
ORIGINAL RESEARCH
published: 25 July 2019

doi: 10.3389/fnhum.2019.00258

Frontiers in Human Neuroscience | www.frontiersin.org 1 July 2019 | Volume 13 | Article 258

Edited by:

Carryl L. Baldwin,

George Mason University,

United States

Reviewed by:

Frederic Dehais,

National Higher School of Aeronautics

and Space, France

Wenhai Zhang,

Hengyang Normal University, China

Marcus Heldmann,

University of Lübeck, Germany

*Correspondence:

Jenny M. Qiu

jenny.m.qiu.th@dartmouth.edu

Received: 31 March 2019

Accepted: 10 July 2019

Published: 25 July 2019

Citation:

Qiu JM, Casey MA and Diamond SG

(2019) Assessing Feedback Response

With a Wearable

Electroencephalography System.

Front. Hum. Neurosci. 13:258.

doi: 10.3389/fnhum.2019.00258

Assessing Feedback Response With
a Wearable Electroencephalography
System
Jenny M. Qiu 1*, Michael A. Casey 2 and Solomon G. Diamond 1

1 Thayer School of Engineering, Dartmouth College, Hanover, NH, United States, 2Department of Music, Dartmouth College,

Hanover, NH, United States

Background: Event related potential (ERP) components, such as P3, N2, and FRN,

are potential metrics for assessing feedback response as a form of performance

monitoring. Most research studies investigate these ERP components using clinical

or research-grade electroencephalography (EEG) systems. Wearable EEGs, which are

an affordable alternative, have the potential to assess feedback response using ERPs

but have not been sufficiently evaluated. Feedback-related ERPs also have not been

scientifically evaluated in interactive settings that are similar to daily computer use. In

this study, a consumer-grade wearable EEG system was assessed for its feasibility to

collect feedback-related ERPs through an interactive software module that provided

an environment in which users were permitted to navigate freely within the program

to make decisions.

Methods: The recording hardware, which costs <$1,500 in total, incorporated the

OpenBCI Cyton Board with Daisy chain, a consumer-grade EEG system that costs $949

USD. Seventeen participants interacted with an oddball paradigm and an interactive

module designed to elicit feedback-related ERPs. The features of interests for the oddball

paradigm were the P3 and N2 components. The features of interests for the interactive

module were the P3, N2, and FRN components elicited in response to positive, neutral,

and two types of negative feedback. The FRN was calculated by subtracting the positive

feedback response from the negative feedback responses.

Results: The P3 and N2 components of the oddball paradigm indicated statistically

significant differences between infrequent targets and frequent targets which is in line with

current literature. The P3 and N2 components elicited in the interactive module indicated

statistically significant differences between positive, neutral, and negative feedback

responses. There were no significant differences between the FRN types and significant

interactions with channel group and FRN type.

Conclusion: The OpenBCI Cyton, after some modifications, shows potential for

eliciting and assessing P3, N2, and FRN components, which are important indicators

for performance monitoring, in an interactive setting.
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1. INTRODUCTION

The development of smaller and power efficient electronics over
the last few decades has facilitated the growth of lower cost,
space-efficient, wearable versions of common medical devices.
With the market for wearable consumer products currently
valued at $12.3 billion and projected to increase to $30.7
billion by 2021, consumers will increasingly have access to
different health metrics, such as cardiac activity and caloric
output, within reach. The consumer demand for better wearable
devices and more interesting metrics subsequently drove the
development of low-cost, wearable neural systems that use
electroencephalography (EEG), a non-invasive, highly temporal,
imaging technique that monitors electrical activity of the brain
through electrodes that are placed on the scalp (Mak and
Wolpaw, 2009; van Gerven et al., 2009; McFarland and Wolpaw,
2011; Nicolas-Alonso and Gomez-Gil, 2012; Daly and Huggins,
2015; Lee, 2016). As wearable, low-cost EEG systems become
more prevalent and available to consumers, there is a need to
assess the potential applications and capabilities of these low-cost
EEG systems in measuring neural activity. The present article
benchmarks one of these low-cost EEG systems, the OpenBCI
V-32 Cyton with Daisy Chain (OpenBCI, 2018), in a visual
oddball task and in an interactive, feedback-related event-related
potential (ERP) study. The translational extensions of this work
are to deploy consumer-accessible, neural-based performance
monitoring and expand the environments in which feedback-
related ERP components are monitored.

Wearable EEG systems have distinct advantages over clinical

EEG systems. Traditional clinical-grade EEG systems are

expensive, with the average system costing over $50k for
hardware and $20k for processing software (Brain Vision, 2017).
The application time for traditional EEG electrodes can exceed
an hour from assembly and experimental set-up. In comparison,
consumer-grade EEG systems typically range from $500 to $1,000
for hardware depending on available features with an additional
$50 fee for software (McFarland and Wolpaw, 2011; Shih et al.,
2012; Badcock et al., 2013; Ratti et al., 2017). With user friendly
headsets and fewer electrodes, low-cost EEG systems can have
a short set-up time of 20 min or less (Krigolson et al., 2017;
Ratti et al., 2017). In studies comparing various wireless systems,
such as Emotiv, Muse, and openBCI to clinical systems, such
as Biosemi and ActiChamp, wireless systems were shown with
a significantly lower setup time of 5–6 min while traditional
clinical-grade systems took 15–20 min for setup (Vourvopoulos
and Badia, 2016; Krigolson et al., 2017).

Several studies have demonstrated that low-cost EEG systems
are capable of collecting neural signals comparable to the quality
of those collected from clinical EEG systems (Debener et al., 2012;
Badcock et al., 2013; De Vos et al., 2014; Frey, 2016; Krigolson
et al., 2017; Ratti et al., 2017; Dehais et al., 2019). In such studies,
these low-cost EEG systems are often benchmarked in classic
experiments that elicit event related potentials (ERP), which are
time-locked series of peaks resulting from an averaged electrical
response from large groups of neurons (Robertson and Pascual-
Leone, 2003; Schendan et al., 2003; Cassidy, 2004; Maia, 2009;
Bassett et al., 2011; Walsh and Anderson, 2012; Schuck et al.,

2017). The most common benchmark, the oddball paradigm,
elicits an ERP with a distinctly large positive peak, known as
the P300 or P3, located 300–500 ms after the presentation
of an infrequent, target stimulus (Squires et al., 1975). In
literature involving oddball paradigms as measured by clinical
EEG systems, the P3 amplitude is influenced positively by lower
probability, and distinctiveness of the stimuli (Linden, 2005;
Graimann et al., 2010; Luck, 2014). The N200 or N2, a negative
inflection occurring 200–350 ms after stimulus presentation, has
been less investigated with respect to the oddball paradigm. The
N2 amplitude has been determined to be larger for task relevant
stimuli and for lower probabilities of task relevant stimuli
(Squires et al., 1975;Warren et al., 2011;Weschke andNiedeggen,
2016). Researchers have demonstrated that the ERPs elicited in
both auditory oddball paradigms (Debener et al., 2012; Badcock
et al., 2013) and visual oddball paradigms (Frey, 2016; Krigolson
et al., 2017), have been highly correlated to each other (Badcock
et al., 2013; De Vos et al., 2014; Frey, 2016; Vourvopoulos and
Badia, 2016; Ratti et al., 2017). The combined advantages of
the wireless EEG system have allowed researchers to expand
the realm of neural monitoring studies to outside standard
clinical testing areas. Researchers have used wireless consumer-
grade EEG systems in conjunction with the oddball paradigm
in walking experiments (Debener et al., 2012), flight training in
planes (Callan et al., 2018; Dehais et al., 2019), and in extended
monitoring situations (Debener et al., 2015) demonstrating the
potential for extended periods of neural monitoring in scenarios
where the brain is actively at work. These specific studies also
subsequently demonstrated that dry electrodes (Callan et al.,
2018; Dehais et al., 2019) or adhesive minimal gel electrodes
(Debener et al., 2015) are suitable alternatives to the traditional
wet electrodes arrays.

However, wireless consumer-grade EEGs are not without
significant drawbacks. Low-cost systems that are inflexible
in electrode positioning have shown to be more prone to
artifacts from muscle movements (Badcock et al., 2013; Ratti
et al., 2017). A number of consumer-grade EEG systems that
incorporate dry electrodes have a lower signal-to-noise ratios
in comparison to wet or traditional electrode systems (De
Vos et al., 2014; Mihajlovic et al., 2015; Lin et al., 2016;
Zerafa et al., 2018; Kam et al., 2019). Wireless, consumer-
grade EEG systems can be delayed in comparison to wired,
traditional EEG systems. In one study that compared the
clinical-grade g.tec g.USBamp to the OpenBCI in classification
capability, the OpenBCI had a statistically significant difference
in the area under the receiving operating characteristic
curve (AUROCC) for time-sensitive ERP tasks. However, the
significant difference was speculated to be partially explained
by a software issue that created a time delay of 88 ms for the
OpenBCI (Frey, 2016).

Considering both the advantages and disadvantages, the
wireless consumer-grade EEGs should be capable of measuring
other time-related neural signals, such as feedback related ERPs.
User feedback gives individuals the opportunity to modify
their future actions using information received about their
previous behaviors. The most studied ERP component related to
feedback response is feedback-related negativity (FRN) (Walsh
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and Anderson, 2012; Warren and Holroyd, 2012; Gheza et al.,
2018; Glazer et al., 2018; Krigolson, 2018; Somon et al., 2019).
The FRN is a signal that is said to originate in the anterior
cingulate cortex (ACC) by multiple converging studies (Walsh
and Anderson, 2012; Warren and Holroyd, 2012; Gheza et al.,
2018; Glazer et al., 2018). The FRN is associated most strongly
with the N2 component. The FRN has been represented as
a comparison between measured N2 peaks on ERPs elicited
after feedback (Sailer et al., 2010) and, more commonly, as
a difference waveform between averaged ERPs formed from
negative feedback and averaged ERPs formed from positive
feedback. The amplitude of the N2 component, and subsequently
the FRN component, can be affected by prevalence of the
stimulus, perceived potential gain or loss, and conflict of
information (Gheza et al., 2018; Glazer et al., 2018; Krigolson,
2018). The N2 is generally larger in an ERP response after
negative feedback than for that of positive feedback (Walsh
and Anderson, 2012; Warren and Holroyd, 2012; Gheza et al.,
2018; Glazer et al., 2018; Krigolson, 2018; Somon et al., 2019).
The amplitude of the P300 (P3) component has also been
studied in performance monitoring research. Slightly larger P3
peaks were sometimes attributed to more positive feedback
but were generally not statistically significant (Potts, 2011;
Yi et al., 2018; Schindler et al., 2019; Tunison et al., 2019).
One study compared a consumer-grade MUSE EEG system
and the clinical-grade Brain Vision ActiChamp system and
found that the FRN responses were similar in a selection
task (Krigolson et al., 2017).

The purpose of the present study is to demonstrate that a
consumer-grade EEG system is appropriate for ERP research in
feedback response in an interactive environment. In order to
accomplish this, we first benchmark the EEG system with the
standard oddball paradigm. Then, we test the EEG system in
response to an interactive environment that is designed to elicit
feedback related ERPs. We created an environment in which the
user is free to navigate around a trial to solve a puzzle and make
numerous decisions to learn about the solution. When a user
makes a decision, the environment provides delayed feedback.
We investigated the P3, N2, and the FRN components because
these components are relatively large in comparison to other
components. Our first objective for the study was to analyze P3
and N2 components from a low-cost wearable EEG system with
respect to a standard oddball paradigm. Our expectation is that
the low-cost wearable EEG would detect statistically significant
larger N2 and P3 components from infrequent stimuli in a
standard oddball paradigm, much like the results of clinical and
wireless EEG systems. The second objective for the study was to
analyze the N2, P3, and FRN components using the chosen low-
cost wearable EEG system in an interactive environment. The
second hypothesis was that the low-cost EEG system can detect
statistically significant ERP components in reaction to feedback
in an interactive module. When comparing ERP responses
from negative and positive feedback, the negative feedback
would elicit a larger N2 component and stronger negative
feedback would elicit a larger FRN component than weaker
negative feedback.

2. METHODS

2.1. Participants
Twenty participants (nine females, two left-handed, age 22–
33, M = 26.4) with less than two encounters with an EEG or
EEG-based BCI provided informed consent to participate in this
study. Three of these participants (three female, age 24–26, M
= 25) were excluded from the analysis because of substantial
noise from insufficient electrode connection to the scalp. All
participants had normal or corrected vision, reported no prior
incidents of neurological impairment, and were fluent in English.
The study protocol was approved by the Dartmouth Institutional
Review Board.

2.2. Materials
Each participant encountered two modules sequentially: (1) an
oddball paradigm (OB) and (2) an interactive module (IM). Both
modules lasted∼30 min and were programmed with Python and
Psychopy packages (Peirce et al., 2019).

2.2.1. Oddball Paradigm
In this visual oddball paradigm module, participants were
presented with an image and subsequently identified using
a mouse whether the image was an infrequent stimulus or
the frequent stimulus. The materials for the oddball paradigm
module were three unique infrequent stimuli that were chosen
randomly from a library of 40 shapes colored with similar
brightness and saturation and one frequent stimulus, which was a
white cross. Each participant received a different set of infrequent
stimuli and the same frequent stimulus in order to avoid potential
confounds with stimulus-specific factors (Luck, 2014). All images
were simple geometric shapes generated through python. The full
list of chosen stimuli is included in the Supplementary Material.
The module was created using Python and presented through
Psychopy version 1.85.2.

2.2.2. Interactive Module
The four stimuli selected for each participant from the oddball
paradigm module were used as feedback representations to
decisions made in the interactive module. The module was
formulated to produce repeatable feedback-related ERPs in a less
structured environment. To accomplish this, each trial of the
module was designed as a puzzle. Each trial was represented as
a set of 25 triangles that were pointing in different directions
Figure 1B. The directions of each triangle corresponded to the
value of 25 pseudo-random points that were relatively evenly
distributed as shown in Figure 1A. Five points clustered together
were randomly designated as mines. The objective for each trial
was to determine which of the 25 triangles hid mines and which
hid blank spaces. The program was coded through Python and
presented through Psychopy version 1.85.2.

2.2.3. Procedure
Experimental tasks were administered using Psychopy Version
1.85.2. Data collection occurred in a single session lasting 100–
150 min. Each participant session began with aMini Mental State
Examination (MMSE) to test for mental fitness for the session
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FIGURE 1 | The design of a trial in the interactive module. (A) 20 non-mines and 5 mines represented as points on a circle. (B) Example of a trial as seen by

participant. Notice how the five identified marks in (A) are displayed as triangles in an orientation in (B).

(Folstein et al., 1975). After the electrode and experimental set
up, each participant completed the oddball paradigm module.
Through a standard set of instructions, each participant was
directed to left click when the frequent stimulus appeared and to
right click when the target infrequent stimulus appeared. After
the participant indicated comprehension of the instructions,
there was a fixation period in which a fixation cross was displayed
in the center of the screen for 10 s. Each participant encountered
24 blocks of 20 trials yielding 480 trials in total. Within each
block, one of the three infrequent stimuli that were assigned
uniquely to the participant was presented to the participant as
the “target stimulus.” For each trial, the stimulus was presented
on a black background for 500 ms followed by 1,500 ms of
black screen. Ten percent of the trials given to each participant
contained one of the infrequent stimuli and the other 90%
contained the frequent stimulus. The participant was given a rest
period of 20 s after three blocks.

The interactive module was administered upon completion of
the oddball paradigm. In the instructions, the participant was
told that each trial consisted of 25 white triangles pointing in
25 different directions. The participant was asked to navigate
within the trial to determine whether triangles hid mines or
hid nothing. If the participant believed that the triangle of
interest hid a mine, the participant would right click on the
triangle. The participant would left click if the triangle was
thought to hide a blank space. The module would then replace
the triangle with a response stimulus after a delay. The three
infrequent stimuli and the frequent stimuli used in a previous
oddball paradigm module served as response stimuli indicating
correctness or incorrectness with the right or left click. As the
mines were clustered together as indicated in Figure 1A, the
triangles hiding mines were orientated in the relatively similar

directions. In order to successfully complete the 25 triangle
problem with as few errors as possible, the participant needed to
quickly distinguish the solution orientations by trial and error.
The participant was awarded 10 points for correctly identifying a
mine, 1 point for correctly identifying a blank space, −5 points
for incorrectly identifying a blank space as a mine, and −10
points for incorrectly identifying a mine as a blank space. The
participant was given the freedom to choose any triangle in any
amount of time within the trial period. When the participant
indicated a decision using the mouse, the feedback response
stimulus was revealed after a waiting period of 1 s. At the end of
clicking through all 25 triangles, the participant was given overall
feedback on the round with the number of points accumulated
and types of responses made. The participant encountered 30
trials with a total of 750 response stimuli from the module.

2.3. Data Acquisition and Processing
2.3.1. Data Acquisition
Continuous EEG was recorded from 16 Ag-AgCl coated dry
electrodes mounted on an in-house designed neoprene head cap.
The channel positions used were FP1, FP2, F5, F1, F2, F6, FC3,
FC4, C3, Cz, C4, P3, Pz, P4, O1, and O2. The system included
a MacBook Pro Retina, 15-inch, Mid 2014 (Apple Inc), and an
OpenBCI V3-32 Cyton Board, a low-cost EEG system (OpenBCI,
2018). There were two auxiliary inputs hard wired into the
OpenBCI Cyton board from the mouse and from a photoresistor
that was connected to the laptop screen. Data was streamed
wirelessly at a sampling rate of 1,000 Hz using a PushTheWorld
WiFi Shield and collected through Terminal using NodeJS. The
recording electrodes were referenced online to the right mastoid
with an ear clip electrode.
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2.3.2. EEG Modifications
The preloaded settings for the OpenBCI Cyton Board allowed
three digital or two analog auxiliary inputs and marked each
sample, which was transferred as a 32 byte EEG packet, with the
time received by the computer. In order to remove the potential
delay between sending and receiving, we activated a subroutine
that was natively programmed into the OpenBCI board but not
readily accessible. This subroutine provided the time for when
each line of data was recorded on the board. This subroutine
used four of the six designated auxiliary bytes which subsequently
reduced the number of available digital auxiliary inputs from
three to two. The first digital input was from a photoresistor
connected to the laptop screen that recorded stimulus onset. The
second digital input came from a rewired wireless mouse that
routed circuits for the left and right mouse button through an
AND gate. The circuits for both are shown in Figure 2. The
photoresistor digital input recorded 1s when there were no events
and 0 s when a stimulus occurred. The mouse digital input also
recorded 1s when there were no events and 0s when a click
occurred. Events were said to occur when the first 0 of each time
period was recorded. The events as recorded by the EEG system
were then matched with events as recorded by Psychopy.

The OpenBCI Cyton contains two rows of pins in which to
insert recording, reference, and ground electrode connectors.
The OpenBCI guide recommends using pins INxN, which
are closest to the board, for all electrodes (OpenBCI Inc,
2019). According to the description sheet for the analog to
digital converter placed on the board, these electrode pins are
connected to the negative inputs (Texas Instruments, 2012). As
a consequence, all recorded signals from electrodes using these
pins have to be inverted prior to analysis.

2.4. Data Processing
Offline processing was conducted using a combination of Python
and the EEGLAB v14 (Delorme and Makeig, 2004) and ERPLAB
toolboxes (Mihajlovic et al., 2015) in MATLAB. All correct
responses from the Oddball paradigm and all responses from the
Interactive Module were processed for analysis. The continuous
raw EEG data was first processed with a high-pass fourth order
Butterworth filter at 1 Hz and subsequently processed with a
low-pass fourth order Butterworth filter at 30 Hz. The data was
then ported to MATLAB. Trials with excessive artifacts aside
from eye blinks and eye movement were manually excluded.
Independent component analysis (ICA) using BINICA from the
EEGLAB v14 toolbox was used to isolate components related to
blink artifacts. The removed components were identified through
projected scalp topography, timing, and spectra (mean = 1.11).
Trials were screened afterward to identify noisy electrodes (mean
= 2.47) and to identify epochs with excessive drift. In total,
15% of correct trials for the oddball paradigm and 11.5% of the
IM trials were excluded. The number of excluded trials did not
differ significantly across conditions or subjects. The data was
then inverted because of the connection scheme to the digital-to-
analog converter as described in section 2.3.2. The power spectral
density for bothmodules were calculated using theWelch’s power
spectral density estimate.

FIGURE 2 | The primary circuits designed for auxiliary digital triggers. (A) The

mouse circuit. (B) The photoresistor circuit. The mouse circuit sends a 1 when

neither mouse button is clicked. When either the left click or right click is

triggered, the corresponding side is connected to ground and a 0 is sent to

the aux port. The photoresistor circuit sends a 1 when the photoresistor

senses no light. The potentiometer and R3 form a resistive voltage divider to

create an adjustable reference voltage that is fed into the negative side of the

comparator. When the photoresistor detects light during stimulus onset, the

voltage on the positive side of the comparator is higher than the reference

voltage and a 0 is sent to the aux port.

ERPs were calculated over a 1,500 ms window with a 500 ms
pre-stimulus baseline and locked to the presented stimulus for
all electrodes in all participants in both modules. The features of
interest for the oddball paradigm were the P3 mean amplitude
and the N2 mean amplitude. The P3 mean amplitude was
measured between 300 and 700 ms and the N2 mean amplitude
was measured between 200 and 300 ms (Luck, 2014). The feature
of interest for the IM were also the P3 mean amplitude and
the N2 mean amplitude as well as the FRN. ERPs were isolated
within the modules and separated depending on the presented
stimulus. As the consumer-grade EEG system compounded with
dry electrodes have low signal to noise ratios, groups of electrodes
were averaged together to increase power. All of the electrodes
were divided into groups of four to six based on vertical regions
[Left (L), Center (C), Right (R)] and horizontal regions [Front
(F), Middle (M), Back (B)] and averaged together. The clusters
are defined in Figure 3. In all statistical analyses, only parallel
regions were compared.

All statistical analyses for EEG features were carried out
using R (R Core Team, 2014). The mean amplitudes for both
P3 and N2 means were analyzed through repeated measures
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FIGURE 3 | Groupings for electrodes. (A) Divisions for Left (blue), Center (gray), and Right (red) electrodes. (B) Divisions for Front (green), M (yellow), and Back (pink)

electrodes. Ground (black) and Reference (purple) are collected from ear clip electrodes.

ANOVA using the ez package (Lawrence, 2015). F-values were
corrected based on Mauchly’s Test for Sphericity and a Geiser-
Greenhouse adjustment was performed if sphericity was violated.
The statistical analysis was performed comparing only three
electrode groups, either [L, C, R] or [F, M, B] at a time. The
purpose of the statistical analysis for the oddball paradigm was
to verify that the P3 response was elicited correctly for the
infrequent stimuli and the frequent stimulus. Two repeated
measures ANOVAs was performed with electrode region (3)
and stimulus type (2) as factors for the oddball paradigm. To
determine whether there were any significant differences between
response type in the IM, two repeated measures ANOVAs were
performed with electrode region (3) and stimulus type (4)
as factors. The first followup analysis investigated differences
between positive, negative, and neutral feedback in the IM
using two repeated measures ANOVAs that were performed
with electrode region (3) and feedback type (3) as factors. The
second followup analysis investigated differences between the
weak punishment and strong punishment FRN in the IM using
two repeated measures ANOVAs with electrode region (3) and
FRN type (2) as factors. Statistically significant results with more
than two levels were followed by a post-hoc paired t-test with
Bonferroni corrected p-values (Luck and Gaspelin, 2017). The
behavioral data was also analyzed using the ez package in R. The
predictors of interest was reaction time for the oddball paradigm
and distribution of trial types for the interaction module.

3. RESULTS

3.1. Oddball Paradigm
The objective for this section was to analyze ERP components,
specifically the P3 and the N2, from the chosen low-cost wearable
EEG system in a standard oddball paradigm. ERP grand average
waveforms are depicted in Figure 5A. The mean amplitudes and
standard deviations for P3 and N2 are reported in Table 1. The
power spectral density (PSD) is reported in Figure 4.

3.1.1. P3
For P3 mean amplitude, which was measured between 300
and 700 ms, a 3×2 ANOVA comparing vertical electrode

clusters [L, C, R] to trial type [Frequent, Infrequent] yielded
no significant main effects of channel type [F(2, 32) = 0.99, pc
= 0.37], significant main effects of trial type [F(1, 16) = 11.72,
p < 0.01], and no significant interactions between channel type
and trial type [F(2, 32) = 3.48, pc = 0.055]. A 3×2 ANOVA
on mean amplitude comparing horizontal electrode clusters [F,
M, B] to trial type [Frequent, Infrequent] found no significant
main effects of channel type F(2, 32) = 2.88, significant main
effects of trial type [F(1, 16) = 11.17, p < 0.01], pc = 0.10), and
no significant interactions between channel type and trial type
[F(2, 32) = 0.21, pc = 0.69].

3.1.2. N2
For N2 mean amplitude, which was measured between 200 and
300 ms, a 3 × 2 ANOVA comparing [L, C, R] to [Frequent,
Infrequent] yielded significant main effects of channel type
[F(2, 32) = 9.72, pc < 0.01], significant main effects of trial type
[F(1, 16) = 77.12, p < 0.001], and significant interactions between
trial type and channel type [F(2, 32) = 6.47, pc < 0.01]. Channel
pairs [L, C] and [C, R] were significant (p < 0.01) but not [L,
R] (p= 0.12). The interaction corrected paired t-test revealed no
significant differences in any pair for frequent trials (p > 0.05)
and yielded significant differences for [L, C] and [C, R] (p <

0.05) but not [L, R] (p = 1.00) for infrequent trials. A 3 × 2
ANOVA on mean amplitude comparing [F, M, B] to [Frequent,
Infrequent] found significant main effects of channel type [F(2, 32)
= 11.39, pc < 0.01], significant main effects of trial type [F(1, 16) =
85.67, p < 0.001], and significant interactions between trial type
and channel type [F(2, 32) = 5.27, pc < 0.05]. Channel pairs [F, B]
and [M, B] were significant (p < 0.01) but not [F, M] (p = 1.00).
Frequent trials yielded no significant differences between any
pair of electrode clusters (p > 0.06) and infrequent trials yielded
significant differences in [M, B] (p < 0.01) but not between any
other pair (p > 0.08).

3.2. Interactive Module
The objective for this study was to analyze the P3, N2, and FRN
components using the chosen low-cost wearable EEG system
in an interactive environment that provided feedback. ERPs
for electrode clusters are plotted in Figure 6. ERP confidence
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TABLE 1 | The P3, N2, and FRN mean amplitudes from the oddball task and interactive module.

Task Test Stimulus Peak Mean (µV) SD (µV)

Oddball Infrequent vs. Frequent Infrequent P3 4.33 4.12

N2 −2.63 2.15

Frequent P3 2.48 2.74

N2 1.94 2.21

Interactive module Point-based feedback +10 P3 0.12 0.93

N2 0.74 1.63

+1 P3 −0.27 1.00

N2 0.34 0.82

−5 P3 0.54 1.56

N2 −1.74 2.43

−10 P3 0.95 1.44

N2 −2.55 2.49

Type-based feedback Positive (+10) P3 0.12 0.93

N2 0.74 1.63

Neutral (+1) P3 −0.27 1.00

N2 0.34 0.82

Negative (−5, −10) P3 0.75 1.33

N2 −2.14 0.81

Punishment Weak (−5) – Positive (+10) FRN −2.50 1.94

Strong (−10) – Positive (+10) FRN −3.15 2.25

The reported values are calculated mean amplitudes for P3 (300–700 ms) and N2 (200–300 ms).

The FRN was calculated as a difference between the mean amplitudes for negative feedback and positive feedback.

FIGURE 4 | Power spectral densities estimations for the oddball task and the interactive module. PSDs for both were calculated using Welch’s power spectral

density estimation.

intervals are plotted in Figures 5B,C. The mean amplitudes for
P3 and N2 are reported in Table 1. The power spectral density is
reported in Figure 4.

3.2.1. Point-Based Feedback: +10, +1, −5, −10

3.2.1.1. P3

In the interactive module, a 3×4 ANOVA on P3 mean peak
amplitude between 300 and 700 ms comparing [L, C, R] to

[+10, +1, −5, −10] found significant main effects of channel
type [F(2, 30) = 5.79, pc < 0.05], significant main effects of trial
type [F(3, 45) = 8.78, pc < 0.01], and no significant interactions
between trial type and channel type [F(6, 90) = 1.90, pc = 0.14].
Channel pairs [L, C] and [L, R] were significant (p< 0.05) but [C,
R] was not (p= 0.15). Most trial pairs were significant (p < 0.01)
except [+10, −5] and [−5, −10] (p > 0.11). A 3 × 4 ANOVA
on peak mean amplitude comparing [F, M, B] to [+10, +1, −5,
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FIGURE 5 | 95% Confidence intervals for grand averaged event related potentials. (A) Frequent vs. infrequent ERP from the oddball paradigm. (B) Neutral (+1) vs.

positive (+10) vs. negative (−5 and −10) from the interactive module. (C) FRN elicited from subtracting positive from negative.

−10] found significant main effects of channel type [F(2, 30) =
5.27, pc < 0.05], significant main effects of trial type [F(3, 45) =
8.96, pc < 0.01], and no significant interactions between trial type
and channel type [F(6, 90) = 1.83, pc = 0.14]. Channel pairs [F, B]
and [F, M] were significant (p < 0.05) but [M, B] was not (p =

0.21). Most trial pairs were significant (p < 0.01) except [+10,
−5] and [−5,−10] (p > 0.89).

3.2.1.2. N2

A 3×4 ANOVA on N2 mean amplitudes measured between 200
ms and 300 ms comparing [L, C, R] to [+10, +1, −5, −10]

found no significant main effects of channel type [F(2, 30) = 2.01,
p = 0.15), significant main effects of trial type [F(3, 45) = 20.69,
pc < 0.001], and no significant interactions between trial type
and channel type [F(6, 90) = 0.95, pc = 0.42]. Trial pair [+10,+1]
was not significant (p = 1.00) but all other pairs were significant
(p < 0.05). A 3 × 4 ANOVA on mean amplitudes comparing [F,
M, B] to [+10, +1, −5, −10] found significant main effects of
channel type [F(2, 30) = 3.35, p < 0.05], significant main effects of
trial type [F(3, 45) = 25.92, pc <0.001], and significant interactions
between trial type and channel type [F(6, 90) = 2.78, p < 0.05].
Channel pair [F, M] was not significant (p = 1.00) but all other
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FIGURE 6 | Grand average ERPs elicited from the interactive module in response to different magnitudes of positive (+10), negative feedback (−5, −10), and neutral

feedback (+1). 500 ms of pre-stimulus and 1,000 ms of post-stimulus activity is shown. Positive voltage is plotted up. Vertical bars indicate feedback stimulus onset.

pairs were (p < 0.05). Trial pair [+10, +1] was not significant
(p = 0.58) but all other pairs were significant (p < 0.05). Within
bins, there were no significant difference between channels (p >

0.27). Within channels, trial pairs [+10, −5], [+10, −10], and
[+1,−10] were significant (p< 0.05) and all other pairs were not
significant (p > 0.12).

3.2.2. Type of Feedback: Positive, Neutral, and

Negative
The FRN is traditionally calculated as either an analysis between
N2 components elicited from different feedback or as a difference
wave between negative and positive feedback. This section
analyzed feedback as elicited from an interactive module that

allowed participants freedom to make decisions. The data
was separated into high positive feedback (+10) and negative
feedback (−5 and −10). The mean amplitudes and standard
deviations for P3 and N2 are reported in Table 1. The 95%
confidence interval grand average ERP between all electrodes
for high positive, negative, and neutral feedback is shown in
Figure 5B. The 95% confidence interval grand average of the
FRN which was determined by the difference between negative
and high positive feedback is shown in Figure 5C.

A 3×3 ANOVA on P3 amplitudes comparing [L, C, R] to
[Positive, Neutral, Error] significant main effects of channel type
[F(2, 32) = 5.15, pc < 0.05], found significant main effects of
trial type [F(2, 32) = 14.54, pc < 0.001], and no significant
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interactions between trial type and channel type [F(4, 64) = 0.93,
pc = 0.40]. Channel pairs [L, C] and [L, R] were significant (p
< 0.001) and [C, R] was not. All trial pairs were significant (p
< 0.001). A 3 × 3 ANOVA on P3 amplitudes comparing [F,
M, B] to [Positive, Neutral, Error] found significant main effects
of channel type [F(2, 32) = 4.37, significant main effects of trial
type [F(2, 32) = 16.70, pc <0.001], pc <0.05], and no significant
interactions between trial type and channel type [F(4, 64) = 2.23,
pc = 0.11]. Channel pair [F, B] was significant (p < 0.001) and
[M, B] and [F, M] were not (p > 0.084). All trial pairs were
significant (p < 0.001).

A 3×3 ANOVA on N2 amplitudes comparing [L, C, R] to
[Positive, Neutral, Error] found no significant main effects of
channel type [F(2, 32) = 2.49, significant main effects of trial type
[F(2, 32) = 26.45, pc <0.001], pc = 0.11], and no significant
interactions between trial type and channel type [F(4, 64) = 1.40,
pc = 0.257]. Trial pairs [Positive, Error] and [Neutral, Error]
were significant (p < 0.001) but [Positive, Neutral] was not (p
= 0.28). A 3 × 3 ANOVA on N2 amplitudes comparing [F, M,
B] to [Positive, Neutral, Error] found significant main effects of
channel type [F(2, 32) = 6.54, pc <0.01], significant main effects
of trial type [F(2, 32) = 34.88, p < 0.001], and no significant
interactions between trial type and channel type [F(6, 64) = 2.72,
pc = 0.05]. [F, B] and [B, M] were significant (p< 0.01) but [F, M]
was not (p= 1).

3.2.3. FRN: Weak and Strong Negative Feedback
This section analyzed FRNs from different levels of negative
feedback as elicited from an interactive module that allowed
participants freedom to make decisions. The data was separated
into weak negative feedback (−5) and strong negative feedback
(−10) and subtracted by high positive feedback (+10). The
mean amplitudes and standard deviation for the FRN are
reported in Table 1.

A 3 × 2 ANOVA on FRN mean amplitudes comparing [L, C,
R] to FRN type [Low, High] found, no significant main effects
of channel type [F(2, 32) = 0.41, pc = 0.63], no significant main
effects of FRN type [F(1, 16) = 2.41, p = 0.14] and no significant
interactions between trial type and channel type [F(2, 32) = 1.56,
pc = 0.21]. A 3× 2 ANOVAon FRNmean amplitudes comparing
[F, M, B] to [Low, High] found no significant main effects of trial
type [F(1, 16) = 2.05, p= 0.17], significant main effects of channel
type [F(2, 32) = 4.10, pc < 0.05], and significant interactions
between FRN type and channel type [F(2, 32) = 4.03, pc < 0.05].
[F, M] and [B, M] were significant (p < 0.05) and [F, B] was not
(p = 1.00). Within low, channel pair [M, B] was significant (p <

0.05) but all others were not (p > 0.52). Within high, no channel
pairs were significant (p= 1.00).

4. DISCUSSION

The study had twomain objectives: (1) Analyze ERP components
from a low-cost wearable EEG system in a standard oddball
paradigm, (2) Analyze the P3, N2, and FRN components using
a low-cost wearable EEG system in an interactive environment.
The first hypothesis was that the low-cost wearable EEG would
detect statistically significant P3 components for infrequent
stimuli in a standard oddball paradigm. The second hypothesis

was that the low-cost EEG system can detect statistically
significant ERP components elicited in response to feedback
in an interactive module. The follow-up hypotheses for the
second objective was that, when comparing negative and positive
feedback, negative feedback would elicit a larger N2 component
and, when comparing weak and strong negative feedback,
stronger negative feedback would elicit a larger FRN component.
The grand average of the power spectral density (PSD), as
shown in Figure 4, shows a small peak located around 10 Hz
in both the oddball task and the interactive module. The results
indicate that the OpenBCI low-cost EEG system is capable
of detecting differences in ERP components in the oddball
paradigm and differences in components as measured from
positive and negative feedback in an interactive module. This
could potentially aid in the development of neurometrics for
consumers using a low-cost affordable EEG product who are
interested in feedback monitoring.

With the visual oddball paradigm, we verified that the
OpenBCI can collect ERPs with statistically significant
differences between P3 and N2 amplitude between frequent
and infrequent stimuli as shown in section 3.1 and Figure 5A

which is consistent with the first hypothesis. These statistical
results are in line with reported results from prior research that
infrequent stimuli elicit larger and more prominent P3 and
N2 peaks (Treder and Blankertz, 2010; Debener et al., 2012,
2015; Badcock et al., 2013; Halder et al., 2013; De Vos et al.,
2014; Frey, 2016; Vourvopoulos and Badia, 2016; Weschke and
Niedeggen, 2016; Krigolson et al., 2017; Mathewson et al., 2017;
Ratti et al., 2017; Dehais et al., 2019; Kam et al., 2019). When
we directly compare the amplitudes as calculated to those of
prior research as shown in Table 2, the infrequent P3 and N2
mean amplitudes within this work are within one standard
deviation of the distribution of the same results as extracted
from the literature as shown in Table 4. However, the P3 and
N2 amplitudes as elicited by the frequent stimulus from the
OpenBCI were more prominent. This discrepancy could be
explained by the differences of calculating the amplitude. The
literature found reported the maximum amplitude within a time
range whereas this current study reports the mean amplitude
within the same time range.

The interactive module was not only able to elicit ERPs
in response to feedback, but also elicit statistically significant
ERPs between different point values of feedback (+10, +1,
−5, −10) and different types of feedback (positive, negative,
neutral) which is consistent with the second hypothesis and
the first of the follow-up hypotheses as shown in section 3.2
and Figure 5B. However, the results indicated that there were
no significant differences between FRN types (weak vs. strong
negative feedback) and that there was one significant interaction
between FRN type and channel groupwhen comparing the Front,
Middle, and Back electrodes. This was opposite of expectation
as reward expectation and magnitude has been seen to influence
the P3 and N2 component (Sato et al., 2005; Pornpattananangkul
and Nusslock, 2015; Philiastides et al., 2018). We were able
to show that a larger N2 component would be elicited when
the participant encountered something that was contrary to
expectation of the solution construct. The results related to
the N2 component are consistent with literature (Cohen et al.,
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TABLE 2 | P3 and N2 amplitudes from oddball task literature.

Amplifier Electrode P3 (µV) N2 (µV)

Study Name Type Num Type Infreq Freq Infreq Freq

Treder and Blankertz (2010)∗ actiCAP Clinical 64 Wet 2.60 0.50 −3.25 −0.50

Halder et al. (2013)∗ BrainAmp Clinical 63 Wet 4.99 −1.50 −3.25 −2.50

Badcock et al. (2013) Neuroscan 4.3 Clinical 16 Wet 3.55 0.30 −0.15 −0.78

Frey (2016)∗ g.USBamp Clinical 16 Wet 1.65 ∗∗ −0.40 ∗∗

Weschke and Niedeggen (2016) BioAmplifiers Clinical 3 Wet 5.52 0.56 −0.51 −0.66

Krigolson et al. (2017)∗ actiCAP Clinical 64 Wet 12.50 2.67 4.87 2.67

Mathewson et al. (2017) actiCAP Clinical 15 Wet 4.00 0.53 ∗∗ ∗∗

Kam et al. (2019)∗ ActiveTwo Clinical 64 Wet 1.50 −0.53 −1.00 0

Mathewson et al. (2017) actiCAP Clinical 15 Dry 3.00 1.10 ∗∗ ∗∗

Kam et al. (2019)∗ F1 1.0 EEG Clinical 33 Dry 1.46 −0.33 −2.00 0.10

Debener et al. (2012) Emotiv Epoc Low-cost 16 Wet 10.00 −0.20 ∗∗ ∗∗

Badcock et al. (2013)∗ Emotiv Epoc Low-cost 16 Wet 3.94 0.55 −0.15 −0.65

Debener et al. (2015)∗ EEGrid Low-cost 16 Wet 3.50 0.50 −1.00 −0.75

Frey (2016)∗ OpenBCI Low-cost 16 Wet 1.50 ∗∗ −0.25 ∗∗

Dehais et al. (2019) Enobio Low-cost 6 Dry 3.51 −0.50 ∗∗ ∗∗

Results OpenBCI low-cost 16 Dry 4.33 2.48 −2.63 1.94

*These studies reported some of the amplitudes through figures. These amplitudes are estimated at peak.
**Amplitudes not reported.

The bolded values are the results collected from this specific study. They were bolded to emphasize the comparison between contemporary studies.

TABLE 3 | P3, N2, and FRN amplitudes from feedback-related event related potential literature.

Amplifier Electrode P3 (µV) N2 (µV) FRN (µV)

Study Name Type Num Type Reward Punish Reward Punish Diff

Potts (2011)∗ Geodesic 250 Clinical 128 Wet 0.25 −0.25 0.75 4.50 −3.17

Krigolson et al. (2017)∗ actiCAP Clinical 64 Wet 11.50 10.50 7.50 1.50 −5.67

Pornpattananangkul and Nusslock (2015) Neuroscan Clinical 24 Wet 18.00 12.00 −2.25 −3.50 −0.17

Gheza et al. (2018) ActiveTwo Clinical 64 Wet 3.10 3.20 2.42 −0.41 −2.83

Somon et al. (2019)∗ actiCAP Clinical 75 Wet 5.00 10.00 7.50 4.50 −3.17

Results OpenBCI Low-cost 16 dry 0.12 0.75 0.74 −2.14 −3.15

*These studies reported some of the amplitudes through figures. These amplitudes are estimated at peak.

The bolded values are the results collected from this specific study. They were bolded to emphasize the comparison between contemporary studies.

2007; Potts, 2011; Gheza et al., 2018; Krigolson, 2018; Yi et al.,
2018; Somon et al., 2019; Tunison et al., 2019). However,
when we compared the calculated mean amplitudes to existent
literature as shown in Table 3, the calculated amplitudes were
smaller. However, the calculated FRN from this study was the
within the same range as the FRN from existent literature
as shown in Table 4. Again, similar to the oddball task, the
discrepancies might be explained by the differences in calculating
the amplitudes of the peaks. However, as the FRN is calculated
from a difference between amplitudes taken from two types of
feedback, there is little discrepancy between the FRN amplitude.
We hypothesized that the FRN would be distinguishable strictly
between different levels of negative feedback although the results
indicated the opposite as shown in Table 1. This result could
be from the nature of the interactive module as it is far more
likely to achieve positive feedback than either of the negative

feedbacks which has been shown to influence the FRN (Walsh
and Anderson, 2012; Warren and Holroyd, 2012; Gheza et al.,
2018; Glazer et al., 2018; Krigolson, 2018; Somon et al., 2019).
In a future study, it might be worth investigating the effect of
increasing the probability of negative feedback as perceived by
the subjects.

This current study reviewed time-related ERP features in
relation to an oddball task and an interactive task through
the perspective of a low-cost EEG system. However, there are
several limitations to this study and, as a result, multiple future
directions that could be investigated. Several challenges relate to
the hardware of the EEG system. The largest challenge of using
this particular arrangement of wearable low-cost EEG system
was data quality. Incorporating dry electrodes into a low-cost
system requires adequate placement and decent contact with the
scalp to collect sufficiently high quality data. The stretch headcap
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TABLE 4 | Mean comparison between literature and results.

Task Stimulus Peak Literature (µV) Results (µV)

Oddball Infrequent P3 4.22 (3.15) 4.33 (4.12)

N2 −0.64 (2.16) −2.63 (2.15)

Frequent P3 0.28 (0.99) 2.48 (2.74)

N2 −0.34 (1.35) 1.94 (2.21)

Interactive module

(Feedback related

ERPs)

Reward P3 7.57 (7.15) 0.12 (0.93)

N2 3.18 (4.28) 0.74 (1.64)

Punish P3 7.09 (5.32) 0.75 (1.33)

N2 0.52 (2.91) −2.14 (0.81)

Punish—Reward FRN −2.42 (2.29) −3.15 (2.25)∗

∗The interactive module results for strong punishment FRN.

used in these experiments aided in adding sufficient contact.
However, participants indicated discomfort when wearing the
assembly with dry electrodes for long periods of time. In addition,
for participants with small head sizes or large amounts of hair,
sufficient contact was difficult to achieve which led to a reduction
in data quality. Because of the loss in data quality, electrodes
were averaged together in the analysis groups (Front, Middle,
Back, Left, Center, Right). As the OpenBCI system is compatible
with wet electrodes, future studies that are concerned with data
quality and wish to use OpenBCI systems should proceed with
traditional electrodes. In the next iteration of research, the data
quality from this paper could be further improved by using the
Riemannian Artifact Subspace Reconstruction (Blum et al., 2019;
Dehais et al., 2019). However, even with these challenges, we
were able to quantify differences in the N2 and P3 components
between different stimuli and types of feedback. This study also
only analyzes one low-cost EEG system with flexible electrode
positioning. There are no recommendations from this study for
the treatments of EEG systems that employ inflexible electrode
positioning other than to ensure good contact between electrode
and scalp (Krigolson et al., 2017; Ratti et al., 2017).

It was also made apparent through prior testing and through
literature review that the EEG systemwould lag in delivering data
to the computer (Debener et al., 2012; Frey, 2016; Vourvopoulos
and Badia, 2016; Krigolson et al., 2017; Ratti et al., 2017).
In order to measure this lag, we developed a circuit with a
photoresistor that sent digital indicator to an auxiliary port
on the onset of a stimulus. The average delay between the
marked stimulus onset time for Psychopy and the OpenBCI
marked time was 47.23 ms with a standard deviation of 3.56
ms, which was remarkably consistent. The photoresistor port
can serve as a safeguard or as a calibration method to measure
delay of stimulus onset. As long as the computer program
recording user responses marks time based on stimulus onset,
the user should be confident in the timing reliability of the
OpenBCI. However, for all consumer-grade EEG system, EEG
time is marked by the receiving computer. The OpenBCI system
required some reprogramming to transmit the time as measured
by the system’s arduino. The time was therefore measured
relative to data submission to the computer rather than data
received by the computer. All of these were modifications

made outside of unboxing the OpenBCI system. In working
with presently available consumer product EEG systems to
study ERPs, users still need to take these limitations into
account or implement system modifications as was done in
the present study. In addition, the study was also only limited
to analyzing ERP features after standard time data collection.
However, it is possible to analyze these ERP features while live
streaming (Abujelala et al., 2016; Agapov et al., 2016). The
planned future work has already incorporated Python-based EEG
analysis to investigate single-trial classifications and will forgo
independent component analysis to remove eye blinks in favor
of incorporating electrooculography (EOG) to remove those
specific artifacts. Other than investigating the power spectral
density as shown in Figure 4, the current study was strictly
limited to investigating the time-related features of the ERP
responses. However, other studies, especially those regarding
feedback related event related potentials, have investigated the
frequency band activity through traditional systems and found
that reward-related feedback increases the beta power over the
right-frontal area and theta power increases with punishment
(Cohen et al., 2007; HajiHosseini and Holroyd, 2015; Glazer
et al., 2018; Masaki et al., 2018; Philiastides et al., 2018). In
addition, low-cost wireless EEGs have been shown to be capable
of accuratelymeasuring band power, even in active circumstances
(Ratti et al., 2017; Dehais et al., 2019). The future direction of
the study would investigate frequency band activity related to the
ERP as elicited by the interactive module.

A low-cost EEG, with all of its limitations, may not be
able to capture all the minute distinctions between different
types of errors as shown from the interactive module results.
However, in general, the study shows that the low-cost
EEG has the distinct advantage of providing consumers the
affordable ability tomeasure ERP components related to feedback
monitoring in less structured computer environments. With
improved modifications to the wearable EEG systems, such as a
synchronization circuit and flexible electrode position as shown
in section 2.3.2, consumers can reliably collect these components
in these environments and, potentially, monitor their own
performance over time using these identified ERP components
as neuro-based metrics and relying on future research into real-
time processing. By extension, researchers can use both clinical
and low-cost EEG systems to collect ERP components in context
of less structured and interactive computer environments and
potentially expand ERP studies beyond classic scenarios.

5. CONCLUSION

In this study, we examined the P3, N2, and FRN components in
an ERP elicited in response to stimuli from a traditional oddball
paradigm and provided feedback in an interactive module that
encouraged learning. We were able to accomplish significant
results from a low-cost wearable EEG device. Results from the
oddball paradigm determined that, with slight modifications, an
OpenBCI can collect statistically significant ERPs in ERP studies.
The results from the interactive module indicated distinctions
between the ERPs elicited from neutral feedback, high reward
feedback, and negative feedback. In studies conducted by
different EEG devices, the P3 and N2 components were shown
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to be comparable in the oddball paradigms and the FRN
components were shown to be comparable to similar FRN
studies as shown in Table 4. The research indicates a low-cost
portable system is capable of detecting statistically significant
ERPs in response to both positive and negative feedback even
in interactive settings. Our method utilized a system that
costs <$1,500 dollars that required few modifications. The
results from this study imply that consumers can use this
specific affordable wearable low-cost EEG to measure ERP
components related to feedback monitoring in less structured
computer environments.
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