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Mental workload (MWL) estimators based on ongoing electroencephalography (EEG)
and event-related potentials (ERPs) have shown great potentials to build adaptive
aiding systems for human–machine systems by estimating MWL in real time. However,
extracting EEG features which are consistent in indicating MWL across different tasks
is still one of the critical challenges. This study attempts to compare the cross-task
consistency in indexing MWL variations between two commonly used EEG-based MWL
indicators, power spectral density (PSD) of ongoing EEG and task-irrelevant auditory
ERPs (tir-aERPs). The verbal N-back and the multi-attribute task battery (MATB), both
with two difficulty levels, were employed in the experiment, along with task-irrelevant
auditory probes. EEG was recorded from 17 subjects when they were performing the
tasks. The tir-aERPs elicited by the auditory probes and the relative PSDs of ongoing
EEG between two consecutive auditory probes were extracted and statistically analyzed
to reveal the effects of MWL and task type. Discriminant analysis and support vector
machine were employed to examine the generalization of tir-aERP and PSD features in
indexing MWL variations across different tasks. The results showed that the amplitudes
of tir-aERP components, N1, early P3a, late P3a, and the reorienting negativity,
significantly decreased with the increasing MWL in both N-back and MATB. Task type
had no obvious influence on the amplitudes and topological layout of the MWL-sensitive
tir-aERP features. The relative PSDs in θ, α, and low β bands were also sensitive to MWL
variations. However, the MWL-sensitive PSD features and their topological patterns were
significantly affected by task type. The cross-task classification results based on tir-aERP
features also significantly outperformed the PSD features. These results suggest that the
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tir-aERPs should be potentially more consistent MWL indicators across very different
task types when compared to PSD. The current study may provide new insights to our
understanding of the common and distinctive neuropsychological essences of MWL
across different tasks.

Keywords: mental workload, EEG, task-irrelevant auditory event-related potentials, power spectral density,
cross-task comparison

INTRODUCTION

Mental workload (MWL) has been stated as a multidimensional
construct determined by the characteristics of the task (e.g.,
demands, performance), of the operator (e.g., skill, attention),
and, to a certain degree, the environmental context in which
the performance occurs (Young et al., 2015). Generally, MWL
reflects task difficulty and the associated mental effort (Gevins
and Smith, 2006). That is the reason why the MWL of
the subjects was modulated by task difficulty in almost all
neuroergonomic MWL studies. Previous studies have found that
overload mental effort may be harmful to human performance
and situation awareness (Wickens, 2008). In recent years,
the objective estimation of MWL using neural signals has
become an important topic in the field of human factors
and neuroergonomics (Tao et al., 2019). Objectively real-time
monitoring of MWL using neurophysiological metrics is essential
to build closed-loop adaptive aiding systems for complex and
safety-critical human–machine systems (Vidulich and Tsang,
2015; Teo et al., 2018, 2020). Although the neuroergonomic
methods for MWL estimation have attracted much attention
in the past years, the common neuropsychological essence
of MWL across different tasks or mental activities is still
to be uncovered.

The foundation of measuring MWL using neural signals
like electroencephalography (EEG) is that different amounts
of cognitive/neural resources may be engaged in different task
difficulty levels. Over the past years, features from EEG have
shown great potentials to estimate MWL in real time (Gevins
and Smith, 2006; Haynes and Rees, 2006; Tao et al., 2019).
Among them, the most extensively investigated features are
the power spectral densities (PSDs) of ongoing EEG and the
event-related potentials (ERPs). EEG power in the alpha band
(α, 8–13 Hz) has been found to be negatively correlated with
MWL in tasks such as working memory (Gevins et al., 1998;
Pesonen et al., 2007), simulated driving (Lei and Roetting, 2011;
Borghini et al., 2014; Yang et al., 2020), and multitasking (Ke
et al., 2015a; Puma et al., 2018) in previous studies, possibly due
to its link to arousal level, idling, cortical inhibition (Uusberg
et al., 2013), and the default mode network activation (Knyazev
et al., 2011). In recent years, EEG power features in frequencies
from 0.5 to over 100 Hz have been found to be modulated by
task difficulties and employed to estimate MWL with machine
learning techniques in many different tasks (Brouwer et al., 2012;
Wang et al., 2012; Borghini et al., 2014; Casson, 2014; Fallahi
et al., 2016; Yin and Zhang, 2017; Kakkos et al., 2019; Tao et al.,
2019; Zhang et al., 2019; Chakladar et al., 2020). The satisfactory
performance of EEG-based MWL estimators trained and tested in

the same task (within-task) have shown its potential for practical
application. However, the cross-task application, in which MWL
estimators are trained on one or a set of tasks and applied to
other tasks, is still a challenge, although a few studies proposed
some potential solutions (Haynes and Rees, 2006; Ke et al., 2014,
2015a; Dimitrakopoulos et al., 2017; Zhang et al., 2018; Zhao
et al., 2018; Boring et al., 2020). The main reason for the cross-
task challenge may lie in the difference of the neurophysiological
responses between different task types (Baldwin and Penaranda,
2012; Ke et al., 2014, 2015a), that is, although a variation of
MWL may cause the variation of EEG features in a certain task
type, the differences between task types may lead to very different
neurophysiological responses because different tasks use different
cognitive strategies and thus occupy different neural resources.
A significant main effect of task has been observed for spectral
power, especially the alpha band, in previous cross-task studies
(Baldwin and Penaranda, 2012; Ke et al., 2015a). It implies that
considerable task-specific features in EEG spectrum have not
been revealed and may impair the cross-task generalizability of
the machine learning techniques. That should be the reason
why poor performances have been obtained in cross-task MWL
measurement studies which employed spectral features (Baldwin
and Penaranda, 2012; Ke et al., 2014, 2015a).

The theory of cognitive resources and its relation to the
generation of ERPs may provide new insights into the common
neuropsychological essence and the more robust MWL-sensitive
EEG features between different tasks. According to the theory
of cognitive resources, limited capacity is the fundamental
characteristic of human cognitive resources (Wickens, 2008).
That means less residual cognitive capacity will be available for
additional tasks or perceptual stimuli if you are engaged in a
more demanding task. A substantial literature spanning over two
decades has indicated that the magnitude of mental resources
that are being recruited and the duration that these resources are
being utilized to process a particular stimulus can be revealed by
the amplitudes and the latencies of ERPs (Kok, 1997; Stewart and
Paulus, 2013; Ghani et al., 2020a). From the aspects of mental
resources theory, high-load mental processing may employ more
attentional resources and reduce the capacity of the brain to
recognize visual or auditory events (Wickens, 2008). As evidence
for the mental resources theory, some studies found that ERP
decreased in magnitude when sensory stimuli were presented in
conjunction with the performance of other tasks (Isreal et al.,
1980; Kida et al., 2004, 2012; Bonato et al., 2015; Ke et al.,
2015b; Jaquess et al., 2017). Scheer et al. (2016) have found
that steering demands on mental resources diminished the early
P3, late P3, and re-orientation negativity (RON) components
of the ERP of task-irrelevant environmental sounds. Studies on
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the phenomenon termed “inattentional deafness,” which refers
to the neglect of unexpected auditory information, have also
provided evidences for the weakened ERP responses to auditory
stimuli under demanding situations (Giraudet et al., 2015; Causse
et al., 2016; Scheer et al., 2018). In general, these literatures
tend to show that less remaining resources may be left for
processing unexpected sensory information, and thus weaker
brain responses, like ERPs, to sensory stimuli may be observed
when tasks involving a high cognitive load occupied the limited
attentional capacities. In this context, the unfavorable side is
that operators may fail to detect unexpected alerts in demanding
situations. However, this phenomenon may also provide an
alternative approach for MWL measurement.

Inspired by the above-mentioned findings, the amplitude of
ERP components evoked by sensory stimuli, which can index
the amount of attentional resources allocated to process the
stimuli, has been employed to index MWL in previous studies
in the past decades. Early studies on the relationship between
task demand and ERPs can be traced back to the 1980s. It has
been proven in dual-task studies that increases in the difficulty of
a complex perceptual–motor primary task resulted in decreases
in the amplitude of P300 elicited by secondary task tones which
required occasional responses but increases in the amplitude of
P300 elicited by the primary task (Wickens et al., 1983; Sirevaag
et al., 1989). Table 1 shows the typical task-irrelevant auditory
ERP (tir-aERP)-based MWL studies in the past decades. In
these studies, nearly all the task-irrelevant probes were auditory
because almost all the tasks highly depended on visual attention.
Therefore, visual probes would be more intrusive to and compete
visual resources with the primary tasks. A few studies which
employed auditory oddball tasks requiring response to the
deviants as the secondary task in recent years suggested that
amplitudes of ERP components like P2 and P3 elicited by deviant
tones decreased in high-difficulty tasks (Giraudet et al., 2016;
Horat et al., 2016; Solis-Marcos and Kircher, 2019). However,
the requirement to respond to secondary tasks from subjects
would be unacceptable for safety-critical systems because it
has been found to disrupt the performance of primary tasks
(Kramer et al., 1995). As a less intrusive way, the auditory
oddball paradigm without response has been employed, and
lower amplitudes of N100, N200, P300, and MMN were found
in high-MWL conditions (Kramer et al., 1995; Dehais et al.,
2019). An alternative to the secondary task methods has been
referred to as the task-irrelevant probes method, which presents
auditory or visual stimuli accompanying the task of interest and
does not require the subjects to respond or count (Papanicolaou
and Johnstone, 1984). By measuring ERPs elicited by an ignored
single-stimulus tone (Allison and Polich, 2008; Roy et al., 2016a;
Ghani et al., 2020b) or variable-frequency tone sequence (Takeda
et al., 2016) while the participants focus on the task of interest, the
authors reported decreases in N1, N2, P2, and/or P3 component
amplitudes with increases in MWL. By assuming that novel
stimuli would be more effective in indexing MWL than simple
tones, Miller et al. (2011) published a study using a variety of
novel, task-irrelevant auditory stimuli and found that N1, P2,
P3 and late positive potential (LPP) component amplitudes were
inversely related to task difficulty. Dyke et al. (2015) found that

complex auditory stimuli were significantly more effective in
indexing cognitive workload than simple stimuli due to their
ability to elicit the early P3a (eP3a) component, a robust orienting
response which decreased monotonically as a function of MWL.
Not only the eP3a but also the amplitudes of N1, P2, and lP3a
and/or the RON elicited by the novel complex sounds have
been claimed to be diminished by increased MWL in recent
studies (Deeny et al., 2014; Dyke et al., 2015; Scheer et al., 2016;
Shaw et al., 2018).

Taken together, the amplitude of ERPs elicited by task-
irrelevant auditory probes has the potential to index MWL
variation for many different tasks as has been claimed in
the above-mentioned studies. Furthermore, the novel complex
sounds, as has been employed by Dyke et al. (2015), should
be a better choice for the auditory probes. By integrating the
above-mentioned findings and the mental resources theory, the
assumptions for these tir-aERP-based MWL studies should be
as follows: (i) the residual mental resources allocated to task-
irrelevant probes are reduced if a higher proportion of the limited
mental resources was involved in a demanding task (Kahneman,
1973; Wickens, 2008) and (ii) the amplitude variation of tir-
aERPs elicited by task-irrelevant probes can reflect the amount
of mental resources to these probes (Ghani et al., 2020a).
These previous findings provide novel possibilities to extract
MWL-sensitive features, which may be more generalizable across
different task types, from ERPs.

The current study aimed to compare the consistency between
ongoing EEG power and tir-aERPs in indexing MWL across
different tasks. Task-irrelevant auditory probes were presented to
the participants and ignored while they performed the tasks. The
effects of MWL on the magnitude of tir-aERPs and ongoing EEG
power were examined under two MWL levels (low and high) and
compared between two task types [N-back and multi-attribute
task battery (MATB) (Santiago-Espada et al., 2011)]. Based on
the task-irrelevant characteristics and the consistent findings
that MWL diminished the amplitudes of tir-aERPs in almost all
previous studies, we expected that the amplitude of tir-aERPs
should be consistently diminished by MWL in the two different
tasks and less affected by task type. It was conjectured that the
power spectrum of ongoing EEG should also respond to MWL
variation, but it should be more sensitive to task type according
to its task-relevant characteristics and the findings in previous
studies. The performance of classification across the two tasks was
also examined and compared between the ERP and PSD features.
The main significance is that the current study firstly examined
the effects of MWL and task type on the most investigated MWL-
sensitive EEG features in one study design and may provide new
insights to our understanding of the common and distinctive
neuropsychological essences of MWL across different tasks and
new methodology for future MWL estimation studies.

MATERIALS AND METHODS

Participants
Seventeen healthy subjects (10 male and seven female, aged 20–
26) with normal hearing and normal or corrected-to-normal
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TABLE 1 | Overview of the previous typical tir-aERP-based mental workload (MWL) studies.

Study Primary task Paradigm/stimulus ERP measures

Giraudet et al. (2016) Air traffic control Oddball*/pure tones P300 amplitude ↓

Horat et al. (2016) Tone discrimination Oddball*/pure tones P2, P3a and P3b amplitudes ↓

Solis-Marcos and Kircher (2019) Tracking task Oddball*/pure tones N1 latency ↑; P3 amplitude ↓

Kramer et al. (1995) Radar monitoring Oddball/pure tones N100, N200, P300 and MMN amplitudes ↓

Dehais et al. (2019) Flying simulation Oddball/pure tones P3 amplitude ↓

Ullsperger et al. (2001) Gauge monitoring and mental arithmetic Oddball/tones and novel sounds N1 and P3 amplitudes ↓

Allison and Polich (2008) “First person shooter” video game Single stimulus/pure tone P2, N2 and P3 amplitudes ↓

Roy et al. (2016a) Multi-attribute Task battery Single stimulus/pure tone P2 latency ↓

Takeda et al. (2016) Driving simulation Variable tone frequency sequence N1 and P2 amplitudes ↓

Ghani et al. (2020b) Tilt-ball game Single stimulus/pure tone N1 amplitude ↓

Miller et al. (2011) Tetris R© game Novel complex sounds N1, P2, P3 and LPP amplitudes ↓

Deeny et al. (2014) Myoelectric control of a virtual limb Novel complex sounds P200, P300 and LPP amplitudes ↓

Dyke et al. (2015) Tetris R© game Novel/repeated simple/complex sounds N1, eP3a, lP3a amplitudes ↓

Scheer et al. (2016) Steering task Beep tones, novel complex sounds Early P3, late P3 and the RON amplitudes ↓

Shaw et al. (2018) Stimuli detection Novel complex sounds Novelty P3 ↓

*, response to the auditory stimulus required in the task; ↓, the measure(s) decreased with an increase in the task difficulty or MWL; ↑, the measure(s) increased with an
increase in the task difficulty or MWL.

vision voluntarily participated in this study with informed
consents. This study was carried out in accordance with the
recommendations of the institutional review board of Tianjin
University. The study protocol was approved by the Ethics
Committee of Tianjin University.

Tasks
Almost all existing studies manipulated the MWL levels through
controlling the task difficulty levels by means of (i) short-
term or working memory load, (ii) the number of subtasks to
process, or (iii) the speed at which a task has to be performed
(Roy et al., 2016b). Verbal N-back and the MATB task with
different difficulty levels (easy and hard) were employed in
this study. There were two blocks for each condition (eight
blocks in total), and each block lasted for 10 min. The
participants performed all the blocks in random order and
rested for several minutes during the inter-block intervals.
In order to reduce the learning effect, the participants were
trained with N-back and MATB until their performance reached
stable levels. The participants were asked to rate the Mental
Effort Rating Scale (RSME) (Paas, 1992) as the subjective
MWL index at the end of each block. The RSME is a
unidimensional scale that consists of a line with a length of
150 mm marked with nine “anchor points” and has been
widely used to measure subjective MWL. Each of the nine
“anchor points” was accompanied by a descriptive discourse
indicating the degree of effort. The subjects rated the MWL
by marking on one of the nine “anchor points” based on
subjective judgment.

In the verbal N-back task, the randomly selected
consonants were sequentially presented on a screen by the
E-prime software (E-prime Psychology Software Tools Inc.,
Pittsburgh, United States). Each letter appeared for 0.5 s
and then disappeared, with a 2.5-s delay between trials. The
participants were asked to remember the letters, compare

the current letter with the n-th before, and respond to all
trials by pressing one key for matches and another key
for mismatches within the duration between the onset
of the current letter and the next one. The proportion of
matched trials and mismatched trials was equal. In this study,
n = 1 and n = 3 were, respectively, used in the easy and
hard conditions.

The MATB was developed by NASA for performance and
workload studies in the laboratory. It simulates the tasks
performed by pilots in flight, including a tracking task (TRA),
a system monitoring task (SYSM), a resource management
task (RESM), and a communication task. In this study, the
participants were instructed to perform three tasks (TRA,
SYSM, and RESM) concurrently in a continually changing
task environment. The communication task was not employed
because it depends mainly on auditory function and may interfere
with the auditory probes. The two overall MATB difficulty levels
(easy and hard) were obtained by manipulating the parameters
of the three subtasks (as shown in Table 2) according to
the manual of MATB.

Auditory Probes
According to the study of Dyke et al. (2015) complex auditory
stimuli were significantly more effective in indexing MWL.
Concurrently with performing the tasks, the participants were
probed with novel complex sounds (e.g., a door knock, a dog
bark, a whistle) randomly selected from a large collection (Fabiani
et al., 1996). All sounds were presented at the sound pressure
level of 70–90 dB with two speakers placed 80 cm in front of
the participants and limited to durations of 350 ms. In order to
reduce the “habituation effect” (Strüber and Polich, 2002; Dyke
et al., 2015), long intertrial intervals (ITI) were employed and
randomly varied between 8 and 22 s. All the participants were
instructed to concentrate on the tasks and disregard the auditory
probes without any response.
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TABLE 2 | Task parameters for multi-attribute task battery.

Overall difficulty System
monitoring task
(events/minute)

Resource
management

task
(events/minute)

Tracking task
difficulty

Easy 2 1 Low

Hard 20 3.5 High

Electroencephalography Recording and
Processing
Sixty-channel scalp EEG data were recorded using NeuroScan
SynAmps2 and QuickCap with an extended international 10–
10 system. EEG data were online referenced to the left mastoid,
sampled at 500 Hz, and high-pass-filtered with a cutoff at
0.5 Hz. Then, EEG data were offline re-referenced to the average
bilateral mastoid and low-pass-filtered with zero-phase filter
cutoff at 45 Hz. The ocular artifacts were removed by independent
component analysis after data with large amplitude noises were
manually dropped out.

ERP epochs were obtained by extracting the data between
500 ms prior to the auditory stimulus onset and 800 ms post-
stimulus. After baseline correction by subtracting the mean
value of the pre-stimulus data from each epoch, the epochs
were averaged within each participant and each condition to
obtain ERPs. A narrow time window around the peak of each
component was determined as the ERP component time window
in the grand average waveform. Four components were obtained
in this study, and their time windows were N1 = 130–170 ms,
eP3a = 220–270 ms, lP3a = 280–350 ms, and RON = 390–500 ms.
The amplitude of each component was calculated by averaging
the amplitudes in the component time window.

In order to compare the cross-task consistency between tir-
aERPs and the power spectral density (PSD) of ongoing EEG
in indexing MWL, the PSD features were calculated for the 5-s
EEG epochs that were extracted from the ongoing EEG between
two consecutive ERP epochs using the Welch method with
hamming window. Then, the PSDs were averaged within each
participant and each condition, and then the averaged PSDs were
standardized between 4 and 45 Hz by dividing the total power to
obtain the relative PSDs. Based on the findings that the MWL-
sensitive PSDs mainly lay in 4–30 Hz, we subsequently analyzed
the four bands: θ (4–8 Hz), α (8–13 Hz), β1 (13–20 Hz), and β2
(20–30 Hz). The relative power of each band was determined by
the sum of the relative PSDs in the band.

Discriminant Analysis and Mental
Workload Classification
The signed Fisher’s discriminant ratio (Fsigned) was calculated for
each feature of the PSD and ERP as shown in formula (1), where
mE and mH represent the means of easy and hard conditions
of one feature, while σE

2 and σH
2 represent their variances. The

absolute value of Fsigned can characterize the discriminant ability
between easy and hard conditions, and the sign can tell whether
the feature is statistically larger/smaller in the easy condition. To

obtain a quantitative measure of cross-task consistency of the
discriminant ability that can be compared directly between PSD
and ERP features, the absolute value of the difference of Fsigned
between N-back and MATB [

∣∣1Fsigned
∣∣, as defined in formula

(2)] was averaged across features separately for PSD and ERP for
each subject. A lower mean value of

∣∣1Fsigned
∣∣ would indicate a

higher overall cross-task consistency of the discriminant ability.
Because it is hard to exactly match the actual MWL between
the two tasks, mismatch MWL may affect the between-task
comparisons. The cross-task consistency measure of PSD and
ERP should be both affected by the mismatched difficulty, so the
results of the comparison of the measures between PSD and ERP
should not be affected since the mismatched effect of the difficulty
could be balanced in the comparison.

Fsigned=
mE −mH√
σE2 + σH 2

(1)

∣∣1Fsigned
∣∣ = ∣∣∣Fn−back

signed − FMATB
signed

∣∣∣ (2)

MWL classifications between easy and hard condition were
conducted based on PSD and ERP features, respectively, using
support vector machine (SVM) with radial basis function kernel
as implemented in LIBSVM (Chang and Lin, 2011). Block-wise
cross-validations were performed for within-task classification
by training and testing SVM with samples from the same task
but different blocks. Cross-task classifications were performed
in two ways: (i) training SVM on the data from N-back task
and testing on the data from MATB (N-back train MATB test)
and (ii) training SVM on the data from MATB task and testing
on the data from N-back (MATB train N-back test). Due to
the low signal-to-noise ratio, the decision values of multiple
consecutive ERP trials (n = 1, 5, 10) from SVM were averaged to
improve the reliability of prediction. This was also done for PSD-
based classifications for comparing with ERP. The classification
performance was evaluated using the area under the receiver
operating characteristic curve (ROC-AUC).

Statistics
The effects of MWL and task type were examined separately
for the amplitudes of tir-aERP components and the relative
power of the four frequency bands by performing 1,000-iteration
bootstrapping-based non-parametric paired ANOVAs and
t-tests. Bootstrapping-based t-test and ANOVA are distribution
independent, more applicable to a small sample size and
more accurate than classical parametric methods in practice
(Hesterberg et al., 2003). The subjective ratings, the measure
of cross-task consistency of the discriminant ability, and the
classification performance were compared between PSD and
ERP features using parametric bootstrapping-based t-tests.
The false discovery rate (FDR)-based method (Storey, 2002)
was employed to correct the significance level when multiple
comparisons were performed.
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FIGURE 1 | Box plots of Mental Effort Rating Scale for easy and hard
conditions in both tasks. The asterisks indicate the significance levels:
**p < 0.01; ***p < 0.001.

RESULTS

Subjective Ratings
To ensure that MWL was successfully manipulated, paired t-tests
were firstly performed to compare the RSMEs (as shown in
Figure 1) between easy and hard conditions for both tasks. The
results revealed significantly higher RSMEs for the hard condition
than the easy in both tasks [N-back: t(16) = 5.95, p < 0.001;
MATB: t(16) = 6.47, p < 0.001]. No significant difference in
RSME was found between the two tasks in the easy condition
[t(16) = –0.74, p > 0.05], but in the hard condition, the RSMEs
of N-back were significantly higher than MATB [t(16) = 2.98,
p < 0.01].

Task-Irrelevant Auditory Event-Related
Potentials vs. Power Spectral Densities:
General Impressions
Figure 2 shows the curves and topological maps of the grand
average ERPs and relative PSDs that can be visually inspected
for general impressions of the effects of the task type and
MWL. It can be found that the amplitudes of the four ERP
components were higher in the easy condition than the hard
in both tasks. Although there were some obvious differences
between the two tasks, especially for the lP3a, the changes of
the ERP amplitudes following MWL were highly consistent
across tasks. As for the relative PSDs, there were obvious
differences between easy and hard conditions in both tasks;
however, obvious differences can also be visually revealed in
the MWL-sensitive features between N-back and MATB. The
α band that has been found to be sensitive to MWL variation
in previous studies seemed to be sensitive to task types in this
study. The frontal (FZ) θ power obviously increased in higher

MWL in N-back; however, it seemed to change less to MWL
variations in MATB.

Statistical Results for Task-Irrelevant
Auditory Event-Related Potentials
Statistical analyses were performed on tir-aERPs to reveal the
effect for MWL and task type. Firstly, two-way (MWL × task
type) repeated-measure ANOVAs were performed on ERP
amplitude at each channel and each sample. As shown in
Figure 3A, the FDR-corrected results revealed a significant effect
for MWL mainly on N1, eP3a, and RON at the anterior regions,
a significant effect of task type on lP3a and RON at some
sporadic regions, and no significant interaction between MWL
and task type. Paired t-tests were then performed, respectively,
on each sample and each component at each channel to compare
between easy and hard conditions in both tasks. According
to the results shown in Figures 3B,C, a higher MWL tended
to result in lower amplitudes in all the ERP components.
Specifically, the component amplitudes of N1, eP3a, and RON
were significantly higher in the easy condition than the hard in
both tasks, and the significant regions highly overlapped across
tasks. However, the amplitudes of lP3a in nearly all regions
were only significantly sensitive to MWL in MATB but not
N-back. As for channel Fz, the results shown in Figure 3D
revealed significantly higher amplitudes of ERP components in
the easy condition than the hard for N1, eP3a, and RON in
both tasks and lP3a only in MATB (t > 3.69, psFDR < 0.001).
Figure 3D also shows the results of comparisons between
tasks for the amplitudes of the four components at channel
Fz. The results revealed significantly higher eP3a and lower
lP3a in MATB than N-back in the hard condition (t > 2.25,
psFDR < 0.05) and no significance between tasks in easy
condition (psFDR > 0.05). No significant difference between tasks
was found for amplitudes of N1 and RON in both easy and
hard conditions.

Statistical Results for Power Spectral
Densities
Figure 4A shows the FDR-corrected results of two-way
(MWL × task type) repeated-measure ANOVAs performed on
the relative PSDs at each channel and each frequency. The results
revealed a significant effect for task type on the relative PSDs
of posterior θ, anterior γ, and nearly whole head α but no
significant effect for MWL and interaction. The results of paired
t-tests for N-back task (as shown in Figures 4B,C, upper panel)
revealed that the relative powers of θ band at the frontal and
parietal regions were significantly lower in the easy condition
than the hard and that the relative powers of the mid-frontal
and posterior α band and frontal and central β1 band were
significantly higher in the easy condition than the hard. As for
MATB task, significantly lower parietal θ and higher fronto-
central and parietal α relative powers can be revealed from
the bottom panels of Figures 4B,C. Specifically, the relative
powers at channel Fz were compared between tasks and between
conditions using paired t-tests. As shown in Figure 4D, besides
the differences between easy and hard conditions that have been
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FIGURE 2 | (A) Grand average event-related potentials (ERPs) in each condition. (B) Grand average relative power spectral density in each condition. (C) The
topological maps of the grand average ERP amplitude of the four components in each condition. (D) The topological map of the grand average relative powers of
the four bands in each condition.

found above, significantly higher θ power and lower α power in
MATB than N-back were found in both easy and hard conditions
(t > 2.26, psFDR < 0.05).

Discriminant Analysis and Classification
Results
The grand average Fsigned for each feature of ERP and PSD,
as shown in Figure 5A, showed a general impression that the
discriminant ability of the ERP features was more consistent
across tasks than that of PSD features. As a quantitative measure
of the cross-task consistency of the discriminant ability that can
be compared directly between the ERP and PSD features, the
mean

∣∣1Fsigned
∣∣ of ERP features (0.161± 0.043) was significantly

lower than that of the PSD features (0.280 ± 0.082) found by
paired t-test [t(16) = 5.809, p < 0.001], as shown in Figure 5B.

Figure 5C shows the performance for within-task and cross-
task classifications using PSD and tirERP features. It is apparent
from the subfigures that the classification performance increased
with increasing number of trials. Two-way repeated-measure
ANOVAs were performed to examine the effects of the feature
(PSD vs. tirERP), the number of trials (1 vs. 5 vs. 10) and
their interaction for the within-task and cross-task classification
results. As shown in Table 3, no significant effect (p > 0.05)
of feature was found, but the effects of the number of trials
and their interaction were significant (p < 0.001) for within-
task classifications. As for the cross-task classifications, the effects
of feature (p < 0.05), the number of trials (p < 0.001), and
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FIGURE 3 | Statistical results for the tir-aERPs. (A) The spatial–temporal maps of F-values obtained from two-way (MWL × task type) repeated-measure ANOVAs
on event-related potentials (ERPs) at each channel and each sample. (B) The spatial–temporal maps of T-values obtained from paired t-tests (easy–hard) on ERPs at
each channel and each sample for N-back (upper panel) and multi-attribute task battery (bottom panel). (C) The topological maps of T-values obtained from paired
t-tests (easy–hard) on the four ERP components at each channel in N-back (upper panel) and MATB (bottom panel). (D) The box plots of the amplitudes and the
statistical significance of ERP components at channel Fz. The asterisks in the figure indicate the significance level of the statistical analyses: *pFDR <0.05;
***pFDR < 0.001. The statistics of no significance (pFDR > 0.05) were set to 0 in (A–C). AF, anteriofrontal; FP, pre-frontal; F, frontal; FT, frontotemporal; FC,
frontocentral; C, central; CP, centroparietal; TP, temporoparietal; PO, parietooccipital; O, occipital.

their interactions (p < 0.001) were all significant. Paired t-tests
were then conducted to compare between PSD and ERP features.
For within-task results, significantly higher ERP-based ROC-
AUC was found only for N-back when 10 trials were used
(pFDR < 0.05), but for the two ways of cross-task classification,
the ERP-based results significantly outperformed the PSD-based
ones for five and 10 trials (p < 0.05) but no significant difference
for 1 trial (p > 0.05).

DISCUSSION

The present study firstly investigated the cross-task consistency
of the effects of MWL on the tir-aERPs and the ongoing PSDs
in the same study framework. To find cross-task-consistent

MWL-sensitive EEG features may be an important approach
to improve the generalizability of EEG-based MWL estimation
methods in different tasks. PSDs have been the most studied
EEG features in previous MWL studies; in contrast, the study
on tir-aERPs was inadequate. The results of the present study
may provide some potential inspirations for revealing higher
cross-task-generalizable MWL-sensitive EEG features.

The present study used the novel complex sounds as the
auditory probes to evoke robust ERPs and ensure its efficacy in
indexing MWL (Dyke et al., 2015). According to the statistical
results, the amplitudes of N1, eP3a, and RON decreased under
higher MWL in both N-back and MATB tasks. Additionally,
the scalp regions in which these components were sensitive to
MWL were also highly overlapped in the two different tasks. The
most prominent differences between the two tasks were that lP3a
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FIGURE 4 | Statistical results for the relative power spectral densities (PSDs). (A) The spatial–frequency maps of F-values obtained from two-way (MWL × task type)
repeated-measure ANOVAs on the relative PSDs at each channel and each frequency. (B) The spatial–frequency maps of T-values obtained from paired t-tests
(easy–hard) on relative PSDs at each channel and each frequency in N-back (upper panel) and MATB (bottom panel). (C) The topological maps of T-values obtained
from paired t-tests (easy–hard) on the relative powers of the four bands at each channel in N-back (upper panel) and MATB (bottom panel). (D) The box plots of the
relative PSDs of the four bands at Fz. The asterisks in the figure indicate the significance level of the statistical analyses: *pFDR < 0.05; **pFDR < 0.01;
***pFDR < 0.001. The statistics of no significance (pFDR > 0.05) were set to 0 in (A–C). AF, anteriofrontal; FP, pre-frontal; F, frontal; FT, frontotemporal; FC,
frontocentral; C, central; CP, centroparietal; TP, temporoparietal; PO, parietooccipital; O, occipital.

significantly decreased with increasing MWL in MATB but not
in N-back. The results of the discriminant analyses indicate that
the amplitude of eP3a should be most generalizable across tasks
in indexing MWL. In contrast, although θ and α powers were
MWL sensitive in the same tendency in the two tasks, they were
more strongly sensitive to task type. Especially the α band power
that has been found to be sensitive to MWL in different tasks in
previous studies (Borghini et al., 2014) was very sensitive to task
type according to our results.

The similarities and the differences of tir-aERPs and PSDs
between tasks in responding to MWL variations should be a
problem worthy of a thorough discussion. The two tasks used

in this study are highly different: the N-back is a visuo-verbal
working memory task that mainly depends on inner attention
and working memory resources, while the MATB is a visuo-
motor task that demands visual attention and motor responses
(Chun et al., 2011; Kiyonaga and Egner, 2013). The MWL of
N-back task was manipulated by changing the number of items
to be remembered by the subjects, while in MATB task the MWL
level was manipulated by changing the number of events and the
speed of moving objects that the subjects needed to pay attention
and respond to. According to the taxonomy of attention, the
N-back task depends mainly on internal attention referring to the
selection, modulation, and maintenance of internally generated
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FIGURE 5 | (A) Grand average Fsigned for each feature of event-related potential (ERP) and power spectral density (PSD). (B) Mean values of
∣∣1Fsigned

∣∣ which were
averaged across all features separately for ERP and PSD of each subject. (C) Performance (ROC-AUC) for within-task and cross-task classifications separately using
PSD and tirERP features. The hashtags and asterisks in the figure indicate the significance level of the paired t-tests. ns, no significance; ∗pFDR < 0.05; ∗∗∗p 0.001.

TABLE 3 | Two-way repeated-measure ANOVA results of within-task and
cross-task classification results.

Source df F Significance

Within task N-back

Feature 1, 32 0.87 0.358

Number of trials 2, 64 28.35 <0.0001

Feature * number of trials 2, 64 8.42 <0.001

MATB

Feature 1, 32 0.612 0.44

Number of trials 2, 64 51.81 <0.0001

Feature * number of trials 2, 64 13.32 <0.0001

Cross-task N-back train MATB test

Feature 1, 32 5.33 0.0276

Number of trials 2, 64 14.40 <0.001

Feature * number of trials 2, 64 8.46 <0.001

MATB train N-back test

Feature 1, 32 5.60 0.024

Number of trials 2, 64 24.4 <0.0001

Feature * number of trials 2, 64 9.82 <0.001

Significant results (p < 0.05) are highlighted in bold.

information, while MATB depends mainly on external attention
referring to the selection and modulation of sensory information
(Chun et al., 2011; Kiyonaga and Egner, 2013).

The between-task consistency and inconsistency of ERP
components in responding to MWL variations can be explained
by cognitive resource competition in a dual-task design. Each

component of ERPs reflects a cognitive process in the brain,
and its amplitude usually depends on the amount of neural
(or cognitive) resources employed in the process. According
to the cognitive resource theory, the auditory probes were an
auxiliary task, and the amount of cognitive resources used
to process the auditory probes depends on the cognitive
demand of the main tasks, namely, the N-back and the
MATB in the present study. Therefore, the differences of tir-
aERPs in responding to MWL variations in different tasks
may reflect the differences in cognitive resource demand of
the main tasks. In this study, the amplitudes of N1, eP3a,
and RON decreased in high-load condition in both tasks,
and the scalp regions of statistical significance in both tasks
were highly consistent. The fact that no prominent effect has
been found in between-task comparisons suggests that tir-
aERPs may not be sensitive to task type. The most prominent
difference of tir-aERPs in responding to MWL between the
two tasks was that the amplitude of the lP3a component
significantly decreased under high MWL in MATB but not
in N-back. Previous studies proposed that eP3a reflects the
call for attentional orienting, while lP3a reflects the actual
attentional orienting (Čeponienë et al., 2004). A possible
explanation may be that lP3a amplitude reflects the amount
of external attentional resources involved in processing the
auditory probes.

As for the ongoing EEG, the oscillations in different regions
reflect the activation or inhibition of neural populations and
information transferring. The two tasks used in the present study
depend on very different cognitive processing and thus activate or
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inhibit different neural populations. The differences in frequency
bands and brain regions that are sensitive to MWL variations
should be a certainty. That should be the reason why the ongoing
EEG-based MWL estimation model failed in generalizing across
tasks in previous studies (Baldwin and Penaranda, 2012; Ke
et al., 2014, 2015a). The current study found a similar tendency
in both tasks that θ and α power significantly responded to
MWL variations, but the spatial distribution of the regions of
significance for θ and α was very different in the two tasks.
In the N-back task, the frontal and parietal θ increased with
MWL. In the MATB task, θ power also increased with MWL,
but it occurred mainly in the central and parietal regions. It
has been an often-reported relationship that frontal θ activity
increases with memory load in working memory tasks (Jensen
and Tesche, 2002; Itthipuripat et al., 2013; Hsieh and Ranganath,
2014; Scharinger et al., 2017). In previous studies, a power
increase in the θ band has also been reported at the parietal
and central areas in relation to focused attention (Doppelmayr
et al., 2008) and demanding or time pressure tasks (Slobounov
et al., 2000; Fairclough et al., 2005; Fallahi et al., 2016). When
considering the α band, a negative correlation between MWL
and α power has been found in the current study as in many
previous workload studies (Brouwer et al., 2012; Ke et al., 2015a;
Fallahi et al., 2016; Puma et al., 2018; Charles and Nixon,
2019; Tao et al., 2019). The possible explanations for the load
effect of α power may have to do with the deactivation of
the default mode network (Knyazev et al., 2011; Mo et al.,
2013; Bowman et al., 2017) or the activation of the task-
related network (Bazanova and Vernon, 2014; Bacigalupo and
Luck, 2019). As for between-task comparisons, more valuable
results were the significant effects of task type on both θ and
α power. The θ power was significantly higher in MATB than
in N-back, but it was on the contrary for α power. It should
be noted that the scalp regions significantly affected by MWL
were very different between the two tasks for both θ and α

power. The between-task differences of the ongoing EEG power
in responding to MWL variations may be explained by the
distinction of neural activation patterns due to different cognitive
resources that were mainly involved in performing the two
different tasks.

The results of the present study suggest that tir-aERPs
should be more generalizable than PSDs in both response
tendency and spatial patterns in indexing MWL under different
tasks. The results of the discriminant analyses, the lower
mean

∣∣1Fsigned
∣∣ of ERP features, provided direct evidences

that the discriminant ability of tir-aERPs was more consistent
across tasks. The cross-task classification results that the ERP
features outperformed the PSD features further proved the
advantages of tir-aERPs in indexing MWL across different
tasks. However, the low signal-to-noise ratio (SNR) of ERPs
should be a limitation that should be considered in practical
applications. According to the ERP-based BCI studies, the
average of multi-trial ERPs was usually used to enhance the
SNR. This was just the reason why multiple ERP trials have
been used to improve the classification results in this study.
The temporal resolution may also be a challenge in real-time
application because of the long ITI and the low SNR. A possible

solution may be to integrate tir-aERPs and ongoing PSDs or
other EEG features.

CONCLUSION

The generalization of EEG-based MWL estimation across
different tasks is important for application in workspace but
still a challenging topic. The present study investigated the
consistency of EEG features, especially the tir-aERPs and
PSDs, in indexing MWL in two different tasks. The results
suggested that the amplitudes of tir-aERPs can index MWL
more consistently across different tasks compared with the
extensively investigated PSD features. Especially the amplitude
of eP3a component was negatively correlated to MWL, and
the brain regions of significance were highly overlapped in
the two tasks. However, the PSD features were significantly
affected by task type and showed different spatial patterns in
responding to MWL variations in the two tasks. One of the
more significant findings to emerge from this study is that the
results of the discriminant analyses and classifications provided
direct evidences for the significance of tir-aERP features in cross-
task MWL classification. These findings suggest the potential of
using tir-aERP features to improve the generalization of EEG-
based MWL measures and may provide new insights to our
understanding of the common neuropsychological essence of
MWL across different tasks.
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