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Follicular helper T (TFH) cells provide specialized help for B cells to ensure

optimal humoral immunity. The histone methyltransferase EZH2, as a

chromatin repressor, secures the TFH differentiation by promoting TFH

lineage associated gene expression during acute viral infection, including

Tcf7 and Bcl6. By using conditional deletion murine system, we observed

that EZH2 ablation in CD4+ T cells was accompanied by aberrant accumulation

of DNA methyltransferases (DNMTs) DNMT1 and DNMT3B in TFH cells. And the

loss of EZH2 promoted aggravation of DNA methylation status at Tcf7 locus.

Therefore, our findings suggested that EZH2 plays an important role in

maintenance of hypomethylation at Tcf7 locus thus affecting TFH

differentiation during acute viral infection.

KEYWORDS
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Introduction

Upon antigen engagement, antigen-specific naive CD4+ T cells differentiate into

distinct effector populations to execute immune response under the regulation of

specific transcription factors (1). Follicular helper T (TFH) cells are a subset of CD4
+ T

cells specialized in helping B cells by inducing the formation and maintenance of
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germinal centers (GCs), which are indispensable for

differentiation of high-affinity antibody-producing plasma

cells and production of memory B cells (2, 3). Abnormal TFH

cell differentiation is closely related to antibody mediated

autoimmune diseases, such as systemic lupus erythematosus

and rheumatoid arthritis (4–6). Hence, dissecting the

differentiation of TFH cells can help to modulate the humoral

immunity for better control of infection or alleviation of

autoimmune diseases (7).

TFH differentiation is characterized as a multi-stage process,

which is precisely regulated by multiple transcription factors.

The transcriptional repressor Bcl6 is the “master regulator” of

TFH differentiation and is essential for the development of TFH

cells (3). Moreover, induced ablation of Bcl6 converts “ex-TFH”

cells into TH1 cells during acute lymphocytic choriomeningitis

virus (LCMV-Armstrong) infection, suggesting that Bcl6 is

critical for the integrity of TFH cells (8). On the contrary,

Blimp1 (encoded by Prdm1), as the antagonist of Bcl6,

promotes the differentiation of non-TFH effector cells by

repressing Bcl6 expression (9, 10). Recent studies have shown

that TCF1 (encoded by Tcf7) acts as upstream hub of the

reciprocal antagonistic Bcl6-Blimp1 axis and secures TFH

differentiation program by promoting Bcl6 expression but

repressing Blimp1 expression, as manifested by the fact that

the deficiency of TCF1 restricts the TFH differentiation and

effector function (11, 12). Additionally, TCF1 maintains the

transcriptional and metabolic signatures of TFH cells, it is not

only necessary for adequate expansion of TFH cells, but also

critical for TFH cell responses during LCMV infection (13).

Other regulators, such as ICOS, Ascl2, Id2, STAT3, Klf2, and

Foxo1 were also identified to regulate TFH differentiation (14–

17). In addition to transcription mechanisms, epigenetic

modification also plays a vital role in cell differentiation and

plasticity by responding rapidly to external stimuli and

incorporating a variety signals (18). For instance, the

SUV39H1-dependent H3K9me3 is important for lineage

integrity of TH2 cells (19), and the G9a-mediated H3K9me2 is

involved in the control of TREG cell differentiation (20).

Although the phenotypic and functional changes that occur

during TFH differentiation have been well characterized, the

detai led epigenetic mechanisms which control TFH

differentiation remains little understood.

Enhancer of zeste homolog 2 (EZH2), the catalytic subunit

of Polycomb complex 2 (PRC2), mediates the trimethylation at

lysine 27 of histone H3 via its methyltransferase activity

(HMT) (21). Generally, the EZH2-dependent H3K27me3

modification is associated with gene silencing through

chromatin compaction (22). EZH2-mediated H3K27me3 has

been demonstrated to restrict the differentiation and cytokine

production through occupying Tbx21 and Ifng loci in TH1 cells,

and the Gata3 and Il4 loci in TH2 cells (23). In TREG cells, the

H3K27me3 deposition is also required for the repressive gene
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program, thus maintaining the lineage identity after activation

(24). Moreover, EZH2 promotes TFH differentiation potentially

by stabilizing the chromatin accessibility of TFH lineage

associated genes, and the deletion of EZH2 caused reduced

expression of TFH associated genes (25, 26). However, EZH2-

mediated H3K27me3 deposition has not been observed at TFH

lineage associated gene loci (25). Besides, it remains ambiguous

whether and how the chromatin repressor EZH2 promotes TFH

differentiation by regulating other modifiers that are negatively

associated with TFH differentiation program.

In this study, we demonstrated that EZH2 restricts the

expression of DNMT1 and DNMT3B, thus may help to

maintain the hypomethylation status of Tcf7 locus. This study

illustrated that EZH2 restrains the methylation status at Tcf7

locus and promotes the differentiation of TFH cells.
Materials and methods

Mice and infectious agents

Ezh2fl/fl, Cd4-Cre transgenic mice, and wild type C57BL/6J

(CD45.2 and CD45.1) mice were purchased from the Jackson

Laboratory. SMARTA (CD45.1, expressing MHC II I-Ab-

restricted TCR specific for LCMV glycoprotein amino acids

66–77 epitope) and LCMV-Armstrong strain were generously

provided by Dr. Rafi Ahmed (Emory University). 2 × 105

plaque-forming units of LCMV-Armstrong strain with

intraperitoneal injection to set up the acute viral infection

model in mice. Both sexes were included without

randomization or blinding to establish the experiments at the

age of 6-10 weeks. All mice were house kept (3-5 mice per cage)

in a specific pathogen-free facility with controlled environmental

conditions. All experiments were performed according to the

guidelines of the Institutional Animal Care and Use Committee

of the Third Military Medical University.
Flow cytometry and antibodies

Single-cell suspensions of spleens from the experimental

animals were used for flow cytometry with a FACSCanto II

(BD Biosciences). The surface staining was performed in FACS

buffer, the anti-CD4 (RM4-5), anti-CD44 (IM7), anti-CD45.1

(A20), anti-CD45R (RA3-6B2) were obtained from Biolegend.

For CXCR5 staining, all the surface antibodies were mixed in

FACS buffer (PBS with 2% FBS) containing 2% normal mouse

serum and 1% BSA. The CXCR5 staining was performed with a

three-step protocol: firstly the cells were stained with purified

rat anti-CXCR5 (2G8) at 4°C for 1h; then the cells were washed

and stained with biotin-conjugated goat anti-rat IgG (Jackson

ImmunoResearch) on ice for 30 min; lastly the cells were
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washed and stained with fluorescently-labeled streptavidin

(Biolegend) and other surface antibodies on ice for 30 min.

Ezh2 (11/EZH2) was obtained from BD Biosciences, the

staining was performed with a Cytofix/Cytoperm Fixation/

Permeabilization Kit (554714, BD Biosciences) according to

the manufacturer’s instructions after surface staining. TCF1

(C46C7), DNMT1 (D63A6), DNMT3A (D23G1), DNMT3B

(E4I4O) were obtained from Cell Signaling Technology, while

Blimp1 (5E7), Foxp3 (3G3) were obtained from BD

Biosciences. The staining was performed with a Foxp3/

Transcription Factor Staining Buffer Set (eBioscience)

according to the manufacturer’s instructions after surface

staining. All data were analyzed by FlowJo (Treestar).
Adoptive transfer

A total of 2 × 104 transgenic CD45.1+ SMARTA cells were

harvested from naive mice and adoptively transferred

intravenously to CD45.2+ C57BL/6 mice. On the following

day, the recipient mice were intravenously infected with 2 ×

105 pfu of LCMV-Armstrong strain.
Cell sorting

The cell sorting was performed on a FACSAria II (BD

Biosciences). The Naive SMARTA cells (CD25-CD44-

CD62L+CD4+) were sorted from naive SMARTA mice, TFH

cells (SLAM-CXCR5highCD4+) were sorted from mice infected

with LCMV-Armstrong strain on day 4 and day 8 after CD4+ T

cells enrichment. The biotin-conjugated antibodies: CD8 (53-

6.7), CD45.2 (104), B220 (RA3-6B2), CD11b (M1/70), CD11c

(N418), TER119 (TER), NK1.1 (PK136), F4/80 (BM8), CD25

(PC61) were used for the T cells enrichment. The purity of the

sorted cells was >95% in all experiments.
Quantitation of mRNA levels by RT-PCR

For comparison the gene expression of target genes, total

RNA was isolated from the cells sorted from mice infected with

LCMV Armstrong strain. RNA was extracted with the RNeasy

Mini Kit (74104, Qiagen) and reverse transcribed with the

RevertAid H Minus First Strand cDNA Synthesis Kit (K1632,

Thermo Scientific). Quantitative real-time PCR of target

transcripts with appropriate primers (Supplementary Table 1)

were carried out with SYBR Green PCR kit (208054, Qiagen)

on a CFX96 Touch Real-Time System (Bio-Rad). Fold

differences in expression levels were calculated according to

the 2−DDCT method.
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Western blot analysis

The transfected 293T cells were washed with ice-cold PBS

twice, and then lysed in RIPA buffer. Equal amounts of protein

from each sample were separated with 10% SDS-PAGE and then

transferred to PVDF membranes (IPVH00010, Millipore). The

membranes were blocked with 5% bovine serum albumin

(B2064, Sigma) for 1 hour at room temperature, and then

incubated with appropriate antibodies overnight at 4°C. After

four times washing, the membranes were incubated with

horseradish peroxidase-conjugated secondary antibody for

another one hour at room temperature. Immunoblots were

visualized with SuperSignal® West Pico Chemiluminescent

Substrate (34080, Thermo Scientific) on a Bio-Rad XRS

chemiluminescence detection system (Bio-Rad).
Protein stability and immunoprecipitation

The full-length cDNA of Ezh2 was subcloned into

pcDNA3.1-HA vector and Dnmt1, Dnmt3a, Dnmt3b were

subcloned into pcDNA3.1-FLAG vector for expression. For

protein stability studies, the pcDNA3.1-EZH2-HA vector was

co-transfected with pcDNA3.1-FLAG-DNMT1 and pcDNA3.1-

FLAG-DNMT3B vectors into 293T cells by using TranIT-293

Transfection Reagent (MIR 2705, Mirus), respectively. After

24 h, the transfected cells were treated with cycloheximide for

24 h, and the working solution of cycloheximide was 200 mg/mL.

For immunoprecipitation studies, the 293T cells were

transfected with pcDNA3.1-FLAG-DNMT1, pcDNA3.1-

FLAG-DNMT3A, pcDNA3.1-FLAG-DNMT3B, pcDNA3.1-

FLAG vectors. Cells were harvested 48 h after transfection, the

extracted product were incubated with 2 mg of anti-Ezh2 (D2C9,
Cell Signaling Technology), 2 mg of anti-FLAG (M2; Sigma-

Aldrich) for 5 h, and then incubated with Dynabeads Protein G

(10004D; Life Technologies) for 2 h. After washing, the protein

stability and immunoprecipitated samples were analyzed by

immunoblot analysis with appropriate antibodies.
Genomic methylation by
bisulfite sequencing

The bisulfite sequencing of the target genomic region was

used to measure the allelic frequency of methylated cytosines.

Genomic DNA from the sorted cells were extracted with

QIAamp® DNA Mini Kit (51304, Qiagen), and then bisulfate

modified by EpiTect® Bisulfite Kit (59104, Qiagen). The

bisulfite-modified DNA was amplified with locus-specific

primers (Supplementary Table 1). The amplified product was

cloned into the pMD19-T TA cloning Vector (6013, Takara),
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then transformed into DH5a competent cells. Independent

colonies were sequenced to determine the methylation status

from each sample. The CpG island was defined, and primer was

designed by website of Li Lab (http://www.urogene.org/

methprimer/) (27).
Statistical analysis

Statistical analysis was performed using Prism version 6.0

(GraphPad) software. Statistical significance was determined by

unpaired two-tailed Student’s t test. A P value of less than 0.05

was considered statistically significant.
Results

Epigenetic regulator EZH2 controls
TFH differentiation

EZH2 is a subunit of PRC2, which acts as “writer” of the

repressive H3K27me3 modification (21). We set out to elucidate

the epigenetic role of EZH2 in TFH cells and identify the

downstream regulators modulated by EZH2 during acute viral

infection. To this end, we crossed mice containing loxP-flanked

Ezh2 alleles with mice expressing Cre-recombinase under the

control of Cd4 promoter, enhancer and silencer to generate the

conditional knockout mice (Ezh2fl/flCd4-cre, hereafter called

Ezh2-/-). The loss of Ezh2 mRNA in CD4+ T cells from Ezh2-/-

mice was confirmed by quantitative RT-PCR (Figure 1A). We
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then infected the control (Ezh2fl/fl) mice and Ezh2-/- mice with

LCMV-Armstrong strain, the deletion of EZH2 protein was

validated in TFH cells from Ezh2-/- mice at day 8 after infection

(Figure 1B). Moreover, the frequency and absolute number of

TFH cells in Ezh2-/- mice were significantly diminished compared

with those in the control mice (Supplemental Figure 1A, B),

consistent with previous findings (25, 26). The transcript and

protein levels of Tcf7 and Bcl6 were both decreased in TFH cells

from Ezh2-/- mice, whereas that of Prdm1 and Blimp1 were

increased (Figures 1C, D). These results suggested that EZH2

controls the expression of TFH lineage related regulators to

secure TFH differentiation during acute viral infection.
EZH2 regulates the expression of DNA
methyltransferases in TFH cells

The transcripts of Tcf7 and Bcl6 were decreased with EZH2

deletion in TFH cells, while no deposition of H3K27me3 marks

were observed at those loci (25). Thus, EZH2 may regulate other

chromatin modifiers to regulate the expression of those genes. It

has been reported that EZH2 is involved in DNA methylation

pathway to mediate gene expression through interacting with

DNMT1, DNMT3A and DNMT3B (28). To determine whether

the DNA methylation pathway in TFH cells is affected by EZH2

deletion, we measured the expression of DNA methyltransferases

in TFH cells derived from control and Ezh2-/- mice on day 8 after

acute viral infection. The DNMT1 and DNMT3B expression were

increased with ablation of EZH2 in TFH cells, while the expression

of DNMT3A was comparable between EZH2-intact and EZH2-
A B

D

C

FIGURE 1

Epigenetic regulator EZH2 controls TFH differentiation. The control (Ezh2fl/fl) and Ezh2fl/flCd4-cre (Ezh2-/-) mice were infected with 2 × 105

plaque-forming units LCMV-Armstrong strain. After 8 days of infection, TFH (SLAM-CXCR5hiCD44+), sorted to perform the following
experiments. (A) Analysis of mRNA of Ezh2 in naive splenic CD4+ T cells from control and Ezh2-/- mice via RT-PCR. Normalized to their
expression in control CD4+ T cells. (B) Measurement of EZH2 expression in TFH cells via flow cytometry from control and Ezh2-/- mice. (C, D)
Measurement of TCF1, Bcl6 and Blimp1 expression via flow cytometry, and the expression of Tcf7, Bcl6 and Prdm1 transcripts by RT-PCR in TFH
cells from control and Ezh2-/- mice. Normalized to their expression in control TFH cells. P value was calculated by unpaired two-tailed Student’s
t test from triplicate experiments. Error bars indicate mean ± SEM, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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deficient TFH cells (Figures 2A–C). When the protein synthesis

inhibitor cycloheximide was applied to treat the transfected cells

in vitro, the degradation of DNMT1 and DNMT3B were

accelerated by forced expression of EZH2 (Figure 2D). These

findings implied that DNMT1 and DNMT3B were regulated by

EZH2-dependent signaling pathway. Moreover, the transcript

level of demethyltransferases Tet1, Tet2, and Tet3 were not

affected by the ablation of EZH2 in TFH cells (Figure 2E).

These data indicated that EZH2 is associated with the DNA

methylation pathway but not the DNA demethylation in

TFH cells.
EZH2 deletion elevates the DNA
methylation level at the Tcf7 locus

DNA methylation degree is inversely correlated with the

expression of lineage-specific genes during T helper cell

development (29, 30). As we know, TCF1 is intrinsically

required for TFH cell differentiation (13). To determine whether

the increased expression of DNMT1 and DNMT3B were

associated with the impaired TFH differentiation, we measured

the methylation status at CpG island of key regulator Tcf7 by

bisulfite sequencing. Genomic DNA was isolated from TFH cells

sorted from the spleen of control and Ezh2-/- mice at day 8 after

infection. Strikingly, the methylation degree of CpG sites in the

promoter of Tcf7 in Ezh2-/- TFH cells was 31.4%, which was three
Frontiers in Immunology 05
times higher than that of 10.7% in TFH cells from control mice

(Figures 3A, B; Supplemental Figure 2A). Meanwhile, all the CpG

sites became methylated in TFH cells from Ezh2-/- mice, and the

Ezh2-/- TFH cells were 80%methylated at CpG site 1 and 6, while 3

of 7 CpG sites maintained unmethylated in the control TFH cells

(Figure 3B). Moreover, the methylation status at Tcf7 locus was

23% in TFH cells from Ezh2-/- mice at early stage, which was twice

higher as that of 9% in TFH cells from control mice (Figure 3C;

Supplemental Figure 2B). Meanwhile, more than 85% of CpG sites

became methylated in Ezh2-/- TFH cells, but the control TFH cells

maintained 3 of 7 CpG sites unmethylated (Figure 3C).

Additionally, the Tcf7 transcripts were diminished in early

Ezh2-/- TFH cells, and thus accompanied by decreased

expression of Bcl6 and increased expression of Prdm1 (Figure 3D).

Taken together, these results supported that EZH2 ensured

the DNA hypomethylation degree at Tcf7 locus.
EZH2 displays inability to affect the
methylation status at other gene loci

In addition to the Tcf7 locus, we also measured the

methylation status of CpG islands at other TFH lineage related

gene loci from both control and Ezh2-/- TFH cells at day 8 after

infection. Bcl6 and Blimp1 are both downstream mediators of

TCF1 (11, 12). The methylation status at Bcl6 locus were

demethylated in TFH cells from both control mice and Ezh2-/-
A B

D E

C

FIGURE 2

EZH2 regulates the expression of DNA Methyltransferases in TFH cells. (A–C) Analysis and summary of the expression of DNMT1, DNMT3A,
DNMT3B in TFH cells via flow cytometry from control and Ezh2-/- mice at day 8 after infection, respectively. (D) The control and EZH2
overexpression-transfected 293T cells were treated with cycloheximide (CHX) at indicated times, followed by western blot analysis. Normalized
the expression to the zero timepoint. (E) Real-Time PCR analysis of Tet1, Tet2, and Tet3 transcripts of TFH cells sorted from infected control and
Ezh2-/- mice. Normalized to their expression in control TFH cells. P value was calculated by unpaired two-tailed Student’s t test from triplicate
experiments. Error bars indicate mean ± SEM, ns not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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mice (Figures 4A, D), though its transcripts declined in TFH cells

with EZH2 deletion (Figure 1D). Meanwhile, the CpG sites in

the promoter region of Prdm1, were completely unmethylated in

TFH cells from both control and Ezh2-/- mice (Figures 4B, E), but

the expression of Prdm1 were much higher in TFH cells from

Ezh2-/- mice than that from the control mice (Figure 1D). In

addition, the CpG island of Id3, which is another TFH lineage

associated factor (16), remained unmethylated in TFH cells from

EZH2-intact and EZH2-deficient mice (Figures 4C, F).

Taken together, these results together suggested that EZH2

displays inability to regulate the methylation status at Bcl6,

Prdm1 and Id3 loci.
Methylation of Tcf7 Locus is associated
with the TFH differentiation during acute
viral infection

Results obtained from primary TFH cells demonstrated that

the regulation of TCF1 expression is associated with methylation

status of CpG sites in the promoter region of Tcf7 (Figure 3). To
Frontiers in Immunology 06
determine whether the methylation status at Tcf7 locus is

associated with antigen specific TFH differentiation during

acute viral infection, we transferred naive SMARTA cells into

naive recipient mice, then the chimeras were subsequently

infected with LCMV Armstrong strain (Figure 5A). At day 7

after infection, the CpG sites in Tcf7 promoter region was 27.1%

methylated in antigen specific TH1 cells, which was nearly three

times higher than that of 9.1% in antigen specific TFH cells

(Figure 5B, Supplemental Figure 3A). And the expression of Tcf7

and TCF1 were remarkably higher in TFH cells compared with

those in TH1 cells (Figure 5D, Supplemental Figure 3B).

These results indicated that the methylation status at

Tcf7 locus was inversely correlated with the transcripts and

protein expression of Tcf7. Meanwhile, the Bcl6 locus

maintained demethylated in TFH cells and TH1 cells

(Figure 5C), while the transcripts and protein of Bcl6 were

much higher in TFH cells compared with those in TH1 cells

(Figure 5E, Supplemental Figure 3C).
These findings together suggested that hypomethylation of

Tcf7 locus was positively correlated with the TFH differentiation

during acute viral infection.
A

B

D

C

FIGURE 3

EZH2 deletion elevates the DNA methylation level at the Tcf7 locus. (A) Schematic diagram of CpG island in Tcf7 gene promoter. (B) Bisulfite
sequencing analysis and graphical summary of conversed CpG island of Tcf7 promoter from sorted TFH cells from control and Ezh2-/- mice at
day 8 after infection. (C) Bisulfite sequencing analysis and graphical summary of CpG island of Tcf7 promoter from sorted TFH cells from control
and Ezh2-/- mice at day 4 after infection. (D) Real-Time PCR analysis of Tcf7, Bcl6, Prdm1 mRNA of TFH cells sorted from control and Ezh2-/-

mice at day 4 after infection. Normalized to their expression in control TFH cells. The horizonal lines were corresponding to the colonies
selected for sequencing. Filled black circles indicate methylated cytosine, open white circles indicate nonmethylated cytosine. P value was
calculated by unpaired two-tailed Student’s t test. Error bars indicate mean ± SEM, **P < 0.01, ***P < 0.001.
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A B

D E F

C

FIGURE 4

EZH2 displays inability to affect the methylation status at other gene loci. Genomic DNA was extracted from sorted TFH cells derived from
control and Ezh2-/- mice at day 8 after LCMV Armstrong strain infection. (A–C) Schematic diagram of CpG island at Bcl6 locus (A), Prdm1 locus
(B) and Id3 locus (C). (D–F) The DNA methylation status at Bcl6 locus (D), Prdm1 locus (E) and Id3 locus (F) were performed by bisulfite
sequencing analysis with or without EZH2 ablation. The horizonal lines were corresponding to the colonies selected for sequencing. Filled black
circles indicate methylated cytosine, open white circles indicate nonmethylated cytosine.
A

B D

E

C

FIGURE 5

Methylation of Tcf7 Locus is associated with the differentiation of TFH cells during acute viral infection. (A) Procedure of experiment. 2 × 104

naive SMARTA cells were adoptively transferred into naive C57BL/6 mice, the chimeras were infected with LCMV Armstrong strain subsequently.
(B, C) The virus experienced TFH (CD45.1+SLAMlowCXCR5+) and TH1 (CD45.1+SLAMhighCXCR5-) cells were sorted at day 7 after infection with
LCMV Armstrong strain. The isolated genomic DNA purified from these two subtypes were subcloned into pMD19-T TA vectors for subsequent
sequencing. The graphical summary of CpG islands of Tcf7 (B) and Bcl6 (C) were performed with bisulfite sequencing. (D, E) The transcriptional
expression of Tcf7 (D) and Bcl6 (E) were measured by RT-PCR. Normalized to their expression in TFH cells. The horizonal lines were
corresponding to the colonies selected for sequencing. Filled black circles indicate methylated cytosine, open white circles indicate
nonmethylated cytosine. P value was calculated by unpaired two-tailed Student’s t test. Error bars indicate mean ± SEM. ****P < 0.0001.
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Discussion

Besides transcription factors, epigenetic regulators have been

demonstrated to involve in regulating TFH differentiation

program recently (4, 25, 26, 31, 32). For instance, ablation of

EZH2 led to less chromatin accessibility of TFH lineage

associated genes (25), which reminded a unique function of

EZH2 in transcriptional activation of TFH differentiation

program (25). Moreover, EZH2 was associated with H3K27ac

rather than H3K27me3 in TFH cells (26). EZH2 thus positively

regulates TFH differentiation, despite generally being considered

an epigenetic repressor per se. Our study further elucidates that

EZH2 regulates the epigenetic modification of Tcf7 and

promotes the differentiation of TFH cells. In TFH cells, EZH2

repressed the expression of DNMT1 and DNMT3B, which were

associated with the methylation status at Tcf7 locus in TFH cells.

Our study therefore uncovered a specific role for EZH2 in TFH

differentiation from an epigenetic perspective and shed a new

light on the mechanism of epigenetic modification associated

with TFH differentiation program.

In this study, we provided the first evidence that ablation of

EZH2 significantly increased the expression of DNMT1 and

DNMT3B in TFH cells. We also observed that EZH2 could

interact with DNMTs through direct protein-protein interaction

(Supplemental Figure 4), which was consistent with a previous

study (28). The H3K4me3 modification regulator histone

methyltransferase SET7, was reported to trigger the degradation

of DNMT1 by direct interaction (33), likely through the ubiquitin-

proteasome system as shown by direct binding between EZH2 and

the E3 ligase NP95 (34). Thus, it is plausible that EZH2 may

similarly drive the degradation of DNMT1 and DNMT3B through

direct interaction. It will be of great interest to verify the proper

mechanism of how EZH2 mediates the expression of DNMT1 and

DNMT3B in future studies.

DNA methylation is critical for the regulation of gene

expression. We hence focused on the methylation status at TFH
lineage related gene loci, including Tcf7, Bcl6, Id3 and Prdm1. The

Tcf7 promoter was demonstrated as a target locus of DNMT3A,

and the expression of DNMT3A was necessary to maintain the

methylation status at Tcf7 promoter to restrict the frequency of

memory precursor cells during acute viral infection (35). In this

study, we found that Tcf7 locus was more selectively methylated in

TFH cells with EZH2 deletion compared to other key loci were not

affected. The inhibited transcriptional activity of Tcf7 led to less

expression of Bcl6 and more Prdm1 expression. Additionally, the

restricted TFH differentiation caused by EZH2-deficiency could be

rescued by forced Bcl6 expression, which expression was assured by

TCF1 (25). Although other functional target loci cannot yet be

excluded, our observation demonstrated that the elevated

methylation level of Tcf7 locus was associated with the increased

expression of DNMTs in TFH cells. Further investigations are

needed to determine whether DNMT1 or DNMT3B could act
Frontiers in Immunology 08
alone, or they coordinately associated with methylation level at

Tcf7 locus.

It is still poorly understood what recruits DNMTs to regions

of DNA loci that become methylated in T cells. In our study, the

expression of DNMT1 and DNMT3B were elevated in TFH cells

with EZH2 deletion, and the TFH lineage associated gene Tcf7

appears to be regulated by DNA methylation (Figure 3,

Supplemental Figure 2). These findings prompt us to

hypothesize that transcriptional repressor UHRF1 is a possible

binding partner of DNMTs. UHRF1 is a PHD domain protein

defined as the cooperator of DNMT1 (36–38). The PHD domain

has been reported to interact with H3K18ac, which is associated

with more accessible chromatin states (39). Thus, UHRF1 may

serve as a link between DNMT1 and H3K18ac. Meanwhile, the

expression of Kat2a and Kat2b (acetyltransferases of H3K18ac)

were much higher in TFH cells than that in TH1 cells (data not

shown). These facts suggest that H3K18ac might be associated

with the expression of TFH lineage associated genes, including

Tcf7. We suggest that DNMT1 may be driven to the H3K18ac

associated Tcf7 locus by binding with UHRF1 for methylating

the proper sites. However, it needs to be further disclosed.

In the scenario of acute viral infection, naive SMARTA cells

differentiate into TFH and TH1 cells (40–43). The bifurcation of TFH
and TH1 cells is mediated by Bcl6, and the expression of Bcl6 is

ensured by TCF1. We observed that the methylation status at Tcf7

locus was more heavily in TH1 cells than that in TFH cells, while

there was no detectable difference in the methylation status at Bcl6

locus between TFH and TH1 cells. Besides, the expression of

DNMT1 and DNMT3B were comparable in TFH and TH1 cells,

and the DNMT3A expression was much higher in TFH cells

compared with that in TH1 cells (data not shown). These results

indicated that Tcf7 locus may also be the target locus of DNA

demethyltransferase. Although the precise mechanisms about the

additional modifications affect the methylation status at Tcf7 locus

are not clarified yet, our results suggest that the hypomethylation of

Tcf7 locus but not Bcl6 locus was associated with the differentiation

of TFH cells.

In summary, this study reveals for the first time that EZH2

regulates the epigenetic modification of Tcf7 during acute viral

infection. EZH2 plays a crucial role in modulating the degree of

DNA methylation at Tcf7 locus and promoting the

differentiation of TFH cells. Since TFH cells are critical in

humoral immunity responses and development of

autoimmune diseases, the dissection of EZH2 function may

provide substantial therapeutic benefits for the treatment of

viral infection and autoimmune diseases.
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