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Introduction

Inhaled nanosized particles (NPs) are implicated as a 
contributing factor to the adverse health effects of air 
pollution, especially in individuals with asthma or car-
diovascular disease (MacNee and Donaldson, 2003; Kelly 
and Sandström, 2004; Mills et al., 2007; Törnqvist et al., 
2007). Although certain properties (e.g., organic con-
tent and uniformity) distinguish engineered NPs from 
anthropogenic NPs, there are likely common effects and 

mechanisms of toxicity. NP toxicity is generally described 
in terms of oxidative stress, inflammation, adjuvant, and 
procoagulant effects, and interaction with biomolecules 
that might lead to unwanted toxic effects in the body (Nel 
et al., 2006; Li et al., 2008).

Nanosized titanium dioxide (TiO
2
) has photocatalytic 

properties and is produced in increasing amounts for 
energy and environmental applications, as well as use in 
pigments and medical implants. Previous studies have 
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Nanomaterial of titanium dioxide (TiO2) is manufactured in large-scale production plants, resulting in risks for 
accidental high exposures of humans. Inhalation of metal oxide nanoparticles in high doses may lead to both 
acute and long-standing adverse effects. By using the Dark Agouti (DA) rat, a strain disposed to develop chronic 
inflammation following exposure to immunoactivating adjuvants, we investigated local and systemic inflammatory 
responses after lung exposure of nanosized TiO2 particles up to 90 days after intratracheal instillation. TiO2 induced 
a transient response of proinflammatory and T-cell-activating cytokines (interleukin [IL]-1α, IL-1β, IL-6, cytokine-
induced neutrophil chemoattractant [CINC]-1, granulocyte–macrophage colony-stimulating factor [GM-CSF], and 
IL-2) in airways 1–2 days after exposure, accompanied by an influx of eosinophils and neutrophils. Neutrophil numbers 
remained elevated for 30 days, whereas the eosinophils declined to baseline levels at Day 8, simultaneously with an 
increase of dendritic cells and natural killer (NK) cells. The innate immune activation was followed by a lymphocyte 
expansion that persisted throughout the 90-day study. Lymphocytes recruited to the lungs were predominantly CD4+ 
helper T-cells, but we also demonstrated presence of CD8+ T-cells, B-cells, and CD25+ T-cells. In serum, we detected 
both an early cytokine expression at Days 1–2 (IL-2, IL-4, IL-6, CINC-1, IL-10, and interferon-gamma [IFN-γ] and a 
second response at Day 16 of tumor necrosis factor-alpha (TNF-α), indicating systemic late-phase effects in addition 
to the local response in airways. In summary, these data demonstrate a dynamic response to TiO2 nanoparticles in the 
lungs of DA rats, beginning with an innate immune activation of eosinophils, neutrophils, dendritic cells, and NK cells, 
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shown that inhaled TiO
2
 particles can cause oxidative 

damage, induce pulmonary inflammation and emphy-
sema, and that chronic exposure can lead to pulmonary 
tumors (Oberdörster et al., 1994; Warheit et al., 1997, 
2006, 2007; Renwick et al., 2004; Ma-Hock et al., 2009).

Recently, it has been reported that lung exposure to 
nano-TiO

2
 NPs in mice cause inflammation by activa-

tion of T-helper- 2 cells (T
H

2), with a function primarily 
in humoral immune responses and allergic sensitization 
(Park et al., 2009; Larsen et al., 2010). Since species dif-
ferences in the pulmonary effects of TiO

2
 have previously 

been reported, it is not clear whether such immune activa-
tion can be generalized, that is, the rat has been described 
to be more sensitive to TiO

2
 NPs than both the mouse and 

hamster (Bermudez et al., 2004). Furthermore, it is likely 
that gene regulation of immune responses differ between 
inbred strains within a species. From previous studies, 
inbred rat strains have shown to differ in susceptibil-
ity to various models of human  immune-mediated and 
inflammatory diseases. The Dark Agouti (DA) rats have 
previously been studied in experimental autoimmune 
diseases such as arthritis and encephalomyelitis due to 
their high susceptibility to develop long-lasting immune-
mediated disorders (Gasser et al., 1973; Griffiths et al., 
1981; Battisto et al., 1982; Eishi and McCullagh, 1988).

In the present study, we investigated the effects of acute 
TiO

2
 NPs exposure that may occur by accident in work envi-

ronments handling large amounts of powdered TiO
2
 NPs. 

The dose chosen for the exposures corresponds approxi-
mately to a human exposure for 8 h at a concentration of  
12 mg/m3, taking in consideration the differences 
in respiratory frequency and respiratory volume 
between human and rats. According to Occupational 
Safety and Health Administration (OSHA), the 
occupational permissible exposure limit (PEL) is  
15 mg/m3 for TiO

2
 as total dust and 5 mg/m3 for TiO

2
 as 

respirable dust (8-h time–weight average concentration) 
(NIOSH, 2005). However, it has been reported that the air 
concentrations of TiO

2
 do not generally exceed 1–5 mg/m3 

in workplaces where TiO
2
 particles are milled and packed, 

but higher concentrations might be accidently released.
We aimed here to: (1) establish a model of a single 

exposure of TiO
2
 NP in a rat strain that is highly sus-

ceptible to inflammatory disorders, representing more 
sensitive individuals in a population and (2) determine 
the time sequence of adverse immune reactions and the 
putative development of lung injury during a period of 90 
days post-exposure.

Materials and methods

Animals
Inbred pathogen-free male DA rats (B&K, Sollentuna, 
Sweden) 10-11-weeks-old were housed in a 
 restricted-access animal care facility. They facilities were 
maintained at 20–24°C, with a 50% relative humidity, and 
with a 12-h on/off light cycle; all rats were permitted access 
to food and water ad libitum. All animal experimental 

procedures used herein were approved by the Animal 
Research Ethical Committee in Umeå, Sweden.

Particles
Nanosized TiO

2
 particles (P25; Degussa AG, Frankfurt, 

Germany) consisting of 75% anatase and 25% rutile were 
kept dark throughout the experiments, suspended in 
 phosphate-buffered saline (PBS, pH 7.4), and ultrasoni-
cated for 30 min prior to use. Primary particle size was 
21 nm according to the manufacturer. Static light-scat-
tering analysis after sonication (Laser Scattering Particle 
Size Distribution Analyzer LA-950; Horiba Instruments 
Inc., Södertälje, Sweden) indicated two fractions of 
agglomerated particles of median size 200 nm and 2 μm, 
respectively (data not shown).

Nanoparticle exposure
Rats were anesthetized with 4% isoflurane (Abbot 
Scandinavia AB, Solna, Sweden) and intratracheally 
instilled once with TiO

2
 suspended in 200 μL PBS. The 

dose was chosen from a dose–response study where 1, 
5, and 7.5 mg TiO

2
/kg were compared with exposure for 

vehicle only (PBS) and evaluated 24 h after exposure. The 
dose 5 mg TiO

2
/kg body weight was used in a time–kinetic 

study where exposed animals were sacrificed at 1, 2, 8, 16, 
30, and 90 days post-instillation and comparisons were 
performed vs. non-instilled animals (time- point zero). 
In order to exclude age-dependent changes, we also 
compared with control animals exposed for PBS only, 
sacrificed at 2, 16, 30, and 90 days post-instillation.

Bronchoalveolar lavage
Rats were sacrificed by an intraperitoneal injection of 
sodium pentobarbiturate (Apoteket AB, Stockholm, 
Sweden) followed by exsanguination from the descend-
ing aorta. Bronchoalveolar lavage fluid (BALF) was 
collected with 5 × 5 mL ice-cold Ca2+, Mg+-free Hanks’ bal-
anced salt solution (Sigma-Aldrich, St. Louis, MO) at 1, 2, 
8, 16, 30, and 90 days post-instillation. Cell pellets were 
resuspended in PBS and cell counts were determined 
using manual trypan blue dye exclusion. Cells were ana-
lyzed by flow cytometry and light microscopy, whereas 
cell-free BALF and serum were used for measurements 
of secreted cytokines.

BALF cell count
Leukocyte differential count was determined by applying 
replicates of 30,000 cells onto microscope slides using a 
Shandon Cytospin 3 (Shandon Southern products Ltd., 
Runcorn, UK). Slides were fixed and thereafter stained 
with May–Grünwald–Giemsa prior to manual cell differ-
ential count, in blinded fashion, using light microscopy 
to assess morphology of 300 cells/slide.

Flow cytometry
Antibody staining was performed in 96-well plates with 
2.5 × 105 cells/sample (note: BAL specimens containing a 
lower number of cells were pooled). Flow cytometry was 
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performed using a BD FACSort™ (Becton Dickinson, San 
Jose, CA) according to standard procedure and analyzed 
with BD FACSDiva Software. Monoclonal antibodies 
(and the associated fluorophore conjugate) used in this 
study were anti-: CD3-FITC; CD3-PE; αβ-TCR-PerCP; 
γδ-TCR-FITC; CD45RA-PE; NKR-P1A-PE; CD8a-PerCP; 
CD4-PE-Cy5; CD25-PE; IgG1-FITC; OX-62, and OX-6-
PerCP; isotype controls were also employed. Non-specific 
binding was blocked by incubation with anti-rat CD32 
(F

cγII-receptor) prior to specific staining, except when 
dendritic cells were investigated. All antibodies were from 
BD Sciences Pharmingen (San Diego, CA). T-Cells were 
defined as CD3+, B-cells were defined as CD3− CD45RA+, 
and natural killer (NK) cells as CD3− NKR-P1A+. Dendritic 
cells were identified as CD3− CD45RA− OX-62+ OX-6+ as 
previously described by Lambrecht et al. (1999).

Cytokine measurements
Serum- and cell-free BALF were used for cytokine analy-
sis. Using a Luminex Bio-Plex 200 System (Bio-Rad, 
Hercules, CA), interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, 
IL-10, granulocyte–macrophage colony-stimulating fac-
tor (GM-CSF), interferon-gamma (IFN-γ), and tumor 
necrosis factor-alpha (TNF-α) levels were measured 
(Rat 9-Plex A Panel; Bio-Rad). Vascular endothelial 
growth factor (VEGF) and cytokine-induced neutrophil 
chemoattractant (CINC-1, a homolog of human IL-8) 
were quantified using ELISA kits (ELISA Duoset; R&D 
Diagnostics, Minneapolis, MN) according to the manu-
facturers’ instructions; in the case of serum VEGF, K Blue 
Enhanced substrate (Neogen Europe Ltd., Ayr, Scotland) 
was used. The plates were read at 450 nm with a wave-
length correction at 570 nm (Labsystems iEMS Reader 
MF, Vantaa, Finland). Using Thermo Electron Ascent 
Software, the absorbance was transformed to pg/mL, 
using standard curves prepared with cytokine standards 
included in the kits.

Lung histopathology
At 2, 30, and 90 days post-instillation, two TiO

2
-

exposed and two PBS-exposed rats were sacrificed by 

exsanguination under sodium pentobarbiturate anes-
thesia (lethal dose). Their lungs were immediately rinsed 
from blood with PBS that was injected through the right 
ventricle. Phosphate-buffered 4% paraformaldehyde 
(Solveco, Chemicals AB, Stockholm) was used to inflate 
the lungs through airway infusion at constant pressure 
(20 cm H

2
O), whereupon lungs and heart were removed 

en bloc and fixed in buffered 4% paraformaldehyde. 
Lungs were paraffin-embedded, sectioned, stained with 
hematoxylin–eosin or Masson trichrome stain (Sigma-
Aldrich) and evaluated by light microscopy.

Statistical analysis
The statistical analyses of differential cell counts in BALF 
were performed with one-way ANOVA and Dunnett’s 
post-hoc test. In the dose–response experiment, the 
TiO

2
-exposed animals were compared with a control 

group exposed for PBS only. In the kinetic study the 
TiO

2
-exposed animals, sacrificed at 1, 2, 8, 16, 30, and 90 

days post-exposure, were compared with non-exposed 
animals. For the later timepoints 16, 30, and 90 days 
post-exposure, the nano-TiO

2
-exposed animals were also 

compared with PBS-exposed animals sacrificed at cor-
responding timepoints using Student’s unpaired t-test. 
The statistical analyses of lymphocyte subsets by flow 
cytometry were performed with one-way ANOVA and 
Dunnett’s post-test and compared with non-instilled ani-
mals for all groups. For cytokine measurements, the con-
centration in samples below the detection limit was set to 
0, and a Kruskal–Wallis test with Dunn’s post-test (two-
tailed) was therefore conducted. For correlation analysis, 
Spearman’s rank test was performed. Data analyses were 
considered significant at P < 0.05. Results are expressed 
as mean (±SEM) in graphs and mean (±SD) in tables.

Results

Nanosized TiO
2
 induces an acute airway inflammation 

and sustained lymphocyte response
The number of leukocytes in the lungs 1 day after lung 
exposure to increasing concentrations of TiO

2
 NPs (0, 1, 
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Figure 1. Dose-dependent differences in the number of cells in bronchoalveolar lavage fluid from rats 24 h after intratracheal instillation with 
nanosized TiO

2
. One-way ANOVA with Dunnett’s post-test; value is significantly (*P < 0.05 and **P < 0.01) different vs. phosphate-buffered saline 

(PBS) control. Data are presented as mean ± SEM (n = 6).
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5, and 7.5 mg/kg body weight) was evaluated. A dose-de-
pendent increase in eosinophils and neutrophils, as well 
as a decrease in macrophages (Figure 1), was detected. 
For further analysis, the 5 mg/kg dose was chosen to 
investigate the effects at 1, 2, 8, 16, 30, and 90 days post-
exposure. The dose selected was the lowest that resulted 
in significantly increased leukocyte response in BALF 1 
day after exposure.

One single instillation of 5 mg nano-TiO
2
 NPs/kg 

induced early eosinophil and neutrophil recruitment to 
the airways appearing from Day 1 post-exposure when 
compared with unexposed animals (Figure 2). The eosino-
phils were elevated until Day 8, whereas the neutrophils 
remained elevated for at least 30 days. Concomitant with 

the neutrophilia, a transient increase of dendritic cells 
was detected with a peak cell numbers at Day 8 (Figure 
3), followed by maximal lymphocyte cell numbers at Day 
16, which persisted throughout the 90-day study (Figure 
2). The nano-TiO

2
-exposed animals were also compared 

with animals exposed for PBS only. The numbers of 
neutrophils, lymphocytes, and eosinophils were not 
increased following PBS instillation (Figure 2) compared 
with baseline cell numbers in BALF of healthy animals, 
although a small increase of macrophages was observed 
at Day 90. Among the lymphocytes, NK cells and T-cells 
expressing the NKR-P1A receptor (NK T-cells) displayed 
a transient increase at the same timepoints as den-
dritic cells (Figure 3). NK cells recruited to the airways 

0
0

100C
el

ls
 in

 B
A

LF
 x

 1
04

200

300

400

A

B

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

C
el

ls
 in

 B
A

LF
 x

 1
04

Total leukocytes unexposed

Lymphocytes unexposed

Total leukocytes TiO2

Total leukocytes PBS

Lymphocytes TiO2

Lymphocytes PBS

Eosinophils unexposed

Eosinophils TiO2

Eosinophils PBS

Macrophages unexposed

Macrophages TiO2

Macrophages PBS

Neutrophils unexposed

Neutrophils TiO2

Neutrophils PBS

1 2 8

Days post-installation

16 30 90

0 1 2 8

Days post-installation

16 30 90

$$

$$ $$ $$

$$

$$
$$

** **
**

**
**

**

**

**

**

**
***

*$$$

$$$ $$$

Figure 2. The number of cells in bronchoalveolar lavage fluid from nano-TiO
2
 (5 mg/kg)-exposed rats 0 (n = 10), 1 (n = 20), 2 (n = 15), 8 

(n = 11), 16 (n = 5), 30 (n = 6), and 90 (n = 6) days post-intratracheal instillation. One-way ANOVA with Dunnett’s post hoc test was employed, 
and values significantly changed vs. nonexposed control animals (timepoint 0) are indicated (*P < 0.05, **P < 0.01, ***P < 0.001). A Student’s 
t-test was performed to compare TiO

2
-exposed rats with that of rats exposed for phosphate-buffered saline (PBS) only at Days 1, 16, 30, and 

90 ($$P < 0.01, $$$P < 0.001). Data are presented as mean ± SEM.
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expressed high density of the NKR-P1A receptor on the 
cell surface as indicated by the increased NKR-P1Abright 
population at Days 2, 8, and 16 (Table 1). The lympho-
cyte response was dominated by T-cells, including CD4+ 
helper T-cells with high expression of CD25 (CD25bright) 
(Figure 4). Smaller fractions of lymphocytes were identi-
fied as CD8+ cytotoxic T-cells and B-cells (Figures 3 and 
4). T-Cells recruited to the airways were predominantly of 
the T-cell receptor (TCR) αβ subset with a minor propor-
tion of T-cells expressing the γδ TCR (data not shown).

Nanosized TiO
2
 induces cytokine release in BALF and 

serum
At Days 1–2 post-exposure, an early and transient 
increase of IL-1α, IL-1β, IL-2, IL-6, CINC-1, and GM-CSF 
was detected in BALF (Figure 5). At the same timepoint, 
elevated levels of IL-2, IL-4, IL-6, IL-10, and IFN-γ were 
detected in serum, whereas the increase in serum 

concentration of CINC-1 was detected at Days 2–8 post-
exposure (Figure 6). A biphasic cytokine response was 
detected in serum at Day 16 as indicated by increased 
TNF-α (Figure 6). VEGF concentration in serum was 
decreased from Days 8 to 90 when compared with levels 
associated with non-exposed animals (Figure 6), although 
the difference from PBS-instilled controls at correspond-
ing timepoints was not statistically significant.

Accumulation of particles in lung epithelium and 
examination of lung fibrosis
Morphological examination of lung tissue sections 2 days 
after exposure revealed free particle aggregates in close 
association to terminal bronchioles and alveolar ducts. A 
minor uptake of particle aggregates in alveolar macrophages 
(AM) was observed (Figure 7). Thirty days post-exposure, 
the presence of particle aggregates in macrophages had 
increased and few free particle aggregates were seen. At Day 
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Figure 3. Numbers of NK T-cells (CD3+ NKR-P1A+), NK cells (CD3− NKR-P1A+), B-cells (CD3− CD45+), and dendritic cells (CD3− CD45RA− 
OX-62+ OX-6+) in bronchoalveolar lavage fluid from nanosized TiO

2
 (5 mg/kg) exposed rats 0 (n = 5), 1 (n = 7), 2 (n = 7), 8 (n = 10), 16 (n = 5), 30 

(n = 5), and 90 (n = 4) days after a single intratracheal instillation. Kruskal–Wallis test with Dunn’s post-test; value is significantly (*P < 0.05, 
**P < 0.01, ***P < 0.001) different vs. control.

Table 1. Proportion of natural killer (NK) cells expressing NKR-P1Abright.

Days 0 (n = 10) 1 (n = 14) 2 (n = 15) 8 (n = 11) 16 (n = 5)
30 
(n = 6)

% Bright 36 ± 3 30 ± 2 72 ± 2** 70 ± 3** 62 ± 2** 43 ± 4

Expressed as mean percentage of total NK numbers ± SD.
One-way ANOVA with Dunnett’s post-test; value significantly (**P < 0.01,) different as compared with control.
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90, particle aggregates were predominantly found within 
the macrophages. The macrophages were doubled in size 
and contained larger amounts of vacuoles, compared with 
the macrophages at Day 30. We also observed cell-shaped 
areas of aggregates, possibly as a consequence of disrupted 
cells due to particle “overload” (Oberdörster et al., 1992). 
To evaluate possible fibrosis, tissue sections were stained 
for collagen deposition at Day 90 post-exposure, but histo-
pathological examination revealed no lung tissue fibrosis, 
epithelial injury, or granuloma formation in TiO

2
-exposed 

animals (data not shown).

Discussion

In the present study, a single dose of high concentration 
of nanosized TiO

2
 particles caused a dynamic inflam-

matory response in airways of DA rats, characterized by 
a transient influx of eosinophils and a more sustained 
neutrophilic response, followed by a recruitment of den-
dritic cells and lymphocytes expressing NK receptors 
(NK cells and NK T-cells). The transient innate immune 
response resulted in a late-phase recruitment of lym-
phocytes involved in adaptive immunity, predominantly 
CD4+ T-cells. We did not observe any signs of epithelial 
injury or lung fibrosis, indicating that the TiO

2
 dose given 

to the animals (5 mg/kg body weight) did not produce 
severe cytotoxic effects in the lung epithelium.

The innate cellular response was preceded by an 
increase of pro-inflammatory cytokines IL-1α, IL-1β, 
IL-6, CINC-1, and GM-CSF in BALF 1–2 days post-expo-
sure. Consistent with our observations of the subsequent 
recruitment of inflammatory cells to the airways, the 
expression of these cytokines in concert provides strong 
signals for neutrophil chemoattraction (Nakagawa et al., 
1994), activation of the Th17 pathway (Mills, 2008), pro-
longed survival of eosinophils in the microenvironment 
(Lampinen et al., 2004), as well as dendritic cell prolifera-
tion and maturation (Dieu et al., 1998). Previous studies 
in other rat strains have shown dose-dependent transient 
increases in granulocytes and monocytes in the lungs, as 
well as epithelial and fibroproliferative changes upon 
challenge with TiO

2
 (Oberdörster et al., 1994; Bermudez 

et al., 2004; Ahn et al., 2005; Warheit et al., 2007; Sager 
et al., 2008; Kobayashi et al., 2009; Ma-Hock et al., 2009). 
These differences in results may be due to different 
properties of TiO

2
, like crystal structure, particle size, 

surface chemistry, and surface area. By that means, it is 
difficult to compare results between different NP studies. 
Growing evidence suggests that TiO

2
 may cause different 

adverse health effects depending on the crystal structure 
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and size of the particles (Warheit et al., 1997, 2006, 2007; 
Kobayashi et al., 2009). In vitro studies have shown that 
TiO

2
 particles of different crystal structures exert differ-

ent toxic effects, for example from exposures on respira-
tory epithelial cells it appears that the anatase phase of 
nanocrystalline TiO

2
 is more toxic than the rutile phase, 

probably due to a high photocatalytic activity of anatase 
resulting in effective generation of highly reactive oxygen 
species (ROS) (Gurr et al., 2005; Sayes et al., 2006; Singh 
et al., 2007; Hussain et al., 2009). It is, however, not well 
understood whether this mechanism of toxicity can trig-
ger inflammatory responses in vivo.

Ma-Hock and colleagues have described nano-TiO
2
 

(14% rutile, 86% anatase) accumulation in lymphoid 
tissue upon inhalation exposure in the Wistar rat, indi-
cating translocation of inhaled particles to the lymph 
nodes possibly through uptake by migratory antigen-
presenting cells (Lorentzen et al., 1997; Dimitrijevic 
et al., 2001). The Wistar, much like the DA rat, is disposed 
to develop T

H
1-mediated inflammation involving strong 

dendritic cell and macrophage activation, although 

studies have shown that the DA rat is even more prone 
to develop T

H
1 inflammatory disorders (Lorentzen et al., 

1997; Dimitrijevic et al., 2001). Our data on expansion 
of dendritic cell in the lung together with the observa-
tion of time-dependent clearance of particles from the 
alveolar compartments further support a particle trans-
location to lymphoid tissue, but further studies have 
been conducted to confirm this scenario. In our study, 
we observed that TiO

2
 particle aggregates were initially 

free dispersed in alveolar regions with subsequent 
uptake in AM. With time the macrophages increased 
in size containing accumulating numbers of NPs and 
finally the macrophages disrupted, resulting in release 
of particles into the lung again. This observation is con-
sistent with AM as the first-line defense against inhala-
tion of particles, acting by phagocytosis and degradation 
through intracellular processes. It is known that AM can 
turn into an overload state, if the internal volume of par-
ticles is greater than 60%, which inhibit their function 
(Oberdorster et al., 1992). It is conceivable that particle 
uptake followed by particle release as a consequence of 
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Figure 5. Concentration of cytokines in bronchoalveolar lavage fluid from nanosized TiO
2
 (5 mg/kg)-exposed rats 0 (n = 10), 1 (n = 14), 2 
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macrophage disruption has an influence on the dynamic 
inflammatory response observed.

We demonstrated lymphocyte influx to the lungs, 
dominated by CD4+ T-cells and with smaller fractions 
of CD8+ T-cells and B-cells, indicating initiation of an 
adaptive immune response, although the specific anti-
gens recognized by the cells remains to be defined. A 
NP introduced into a biological system may rapidly 
adsorb proteins forming a protein corona (Lundqvist 
et al., 2008) that, in turn, could constitute signals for 
cells. Furthermore, protein adsorption onto NPs could 

induce conformational changes of the adsorbed pro-
teins, as evidenced by a study by Lundqvist et al. (2006) 
where silica NPs were shown to induce a helical struc-
ture, including a catalytic site, on unstructured peptides 
in solution. Conformal changes in vivo could lead to a 
change or loss of function of the adsorbed proteins; it 
may also result in presentation of novel peptide motifs 
to the immune system. It is conceivable that such 
interplay between particles and the surrounding bio-
logical environment may lead to autoreactivity against 
self-epitopes, resulting in a persistent cell-mediated 
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2
 (5 mg/kg) exposed rats 0 (n = 10), 1 (n = 13), 2 (n = 15), 8 (n = 11), 16 (n = 5), 30 

(n = 6), and 90 (n = 5) days after a single intratracheal instillation. Kruskal–Wallis test with Dunn’s post-test; value is significantly (*P < 0.05, 
**P < 0.01) different vs. control.



TiO
2
 NPs induce long-lasting immune responses in DA rats 119

© 2011 Informa Healthcare USA, Inc. 

immune response. Further studies are needed to con-
firm this hypothesis.

The transient expansion of NK cells, at Day 8, further 
supports that the innate immune activation triggered by 
the NP exposure might represent an early event in the 
activation of CD4+ T-cells. Our data demonstrate that the 
majority of NK cells express high density of the NKR-P1A 
receptor indicating a predominantly T-cell-activating 
function rather than an inhibitory role since it was previ-
ously shown that only NK cells with low expression of this 
receptor inhibit T-cell proliferation (Kheradmand et al., 
2008). We detected signs of IL-2 and IFN-γ expression 
both in airways and serum 2 days post-exposure, indi-
cating that TiO

2
 exposure may trigger T-cell proliferation 

and bias toward a T
H

1 immune response already at early 
time points. This finding is in contrast with a recently 
reported study where nano-TiO

2
 particles induced a 

T
H

2 cell response in mice (Park et al., 2009; Larsen et al., 
2010). The discrepancy is likely explained by species 
differences in initiation of immune responses in addi-
tion to TiO

2
 particle differences. We also observed signs 

of T-cells with regulatory function, as indicated by the 
elevated numbers of CD4+ T-cells expressing high sur-
face density of the CD25 receptor. This T-cell population 
might thus play a role in regulating the inflammatory 
response, although more specific markers for regula-
tory T-cells, such as FoxP3, are needed for a clear-cut 
functional definition. Another explanation to the T-cell 
activation could be genetically determined. Lorentzen 
and colleagues demonstrated in the DA rat that chronic 
inflammatory joint diseases induced by adjuvants are 
genetically determined by variations in C-type lectin 
receptors (Lorentzen et al., 2007). These receptors are 
preferentially expressed on dendritic cells, neutrophils, 
macrophages, and B-cells, and are implicated in antigen 
recognition and uptake, cellular adhesion, signal trans-
duction, and T-cell costimulation (Cambi and Figdor, 

2003; Geijtenbeek et al., 2004). It is possible that this 
pathway of immune activation also plays a role in trigger-
ing T-cell activation in our model of NP exposure.

Notably, a tendency toward a biphasic expression pat-
tern of IL-1α, IL-6, IFN-γ, and TNF-α was observed in 
serum yielding a second response 16 days post-exposure 
in conjunction with the peak expression of neutrophils and 
lymphocytes in airways. Thus, it is likely that the long-term 
effects triggered by nano-TiO

2
 particles are not limited to 

a local cellular response in the lungs, but also includes a 
systemic production of cytokines stimulating T

H
1 inflam-

matory responses. Our findings of decreased serum levels 
of VEGF levels from Days 8 to 90 post-exposure might indi-
cate a protective mechanism aimed at limiting endothelial 
permeability in lung inflammation. Maitre and colleagues 
reported a similar decrease in serum VEGF in a bacteria-
induced lung injury model (Maitre et al., 2001).

Conclusions

We demonstrated that a single high-dose exposure of TiO
2
 

NP into the lung may provoke long-lasting lymphocyte 
responses in the DA rat, having implications on the assess-
ment of risks for adverse and persistent immune stimu-
lation in susceptible individuals. We also demonstrated 
NP-induced immunoactivating and proinflammatory 
activity in blood, implicating the risk for cardiovascular 
toxicity of inhaled NPs.Acknowledgements
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