, Writing - review & editing. Wei Lu: Funding acquisition, 
Conceptualization, Methodology, Writing - original draft. 

Declaration of Competing Interest 

This work was supported in part by the NIH/NCI Grant No. R01 
CA172638 and the NIH/NCI Cancer Center Support Grant P30 
CA008748 and 5P30 CA056036. The authors have no relevant conflicts 
of interest to disclose. 

Acknowledgements 

This work was supported in part by the NIH/NCI Grant No. R01 
CA172638, and the NIH/NCI Cancer Center Support Grant No. P30 
CA008748 and 5P30 CA056036. 

References 

[1] Travis WD, et al. International association for the study of lung cancer/american 
thoracic society/european respiratory society international multidisciplinary 
classification of lung adenocarcinoma (in eng) J Thorac Oncol: Publ Int Assoc 
Study Lung Cancer 2011;vol. 6(2):244–85. https://doi.org/10.1097/ 
JTO.0b013e318206a221. 

[2] Russell PA, Wainer Z, Wright GM, Daniels M, Conron M, Williams RA. Does lung 
adenocarcinoma subtype predict patient survival?: A clinicopathologic study based 
on the new International Association for the Study of Lung Cancer/American 
Thoracic Society/European Respiratory Society international multidisciplinary 
lung adenocarcinoma classification. J Thorac Oncol: Publ Int Assoc Study Lung 
Cancer 2011;vol. 6(9):1496–504. https://doi.org/10.1097/ 
JTO.0b013e318221f701. 

[3] Warth A, et al. The novel histologic International Association for the Study of Lung 
Cancer/American Thoracic Society/European Respiratory Society classification 
system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin 
Oncol 2012;vol. 30(13):1438–46. https://doi.org/10.1200/JCO.2011.37.2185. 

[4] Yanagawa N, Shiono S, Abiko M, Ogata SY, Sato T, Tamura G. The correlation of 
the International Association for the Study of Lung Cancer (IASLC)/American 
Thoracic Society (ATS)/European Respiratory Society (ERS) classification with 
prognosis and EGFR mutation in lung adenocarcinoma. Ann Thorac Surg 2014;vol. 
98(2):453–8. https://doi.org/10.1016/j.athoracsur.2014.04.108. 

[5] Morales-Oyarvide V, Mino-Kenudson M. High-grade lung adenocarcinomas with 
micropapillary and/or solid patterns: a review. Curr Opin Pulm Med 2014;vol. 20 
(4):317–23. https://doi.org/10.1097/MCP.0000000000000070. 

[6] Bains S, et al. Procedure-specific risk prediction for recurrence in patients 
undergoing lobectomy or sublobar resection for small (</=2 cm) lung 
adenocarcinoma: an international cohort analysis. J Thorac Oncol: Publ Int Assoc 
Study Lung Cancer 2019;vol. 14(1):72–86. https://doi.org/10.1016/j. 
jtho.2018.09.008. 

[7] Leeman JE, et al. Histologic subtype in core lung biopsies of early-stage lung 
adenocarcinoma is a prognostic factor for treatment response and failure patterns 
after stereotactic body radiation therapy (in eng) Int J Radiat Oncol Biol Phys 
2017;vol. 97(1):138–45. https://doi.org/10.1016/j.ijrobp.2016.09.037. 

[8] Ujiie H, et al. Solid predominant histologic subtype in resected stage i lung 
adenocarcinoma is an independent predictor of early, extrathoracic, multisite 
recurrence and of poor postrecurrence survival. Sep 10 J Clin Oncol 2015;vol. 33 
(26):2877–84. https://doi.org/10.1200/JCO.2015.60.9818. 

[9] Nitadori J, et al. Impact of micropapillary histologic subtype in selecting limited 
resection vs lobectomy for lung adenocarcinoma of 2cm or smaller. Aug 21 J Natl 
Cancer Inst 2013;vol. 105(16):1212–20. https://doi.org/10.1093/jnci/djt166. 

[10] Bao F, Yuan P, Yuan X, Lv X, Wang Z, Hu J. Predictive risk factors for lymph node 
metastasis in patients with small size non-small cell lung cancer. J Thorac Dis 
2014;vol. 6(12):1697–703. https://doi.org/10.3978/j.issn.2072-1439.2014.11.05. 

[11] Hung JJ, et al. Prognostic factors of survival after recurrence in patients with 
resected lung adenocarcinoma. J Thorac Oncol: Publ Int Assoc Study Lung Cancer 
2015;vol. 10(9):1328–36. https://doi.org/10.1097/JTO.0000000000000618. 

[12] Yeh YC, et al. International association for the study of lung cancer/american 
thoracic society/european respiratory society classification predicts occult lymph 
node metastasis in clinically mediastinal node-negative lung adenocarcinoma. Eur 
J Cardiothorac Surg 2016;vol. 49(1):e9–15. https://doi.org/10.1093/ejcts/ezv316. 

[13] Takahashi Y, et al. Preponderance of high-grade histologic subtype in autologous 
metastases in lung adenocarcinoma. Mar 15 Am J Respir Crit Care Med 2018;vol. 
197(6):816–8. https://doi.org/10.1164/rccm.201705-0924LE. 

[14] Nicholson AG, et al. The 2021 WHO classification of lung tumors: impact of 
advances since 2015. 2022-03-01 J Thorac Oncol 2022;vol. 17(3):362–87. https:// 
doi.org/10.1016/j.jtho.2021.11.003. 

[15] Moreira AL, et al. A grading system for invasive pulmonary adenocarcinoma: a 
proposal from the international association for the study of lung cancer pathology 
committee. 2020-10-01 J Thorac Oncol 2020;vol. 15(10):1599–610. https://doi. 
org/10.1016/j.jtho.2020.06.001. 

[16] Cahan WG. Radical lobectomy. J Thorac Cardiovasc Surg 1960;vol. 39:555–72 
([Online]. Available), 〈https://www.ncbi.nlm.nih.gov/pubmed/13806783〉. 

[17] Harpole Jr DH, Herndon 2nd JE, Young Jr WG, Wolfe WG, Sabiston Jr DC. Stage I 
nonsmall cell lung cancer. A multivariate analysis of treatment methods and 
patterns of recurrence. Sep 1 Cancer 1995;vol. 76(5):787–96. Sep 1, 〈https://www. 
ncbi.nlm.nih.gov/pubmed/8625181〉. 

[18] Altorki N, et al. Lobar or sublobar resection for peripheral stage IA non–small-cell 
lung cancer. N Engl J Med 2023;vol. 388(6):489–98. https://doi.org/10.1056/ 
nejmoa2212083. 

[19] Saji H, et al. Segmentectomy versus lobectomy in small-sized peripheral non-small- 
cell lung cancer (JCOG0802/WJOG4607L): a multicentre, open-label, phase 3, 
randomised, controlled, non-inferiority trial. Lancet 2022;vol. 399(10335): 
1607–17. https://doi.org/10.1016/S0140-6736(21)02333-3. 

[20] Hattori A, et al. Is limited resection appropriate for radiologically "solid" tumors in 
small lung cancers? Ann Thorac Surg 2012;vol. 94(1):212–5. https://doi.org/ 
10.1016/j.athoracsur.2012.03.033. 

[21] Hattori A, Suzuki K, Matsunaga T, Miyasaka Y, Takamochi K, Oh S. What is the 
appropriate operative strategy for radiologically solid tumours in subcentimetre 
lung cancer patients?dagger. Eur J Cardiothorac Surg 2015;vol. 47(2):244–9. 
https://doi.org/10.1093/ejcts/ezu250. 

[22] Hennon M, Landreneau RJ. Role of segmentectomy in treatment of early-stage non- 
small cell lung cancer. Ann Surg Oncol 2018;vol. 25(1):59–63. https://doi.org/ 
10.1245/s10434-017-5787-5. 

[23] Kadota K, et al. Tumor spread through air spaces is an important pattern of 
invasion and impacts the frequency and location of recurrences after limited 
resection for small stage i lung adenocarcinomas. J Thorac Oncol: Publ Int Assoc 
Study Lung Cancer 2015;vol. 10(5):806–14. https://doi.org/10.1097/ 
JTO.0000000000000486. 

[24] Matsuzawa R, et al. Factors influencing the concordance of histological subtype 
diagnosis from biopsy and resected specimens of lung adenocarcinoma. Lung 
Cancer (Amst, Neth) 2016;vol. 94:1–6. https://doi.org/10.1016/j. 
lungcan.2016.01.009. 

[25] Bashir U, Siddique MM, McLean E, Goh V, Cook GJ. Imaging heterogeneity in lung 
cancer: techniques, applications, and challenges. Ajr Am J Roentgenol 2016;vol. 
207(3):534–43. https://doi.org/10.2214/AJR.15.15864. 

[26] She Y, et al. The predictive value of CT-based radiomics in differentiating indolent 
from invasive lung adenocarcinoma in patients with pulmonary nodules. 2018-12- 
01 Eur Radiol 2018;vol. 28(12):5121–8. https://doi.org/10.1007/s00330-018- 
5509-9. 

[27] Fan L, et al. Radiomics signature: a biomarker for the preoperative discrimination 
of lung invasive adenocarcinoma manifesting as a ground-glass nodule. 2019-02- 
01 Eur Radiol 2019;vol. 29(2):889–97. https://doi.org/10.1007/s00330-018- 
5530-z. 

[28] Park S, et al. Differentiation of predominant subtypes of lung adenocarcinoma 
using a quantitative radiomics approach on CT. 2020-09-01 Eur Radiol 2020;vol. 
30(9):4883–92. https://doi.org/10.1007/s00330-020-06805-w. 

[29] Yang Z, et al. A CT-based radiomics nomogram combined with clinic-radiological 
characteristics for preoperative prediction of the novel IASLC grading of invasive 
pulmonary adenocarcinoma. Acad Radiol 2023;vol. 30(9):1946–61. https://doi. 
org/10.1016/j.acra.2022.12.006. 

[30] Lee SM, Park CM, Goo JM, Lee HJ, Wi JY, Kang CH. Invasive pulmonary 
adenocarcinomas versus preinvasive lesions appearing as ground-glass nodules: 
differentiation by using CT features. Radiology 2013;vol. 268(1):265–73. https:// 
doi.org/10.1148/radiol.13120949. 

[31] Son JY, et al. Quantitative CT analysis of pulmonary ground-glass opacity nodules 
for the distinction of invasive adenocarcinoma from pre-invasive or minimally 
invasive adenocarcinoma. PloS One 2014;vol. 9(8):e104066. https://doi.org/ 
10.1371/journal.pone.0104066. 

[32] Chae HD, Park CM, Park SJ, Lee SM, Kim KG, Goo JM. Computerized texture 
analysis of persistent part-solid ground-glass nodules: differentiation of preinvasive 
lesions from invasive pulmonary adenocarcinomas (in eng) Radiology 2014;vol. 
273(1):285–93. https://doi.org/10.1148/radiol.14132187. 

W. Choi et al.                                                                                                                                                                                                                                    

https://doi.org/10.1097/JTO.0b013e318206a221
https://doi.org/10.1097/JTO.0b013e318206a221
https://doi.org/10.1097/JTO.0b013e318221f701
https://doi.org/10.1097/JTO.0b013e318221f701
https://doi.org/10.1200/JCO.2011.37.2185
https://doi.org/10.1016/j.athoracsur.2014.04.108
https://doi.org/10.1097/MCP.0000000000000070
https://doi.org/10.1016/j.jtho.2018.09.008
https://doi.org/10.1016/j.jtho.2018.09.008
https://doi.org/10.1016/j.ijrobp.2016.09.037
https://doi.org/10.1200/JCO.2015.60.9818
https://doi.org/10.1093/jnci/djt166
https://doi.org/10.3978/j.issn.2072-1439.2014.11.05
https://doi.org/10.1097/JTO.0000000000000618
https://doi.org/10.1093/ejcts/ezv316
https://doi.org/10.1164/rccm.201705-0924LE
https://doi.org/10.1016/j.jtho.2021.11.003
https://doi.org/10.1016/j.jtho.2021.11.003
https://doi.org/10.1016/j.jtho.2020.06.001
https://doi.org/10.1016/j.jtho.2020.06.001
https://www.ncbi.nlm.nih.gov/pubmed/13806783
https://www.ncbi.nlm.nih.gov/pubmed/8625181
https://www.ncbi.nlm.nih.gov/pubmed/8625181
https://doi.org/10.1056/nejmoa2212083
https://doi.org/10.1056/nejmoa2212083
https://doi.org/10.1016/S0140-6736(21)02333-3
https://doi.org/10.1016/j.athoracsur.2012.03.033
https://doi.org/10.1016/j.athoracsur.2012.03.033
https://doi.org/10.1093/ejcts/ezu250
https://doi.org/10.1245/s10434-017-5787-5
https://doi.org/10.1245/s10434-017-5787-5
https://doi.org/10.1097/JTO.0000000000000486
https://doi.org/10.1097/JTO.0000000000000486
https://doi.org/10.1016/j.lungcan.2016.01.009
https://doi.org/10.1016/j.lungcan.2016.01.009
https://doi.org/10.2214/AJR.15.15864
https://doi.org/10.1007/s00330-018-5509-9
https://doi.org/10.1007/s00330-018-5509-9
https://doi.org/10.1007/s00330-018-5530-z
https://doi.org/10.1007/s00330-018-5530-z
https://doi.org/10.1007/s00330-020-06805-w
https://doi.org/10.1016/j.acra.2022.12.006
https://doi.org/10.1016/j.acra.2022.12.006
https://doi.org/10.1148/radiol.13120949
https://doi.org/10.1148/radiol.13120949
https://doi.org/10.1371/journal.pone.0104066
https://doi.org/10.1371/journal.pone.0104066
https://doi.org/10.1148/radiol.14132187


Computational and Structural Biotechnology Journal 21 (2023) 5601–5608

5608

[33] Song SH, et al. Imaging phenotyping using radiomics to predict micropapillary 
pattern within lung adenocarcinoma (in eng) J Thorac Oncol: Publ Int Assoc Study 
Lung Cancer 2017;vol. 12(4):624–32. https://doi.org/10.1016/j. 
jtho.2016.11.2230. 

[34] Bianconi F, Palumbo I, Spanu A, Nuvoli S, Fravolini ML, Palumbo B. PET/CT 
radiomics in lung cancer: an overview. 2020-03-03 Appl Sci 2020;vol. 10(5):1718. 
https://doi.org/10.3390/app10051718. 

[35] Hosseini SA, Shiri I, Hajianfar G, Ghafarian P, Bakhshayesh Karam M, Ay MR. The 
impact of preprocessing on the PET-CT radiomics features in non-small cell lung 
cancer. 2021-11-15 Front Biomed Technol 2021. https://doi.org/10.18502/fbt. 
v8i4.7754. 

[36] Hosseini SA, et al. "Synergistic impact of motion and acquisition/reconstruction 
parameters on 18F-FDG PET radiomic features in non-small cell lung cancer: 
Phantom and clinical studies. 2022-06-01 Med Phys 2022;vol. 49(6):3783–96. 
https://doi.org/10.1002/mp.15615. 

[37] Shao X, Niu R, Shao X, Jiang Z, Wang Y. "Value of 18F-FDG PET/CT-based 
radiomics model to distinguish the growth patterns of early invasive lung 
adenocarcinoma manifesting as ground-glass opacity nodules,". 2020-12-01 
EJNMMI Res 2020;vol. 10(1). https://doi.org/10.1186/s13550-020-00668-4. 

[38] Xiong Z, et al. Radiomics for identifying lung adenocarcinomas with predominant 
lepidic growth manifesting as large pure ground-glass nodules on CT images. 2022- 
06-24 PloS One 2022;vol. 17(6):e0269356. https://doi.org/10.1371/journal. 
pone.0269356. 

[39] Burger IA, et al. PET quantification with a histogram derived total activity metric: 
superior quantitative consistency compared to total lesion glycolysis with absolute 
or relative SUV thresholds in phantoms and lung cancer patients. 2014 May-Jun " ( 
Eng), Nucl Med Biol 2014;vol. 41(5):410–8. https://doi.org/10.1016/j. 
nucmedbio.2014.02.006. 

[40] Li G, Schmidtlein CR, Burger IA, Ridge CA, Solomon SB, Humm JL. Assessing and 
accounting for the impact of respiratory motion on FDG uptake and viable volume 
for liver lesions in free-breathing PET using respiration-suspended PET images as 
reference. Med Phys 2014;vol. 41(9):091905. https://doi.org/10.1118/1.4892602. 

[41] van Griethuysen JJM, et al. Computational radiomics system to decode the 
radiographic phenotype. Nov 1 Cancer Res 2017;vol. 77(21):e104–7. https://doi. 
org/10.1158/0008-5472.CAN-17-0339. 

[42] Choi W, Nadeem S, Alam SR, Deasy JO, Tannenbaum A, Lu W. Reproducible and 
interpretable spiculation quantification for lung cancer screening. Comput 
Methods Prog Biomed 2021;vol. 200. https://doi.org/10.1016/j. 
cmpb.2020.105839. 

[43] Choi W, et al. Radiomics analysis of pulmonary nodules in low-dose CT for early 
detection of lung cancer. Med Phys 2018;vol. 45(4). https://doi.org/10.1002/ 
mp.12820. 

[44] Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl 
Med: Publ, Soc Nucl Med 2007;vol. 48(6):932–45. https://doi.org/10.2967/ 
jnumed.106.035774. 

[45] Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification 
(in English) IEEE T Syst Man Cyb 1973;vol. Smc3(6):610–21. https://doi.org/ 
10.1109/Tsmc.1973.4309314. 

[46] Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image 
Process 1975;vol. 4(2):172–9. 

[47] Tang XO. Texture information in run-length matrices (in English) IEEE T Image 
Process 1998;vol. 7(11):1602–9. https://doi.org/10.1109/83.725367. 

[48] G. Thibault, B. Fertil, and C. Navarro, "Texture indexes and gray level size zone 
matrix: appli-cation to cell nuclei classification in Proceedings of the Pattern 
Recognition and Information Processing 2009," in International Conference on 
Pattern Recognition and Information Processing (PRIP’09), pp. 140–145. 

[49] Amadasun M, King R. Textural features corresponding to textural properties. IEEE 
Trans Syst, Man, Cybern 1989;vol. 19(5):1264–74. https://doi.org/10.1109/ 
21.44046. 

[50] Chengjun S, William GW. Neighboring gray level dependence matrix for texture 
classification. Comput Vis, Graph, Image Process 1983;vol. 23(3):341–52. https:// 
doi.org/10.1016/0734-189X(83)90032-4. 

[51] Ward Jr JH. Hierarchical grouping to optimize an objective function. J Am Stat 
Assoc 1963;Vol. 58(No. 301):236–44. 

[52] McNemar Q. Note on the sampling error of the difference between correlated 
proportions or percentages. Psychometrika 1947;vol. 12(2):153–7. https://doi. 
org/10.1007/BF02295996. 

[53] Moskowitz CS, Pepe MS. "Comparing the predictive values of diagnostic tests: 
sample size and analysis for paired study designs (in eng) Clin Trials 2006;vol. 3 
(3):272–9. https://doi.org/10.1191/1740774506cn147oa. 

[54] DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or 
more correlated receiver operating characteristic curves: a nonparametric 
approach (in eng) Biometrics 1988;vol. 44(3):837–45. 〈https://www.ncbi.nlm.nih. 
gov/pubmed/3203132〉. 

[55] Berfield KS, Wood DE. "Sublobar resection for stage IA non-small cell lung cancer,". 
J Thorac Dis 2017;vol. 9(Suppl 3):S208–10. https://doi.org/10.21037/ 
jtd.2017.03.135. 

[56] Haruki T, et al. Clinicopathological Characteristics of Lung Adenocarcinoma with 
Unexpected Lymph Node Metastasis. Aug 20 Ann Thorac Cardiovasc Surg 2017; 
vol. 23(4):181–7. https://doi.org/10.5761/atcs.oa.16-00309. 

[57] Yu Y, Jian H, Shen L, Zhu L, Lu S. Lymph node involvement influenced by lung 
adenocarcinoma subtypes in tumor size </=3 cm disease: A study of 2268 cases. 
Eur J Surg Oncol 2016;vol. 42(11):1714–9. https://doi.org/10.1016/j. 
ejso.2016.02.247. 

[58] Wang L, et al. Lymph node metastasis in clinical stage IA peripheral lung cancer. 
Lung Cancer (Amst, Neth) 2015;vol. 90(1):41–6. https://doi.org/10.1016/j. 
lungcan.2015.07.003. 

[59] Nakamura H, et al. Close association of IASLC/ATS/ERS lung adenocarcinoma 
subtypes with glucose-uptake in positron emission tomography. Lung Cancer 
(Amst, Neth) 2015;vol. 87(1):28–33. https://doi.org/10.1016/j. 
lungcan.2014.11.010. 

[60] Cha MJ, et al. Micropapillary and solid subtypes of invasive lung adenocarcinoma: 
clinical predictors of histopathology and outcome. e2, Mar " ( Eng), J Thorac 
Cardiovasc Surg 2014;vol. 147(3):921–8. https://doi.org/10.1016/j. 
jtcvs.2013.09.045. 

[61] Lee HY, et al. Histopathology of lung adenocarcinoma based on new IASLC/ATS/ 
ERS classification: prognostic stratification with functional and metabolic imaging 
biomarkers. J Magn Reson Imaging 2013;vol. 38(4):905–13. https://doi.org/ 
10.1002/jmri.24080. 

[62] Kadota K, et al. FDG-PET SUVmax combined with IASLC/ATS/ERS histologic 
classification improves the prognostic stratification of patients with stage I lung 
adenocarcinoma. Ann Surg Oncol 2012;vol. 19(11):3598–605. https://doi.org/ 
10.1245/s10434-012-2414-3. 

[63] Tan S, et al. "Spatial-temporal [(1)(8)F]FDG-PET features for predicting pathologic 
response of esophageal cancer to neoadjuvant chemoradiation therapy,". Apr 1 Int 
J Radiat Oncol Biol Phys 2013;vol. 85(5):1375–82. https://doi.org/10.1016/j. 
ijrobp.2012.10.017. 

[64] Tan S, Zhang H, Zhang Y, Chen W, D’Souza WD, Lu W. Predicting pathologic tumor 
response to chemoradiotherapy with histogram distances characterizing 
longitudinal changes in 18F-FDG uptake patterns. Med Phys 2013;vol. 40(10): 
101707 ([Online]. Available), 〈https://www.ncbi.nlm.nih.gov/pmc/arti 
cles/PMC3785537/pdf/MPHYA6-000040-101707_1.pdf〉. 

[65] Zhang H, et al. Modeling pathologic response of esophageal cancer to 
chemoradiation therapy using spatial-temporal 18F-FDG PET features, clinical 
parameters, and demographics. Jan 1 Int J Radiat Oncol Biol Phys 2014;vol. 88(1): 
195–203. https://doi.org/10.1016/j.ijrobp.2013.09.037. 

[66] Lococo F, et al. 18F-fluorodeoxyglucose positron emission tomographic scan in 
solid-type p-stage-I pulmonary adenocarcinomas: what can produce false-negative 
results?. Apr 1 Eur J Cardiothorac Surg 2017;vol. 51(4):667–73. https://doi.org/ 
10.1093/ejcts/ezw394. 

[67] Austin JH, et al. Radiologic implications of the 2011 classification of 
adenocarcinoma of the lung. Radiology 2013;vol. 266(1):62–71. https://doi.org/ 
10.1148/radiol.12120240. 

[68] Rodriguez EF, Monaco SE, Dacic S. Cytologic subtyping of lung adenocarcinoma by 
using the proposed International Association for the Study of Lung Cancer/ 
American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) 
adenocarcinoma classification. Cancer Cytopathol 2013;vol. 121(11):629–37. 
https://doi.org/10.1002/cncy.21314. 

[69] Rudomina DE, Lin O, Moreira AL. Cytologic diagnosis of pulmonary 
adenocarcinoma with micropapillary pattern: does it correlate with the histologic 
findings? Diagn Cytopathol 2009;vol. 37(5):333–9. https://doi.org/10.1002/ 
dc.21011. 

[70] Yang SM, et al. Extraction of radiomic values from lung adenocarcinoma with near- 
pure subtypes in the International Association for the Study of Lung Cancer/the 
American Thoracic Society/the European Respiratory Society (IASLC/ATS/ERS) 
classification. Lung Cancer (Amst, Neth) 2018;vol. 119:56–63. https://doi.org/ 
10.1016/j.lungcan.2018.03.004. 

W. Choi et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.jtho.2016.11.2230
https://doi.org/10.1016/j.jtho.2016.11.2230
https://doi.org/10.3390/app10051718
https://doi.org/10.18502/fbt.v8i4.7754
https://doi.org/10.18502/fbt.v8i4.7754
https://doi.org/10.1002/mp.15615
https://doi.org/10.1186/s13550-020-00668-4
https://doi.org/10.1371/journal.pone.0269356
https://doi.org/10.1371/journal.pone.0269356
https://doi.org/10.1016/j.nucmedbio.2014.02.006
https://doi.org/10.1016/j.nucmedbio.2014.02.006
https://doi.org/10.1118/1.4892602
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1016/j.cmpb.2020.105839
https://doi.org/10.1016/j.cmpb.2020.105839
https://doi.org/10.1002/mp.12820
https://doi.org/10.1002/mp.12820
https://doi.org/10.2967/jnumed.106.035774
https://doi.org/10.2967/jnumed.106.035774
https://doi.org/10.1109/Tsmc.1973.4309314
https://doi.org/10.1109/Tsmc.1973.4309314
http://refhub.elsevier.com/S2001-0370(23)00423-3/sbref46
http://refhub.elsevier.com/S2001-0370(23)00423-3/sbref46
https://doi.org/10.1109/83.725367
https://doi.org/10.1109/21.44046
https://doi.org/10.1109/21.44046
https://doi.org/10.1016/0734-189X(83)90032-4
https://doi.org/10.1016/0734-189X(83)90032-4
http://refhub.elsevier.com/S2001-0370(23)00423-3/sbref50
http://refhub.elsevier.com/S2001-0370(23)00423-3/sbref50
https://doi.org/10.1007/BF02295996
https://doi.org/10.1007/BF02295996
https://doi.org/10.1191/1740774506cn147oa
https://www.ncbi.nlm.nih.gov/pubmed/3203132
https://www.ncbi.nlm.nih.gov/pubmed/3203132
https://doi.org/10.21037/jtd.2017.03.135
https://doi.org/10.21037/jtd.2017.03.135
https://doi.org/10.5761/atcs.oa.16-00309
https://doi.org/10.1016/j.ejso.2016.02.247
https://doi.org/10.1016/j.ejso.2016.02.247
https://doi.org/10.1016/j.lungcan.2015.07.003
https://doi.org/10.1016/j.lungcan.2015.07.003
https://doi.org/10.1016/j.lungcan.2014.11.010
https://doi.org/10.1016/j.lungcan.2014.11.010
https://doi.org/10.1016/j.jtcvs.2013.09.045
https://doi.org/10.1016/j.jtcvs.2013.09.045
https://doi.org/10.1002/jmri.24080
https://doi.org/10.1002/jmri.24080
https://doi.org/10.1245/s10434-012-2414-3
https://doi.org/10.1245/s10434-012-2414-3
https://doi.org/10.1016/j.ijrobp.2012.10.017
https://doi.org/10.1016/j.ijrobp.2012.10.017
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785537/pdf/MPHYA6-000040-101707_1.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785537/pdf/MPHYA6-000040-101707_1.pdf
https://doi.org/10.1016/j.ijrobp.2013.09.037
https://doi.org/10.1093/ejcts/ezw394
https://doi.org/10.1093/ejcts/ezw394
https://doi.org/10.1148/radiol.12120240
https://doi.org/10.1148/radiol.12120240
https://doi.org/10.1002/cncy.21314
https://doi.org/10.1002/dc.21011
https://doi.org/10.1002/dc.21011
https://doi.org/10.1016/j.lungcan.2018.03.004
https://doi.org/10.1016/j.lungcan.2018.03.004

	Preoperative 18F-FDG PET/CT and CT radiomics for identifying aggressive histopathological subtypes in early stage lung aden ...
	1 Introduction
	2 Materials and methods
	2.1 Tumor segmentation
	2.2 Radiomic feature extraction
	2.3 Prediction model

	3 Results
	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


