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Abstract: The present article reviewed the pharmacologic therapies of traumatic brain injury (TBI),
including current and potential treatments. Pharmacologic therapies are an essential part of TBI
care, and several agents have well-established effects in TBI care. In the acute phase, tranexamic
acid, antiepileptics, hyperosmolar agents, and anesthetics are the mainstay of pharmacotherapy,
which have proven efficacies. In the post-acute phase, SSRIs, SNRIs, antipsychotics, zolpidem
and amantadine, as well as other drugs, have been used to manage neuropsychological problems,
while muscle relaxants and botulinum toxin have been used to manage spasticity. In addition,
increasing numbers of pre-clinical and clinical studies of pharmaceutical agents, including potential
neuroprotective nutrients and natural therapies, are being carried out. In the present article, we
classify the treatments into established and potential agents based on the level of clinical evidence
and standard of practice. It is expected that many of the potential medicines under investigation will
eventually be accepted as standard practice in the care of TBI patients.

Keywords: traumatic brain injury; pharmacologic therapies; psychopharmacology; neuroprotectants

1. Introduction

Traumatic brain injury (TBI) is a sudden injury that causes damage to the brain.
Sixty-nine million individuals worldwide are estimated to sustain a TBI each year [1].
Pharmacologic therapies play important roles in mild to severe TBI. There are several
pharmacologic therapies recommended by guidelines, which have proven efficacies and
well-documented safety profiles for use in acute and post-acute TBI patients [2]. In addition,
several new preclinical and clinical studies of pharmacologic therapies for TBI have been
published recently, which could contribute to the addition of new agents into standard
TBI management in the future. This review discusses current and potential pharmacologic
therapies for TBI. We also summarize the pharmacologic therapies for TBI in Figure 1.
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2. Established Pharmacologic Therapies for TBI

Following traumatic brain injury, primary damage results from mechanical damage
affecting cells and tissue. Hemorrhage and breakdown of the blood–brain barrier (BBB)
also happen within seconds to minutes. Secondary damage develops within minutes, with
the development of inflammation, ischemia and edema [3].

Subsequent processes, including delayed inflammation, vasospasm, cell death and
genomic responses, develop within days. Cellular degeneration, neuropsychiatric co-
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morbidities and muscle spasticity are noted over the next few weeks to months. Recent
advances in biomarkers, including microRNA, have enhanced our understanding of the
pathophysiologic process and could even help researchers to determine the time elapsed
since an injury [3–5]. In current practice, pharmacological therapies are provided to treat
both the acute and chronic effects of these pathological processes.

Published literature studying the effects of biological sex and gender shows mixed
outcomes on TBI. A recent review of the literature found that women, after puberty but
before menopause, were at higher risk of poor outcome, while postmenopausal women
fared better than men of similar age [6]. Care pathways and treatment probably did not
differ significantly between women and men [7]. More study is needed to support treatment
strategies for different sexes.

2.1. Acute Treatments for TBI
2.1.1. Tranexamic Acid

Tranexamic acid reduces the risk of death in mild to moderate TBI patients when
treatment is given within 3 h, in a loading dose of 1 g, followed by infusion of 1 g for 8 h,
according to a recent CRASH-3 trial [8]. However, tranexamic acid does not reduce death
in severe TBI patients who have extensive intracranial hemorrhage.

2.1.2. Treatments for Coagulopathies

Around one-third of severe TBI patients demonstrate coagulopathy, which may lead to
hemorrhage enlargement and poor neurologic outcomes. Coagulopathy mostly results from
existing medications, such as aspirin, clopidogrel, direct oral anticoagulants or warfarin.
It has been demonstrated that direct oral anticoagulants do not increase the incidence of
intracranial hemorrhage [9], and there are better outcomes for direct oral anticoagulant use
compared to warfarin use, even with low use of the reversal strategy [10,11].

Patients taking warfarin could be managed with vitamin K and fresh frozen plasma
(FFP) infusion, monitoring prothrombin time/international normalized ratio (INR) 30 min
after transfusion or every 4 to 6 h to ensure INR < 1.4 [12].

In patients using anti-platelet agents or thrombocytopenia, a platelet count > 95,000/µL
directly with platelet transfusion should be maintained. In one cohort study, a platelet
count < 135,000/µL was associated with a 12.4 times higher risk of hemorrhage enlarge-
ment; patients with a platelet count < 95,000/µL were 31.5 times more likely to require
neurosurgical intervention [13].

2.1.3. Hyperosmolar Agents

Mannitol and hypertonic saline are commonly used in the management of intracranial
hypertension and cerebral edema. Mannitol at bolus doses of 0.25–1 g/kg every 4 to 6 h is
effective in reducing brain volume, and thus lowering intracranial pressure (ICP) [2]. How-
ever, its diuretic effect should be monitored cautiously in hypotensive patients. Mannitol is
not recommended in patients with systolic blood pressure < 90 mm Hg.

Hypertonic saline is also an effective hyperosmolar agent for lowering increased
ICP [14,15]. Infusion of 3% hypertonic saline is administrated to achieve a sodium level
goal of 145–155 mEq/L. There is less volume depletion and hypovolemia, which makes
hypertonic saline safer in major trauma patients with ongoing volume loss and hypotension.
When comparing these two hyperosmolar agents, there was no strong evidence to suggest
the superiority of either in improving mortality or functional recovery [16,17].

2.1.4. Anesthetics and Sedatives

Anesthetics and sedatives are commonly used in acute stage TBI management in the
intensive care unit (ICU) setting. Barbiturates and propofol have both been shown to de-
press cerebral metabolism, decrease oxygen consumption, lower ICP and prevent seizures.
They are recommended as adjuvant therapy to control elevated ICP when refractory to
maximum hyperosmolar therapy and surgical decompression. However, hemodynamic
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stability should be monitored during barbiturate or propofol therapy. Barbiturates result in
a decrease in blood pressure in 25% of patients [18]. Body temperature is also significantly
lower. Therefore, the duration and dose of barbiturate administration need to be carefully
observed. It could be used under continuous monitoring of EEG to achieve optimal doses.

Within the ICU, propofol is even more widely used in acute TBI management. It is
easier to control the treatment effects because of its rapid onset and short duration char-
acteristics. However, caution is required, as high-dose propofol can result in morbidity.
Propofol infusion syndrome could lead to hyperkalemia, metabolic acidosis, hyperlipi-
demia, myocardial failure and renal failure, which may result in death. Therefore, extreme
caution must be taken when using propofol doses > 4 mg/kg/h, or when use exceeds 48
h. For refractory ICP elevation, pentobarbital and thiopental infusions may be used [18].
Nevertheless, the therapy may delay timely neurologic examination. It may also result in
hypotension, ileus, ventilator-associated pneumonia and metabolic acidosis.

2.1.5. Drugs for Prevention of Thromboembolism

Heparin or low-molecular-weight heparin (LMWH) for the prevention of venous
thromboembolism in TBI patients is generally safe if initiated within 24–48 h of injury [19].

2.1.6. Antiepileptics

The general incidence of post-traumatic seizure in hospitalized populations of TBI is
about 3–5% [20,21]. In a study enrolling 5984 TBI patients in Minnesota from 1935 to 1984,
the incidence of seizures ranged between 0.7 and 10% in five years of follow-up, correlating
with the severity of TBI [22]. The use of antiepileptic drugs in the acute management of TBI
has been proven to reduce the incidence of early seizures, but does not prevent the later
development of epilepsy.

Furthermore, subclinical seizures detected from an electroencephalogram may be as
high as 20–25% [23]. Thus, it is recommended to use prophylactic antiepileptic drugs to
avoid early seizures after TBI (within 7 days of injury) [24]. Antiepileptics are recommended
in the first seven days following injury in guidelines. Continued use of antiepileptics is
recommended if there are electroencephalogram (EEG) discharges. Use of antiepileptics pre-
vents post-traumatic seizures, but does not prevent later development of epilepsy [25,26].

Carbamazepine and valproate are also used as mood stabilizers for psychomotor
aggregation after TBI, but the effects are controversial [27]. A newer antiepileptic drug,
levetiracetam, is commonly used as there is less drug interaction and it has an equal
effect as phenytoin in preventing early seizures [28]. The optimal duration of prophylactic
antiepileptic drugs is uncertain and depends on the severity of brain injury. In the absence
of early seizures, antiepileptic drugs are usually continued throughout the hospital stay
and are discontinued within the first few weeks of discharge [29,30].

A recent meta-analysis study at World Neurosurgery, comparing the efficacy of pheny-
toin, levetiracetam and valproate in preventing early seizures in TBI patients, showed that
phenytoin was the most studied drug. Phenytoin has level 2a evidence to decrease the
incidence of early post-traumatic seizures [31]. However, more studies are needed to assess
the efficacy of other antiepileptic drugs, such as levetiracetam and valproate. Currently,
there is insufficient evidence to recommend levetiracetam or valproate over phenytoin.

2.1.7. Antipyretics

Fever could lead to worse outcomes after TBI, and antipyretics could be used to control
fever in acute TBI. Maintenance of normothermia also improves ICP control [32] and brain
tissue oxygenation [33].

2.2. Treatments for Post-TBI Neuropsychiatric Changes

Neuropsychiatric changes following TBI could cause significant distress in patients and
long-term disability [34]. The choice of pharmacologic treatments could have a significant
impact on post-acute TBI care, as well as the patient’s neurological recovery [35]. The
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present review further discusses pharmaceutical agents that have been studied for their
use in post-acute TBI.

2.2.1. SSRIs and SNRIs

Several studies have been conducted on the efficacies of various selective serotonin
reuptake inhibitors (SSRIs) in the treatment of depression. Sertraline [36], citalopram [36,37],
and fluoxetine [36] have been shown to be beneficial in the treatment of post-TBI depression.
Sertraline could even potentially prevent the later onset of depression [38,39]. Sertraline
probably does not improve arousal in TBI patients [40].

SSRIs [41], including citalopram [42], sertraline [43] and paroxetine [44], could improve
post-TBI pathological laughing and crying. Fluvoxamine and fluoxetine could probably
improve apathy [45].

Serotonin and norepinephrine re-uptake inhibitors (SNRIs), such as milnacipran,
have also been shown to be efficacious in the treatment of depression [46]. Another
SNRI, atomoxetine, has failed to improve attention, speed of memory or working memory,
compared to a placebo [47].

2.2.2. Trazodone

Trazodone may cause impaired attention and errors with memory tests [48], but has
mixed results on sleep [49].

2.2.3. TCAs

Desipramine has been shown to improve depression in severe TBI [50]. However,
tricyclic antidepressants (TCAs) are probably less effective than SSRIs in the treatment of
post-TBI depression [51,52], and are associated with more complications [53].

2.2.4. Buspirone

Buspirone is a serotonin 1A receptor partial agonist that has been shown to reduce
anxiety in patients with TBI [54].

2.2.5. Antipsychotics

Typical antipsychotics, including methotrimeprazine [55], droperidol, haloperidol [56]
and loxapine [57], could improve agitation. Atypical antipsychotics, including quetiap-
ine [58], clozapine [59], ziprasidone [60] and aripiprazole [61], have also been shown to
improve agitation. Olanzapine has been shown to improve post-TBI psychosis [62,63].
Atypical antipsychotics are generally preferred over typical antipsychotics in post-TBI
patients, due to their more favorable profile in safety and neurorecovery [64].

2.2.6. Levodopa/Carbidopa

Levodopa/carbidopa has been shown to improve consciousness [65].

2.2.7. Bromocriptine

Bromocriptine is a direct dopamine agonist at the D2 receptor. It could improve
arousal [66], but probably could not improve attention [67].

2.2.8. Prazosin

Prazosin has been shown to reduce daytime sleepiness, improve headaches and
improve cognition [68].

2.2.9. Beta Blockers

Beta blockers, such as propranolol and pindolol, have been shown to reduce post-TBI
agitation in some studies [69]. Nevertheless, their hypotensive effect may limit the dose
that could be applied.
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2.2.10. Amantadine

Amantadine has been shown to improve the pace of functional recovery, as measured
by the Disability Rating Scale (DRS) [70]. It has also been shown to improve early arousal
in the acute phase of TBI [71–73].

2.2.11. Lamotrigine

Lamotrigine has been shown to reduce aggressive behavior in TBI patients [74].

2.2.12. Modafinil and Methylphenidate

Modafinil could probably improve excessive daytime sleepiness [75], but probably
does not improve fatigue [76]. It might be able to improve sleep latency in patients with
mild or moderate TBI [77]. Methylphenidate has been shown to improve post-TBI attention
and processing speed [78–81].

2.2.13. Lisdexamfetamine Dimesylate

Lisdexamfetamine dimesylate has been shown to improve attention and working
memory in a small-scale study [82].

2.2.14. Rivastigmine and Donepezil

Rivastigmine and donepezil are well known for their use in the treatment of Alzheimer’s
disease. Donepezil is currently undergoing clinical studies to confirm its effect on memory,
attention and processing speed [83]. Rivastigmine did not appear to improve cognition
significantly [84], but it showed some improvement in memory in some subgroups of
patients in a post hoc analysis of one study [85].

2.2.15. Benzodiazepines and Zolpidem

Benzodiazepines are associated with attentional and memory impairments in TBI,
and are generally to be avoided [86,87]. They may impair coordination, leading to falls,
increase sedation, negatively affect memory [49], and they may also lead to sleep–wake
disturbances [88].

Interestingly, zolpidem has been shown to cause a temporary response in a fraction
of patients with severe TBI [89]. It could probably cause attenuation of inter-hemispheric
coherences on electroencephalograms [90], and improved cerebral perfusion was observed
on single-photon emission computed tomography (SPECT) [91].

2.2.16. Melatonin and Ramelteon

Melatonin might be able to improve daytime sleepiness in TBI patients [92]. Ramelteon
has been shown to improve total sleep time and could potentially improve cognition [93].

2.3. Other Pharmaceutical Agents for Post-Acute TBI Care
2.3.1. Muscle Relaxants

Spasticity is an important problem, particularly in moderate and severe TBI. Oral
baclofen could improve the lower extremity Modified Ashworth Score [94]. Intrathecal
baclofen might be able to improve muscle spasms even more than oral baclofen [95]. Oral
tizanidine has been shown to reduce the Ashworth score, enhance motor strength and
reduce muscle tone [96].

2.3.2. Botulinum Toxin

A botulinum toxin injection might also be beneficial in the treatment of spasticity in TBI
patients [97]. Botulinum toxin might also improve chronic post-traumatic headache [98].

2.3.3. Agents for Paroxysmal Sympathetic Hyperactivity Management

The various drugs discussed above are used for the prevention and/or abortion of
paroxysmal sympathetic hyperactivity (PSH), which occurs in up to 10% of patients with
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severe TBI. Drugs that have been studied for the treatment of PSH in TBI include beta
blockers, benzodiazepines, bromocriptine [99], dantrolene [100] and gabapentin [101].

3. Potential Therapies for TBI
3.1. Neuroprotective Approaches Previously Evaluated in Clinical Studies

Several pharmaceutical agents have been evaluated in clinical studies for their po-
tential efficacies in the treatment of TBI. So far, the routine use of most of these agents in
the management of TBI has not been justified. Nevertheless, future evidence may arise to
support their use in the care of TBI patients.

3.1.1. Corticosteroids

Corticosteroid was one of the first agents studied for its neuroprotective effect in TBI.
The use of corticosteroids has been studied in the Medical Research Council’s Corticosteroid
Randomization after Significant Head Injury study [102,103]. This large-scale study found
that treatment with glucocorticoids increased mortality.

3.1.2. Citicoline

Citicoline is a cholinergic agent that increases the formation of ATP. It was evaluated
in a multi-center, double-blind, randomized phase III controlled trial, The Citicoline Brain
Injury Treatment Trial (COBRIT), but it did not improve outcomes [104].

3.1.3. Progesterone

Despite the potential benefits shown in two older, small-scale studies [105,106], pro-
gesterone has been evaluated by two large-scale clinical trials: SyNAPSe and ProTECT
III [107,108], but did not demonstrate clinical benefit in patient mortality and functional
outcomes. Some clinical studies suggested that progesterone might be neuroprotec-
tive [109,110].

3.1.4. Erythropoietin

One randomized controlled trial showed that erythropoietin treatment results in lower
mortality, but that result is not statistically significant [111]. Two meta-analyses of trials
also suggested that erythropoietin might lower mortality, but not reduce poor functional
outcomes [112,113]. Other studies have not revealed evidence of improved outcomes from
erythropoietin use [114].

3.1.5. Magnesium

The use of magnesium has been evaluated in a number of heterogeneous clinical
studies [115,116]. A meta-analysis concluded that while all-cause mortality did not improve
in the treatment group, the GCS might have improved [115].

3.1.6. Cyclosporine

Cyclosporine has been evaluated in a few small-scale clinical trials, and did not appear
to contribute to a favorable outcome [117,118].

3.1.7. Glibenclamide

Glibenclamide is an antagonist of sulfonylurea receptor 1 (SUR1). It has been eval-
uated in several small-scale clinical studies and showed favorable outcomes, such as an
improved Glasgow Coma Scale (GCS) score and improved Glasgow Outcome Scale (GOS)
score [119–122].

3.1.8. Statins

Clinical studies of statins in TBI patients suggested that statin use might improve func-
tional outcomes. It might also lead to a reduction in pro-inflammatory mediators [123–125].
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3.2. Neuroprotective Approaches and Natural Therapies Previously Evaluated in
Pre-Clinical Studies
3.2.1. PPAR Agonists

Peroxisome proliferator-activated receptor (PPAR) agonists, such as rosiglitazone
pioglitazone, play a role in the regulation of gene transcriptions, which are essential in
metabolic processes and cell differentiation. Its neuroprotective properties were suggested
in several pre-clinical studies [126]. It might exert such an effect by decreasing axonal
injury, decreasing apoptosis, decreasing autophagy and/or decreasing microglial activa-
tion [126–128].

3.2.2. Vitamins

Vitamin D could reduce inflammation biomarkers and prevent neuron death in animal
models when it is used together with progesterone [129]. Vitamin E has been reported to
enhance the neuroprotective effects of progesterone [130]. Water-soluble nicotinamides
aggregate the functional recovery of TBI rodents [131,132]. An equivocal effect of folic
acid has been documented [133,134]. However, there is an overall lack of clinical trials on
vitamins for TBI patients.

3.2.3. Zinc

Zinc has been shown to have double effects on both anti-inflammation and anti-
oxidative damage [135]. High zinc supplements might decrease neuropsychiatric symptoms
in TBI patients, based on animal experiment results [136–138].

3.2.4. DHA

Docosahexaenoic (DHA) is a fatty acid that exists in phospholipids of the neuron
membrane. It can be released to counteract glutamate overactivity after brain damage [139].
DHA can also reduce endoplasmic reticulum (ER) stress and prevent abnormal protein
accumulation in the TBI model [140]. DHA is quite a safe and accessible food supplement
and might be beneficial for neuroprotection in traumatic brain injury; however, human
clinical studies are necessary.

3.2.5. Dietary Supplements

Curcumin has been reported to improve the motor and learning ability in TBI animal
models [141]. Resveratrol has been shown to reduce reactive oxygen species (ROS), inhibit
excitotoxicity and decrease inflammation in cortical injury models of TBI [142]. Lipoic
acid could stabilize plasma membranes and prevent NADPH (nicotinamide adenine dinu-
cleotide phosphate) oxidative stress in mild TBI rats. In a clinical trial [143], Enzogenol has
been shown to take advantage of the cognitive function in TBI patients. Both nutrients and
pharmacological treatment are important for the recovery of TBI. A low nutrient intake in
TBI is correlated with poor outcomes [144].

4. Conclusions

Figure 2 shows the use of each type of pharmacologic agent, in various phases of
alteration within central nervous system (CNS) physiology, following traumatic brain
injury. Table 1 shows current pharmaceutical therapies for TBI, based on the timing of use,
and main effects on the CNS.
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Table 1. Current pharmaceutical therapies for TBI.

Pharmaceutical Agents Effects on CNS Timing of Usage Role in TBI Treatment Reference

Acute phase

Tranexamic acid Antifibrinolytics Within 3 h of injury
Reduces the risk of
death in mild to
moderate TBI

[8]

Vitamin K, FFP, Direct
oral anticoagulants
reversal agents

Coagulopathy
reversal agents

Immediately after
coagulopathy
is, identified,

Reversal of
coagulopathies [9–13]

Mannitol and
hypertonic saline

Elevates blood plasma
osmolality, drawing
water from brain and CSF

When impending
cerebral herniation is
noted; assessment in
every 1–2 h

Management of
intracranial
hypertension and
cerebral edema

[16,17]

Barbiturates
and propofol

Anesthetics
and sedatives

When there is elevated
ICP refractory to
other therapies

Depress cerebral
metabolism, decreased
oxygen consumption,
lower ICP, and
prevent seizures

[18]

Heparin, LMWH Anticoagulants Within 24–48 h of injury Prevention of venous
thromboembolism [19]

Phenytoin, levetiracetam,
and valproate Antiepileptics Within 7 days of injury

Reduce the incidence of
early seizures but does
not prevent the later
development
of epilepsy

[31]

Paracetamol and NSAIDs Antipyretics If fever Maintenance
of normothermia [32,33]

Post-acute phase

SSRIs Block the reabsorption of
serotonin into neurons. Weeks to months

Improve post-TBI
depression, apathy,
pathological laughing
and crying; prevent the
later onset
of depression

[36–39,41–45,145]
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Table 1. Cont.

Pharmaceutical Agents Effects on CNS Timing of Usage Role in TBI Treatment Reference

Acute phase

SNRIs
Block the reuptake of
serotonin and
noradrenaline

Weeks to months Improve post-TBI
depression [46,47]

Trazodone Serotonin antagonist and
reuptake inhibitor Weeks to months Mixed results on sleep [49]

TCAs
Block the reuptake of
serotonin and
norepinephrine

Weeks to months Treatment of
post-TBI depression [50]

Buspirone Agonist of
5-HT1A receptor Weeks to months Reduce anxiety in

patients with TBI [54]

Typical and atypical
antipsychotics

Block the
dopamine receptors Weeks to months Improve post-TBI

psychosis [55–63]

Levodopa/carbidopa Agonist of Dopamine
receptor Weeks to months To improve

consciousness [65]

Bromocriptine Agonist of the
D2 receptor Weeks to months To improve arousal [66]

Prazosin Block the α1 receptor Weeks to months

Reduce daytime
sleepiness, improve
headaches, and
improve cognition

[68]

Beta blockers Block the
β-adrenergic receptors Weeks to months Reduce post-TBI

agitation [69]

Amantadine
Antagonist of the
NMDA-type
glutamate receptor

Weeks to months

Improve the pace of
functional recovery.
Improve early arousal
in the acute phase
of TBI

[37,71–73]

Lamotrigine Sodium channel blocker Weeks to months
Reduce aggressive
behavior in
TBI patients

[74]

Modafinil Central nervous
system stimulant Weeks to months

Could improve
excessive daytime
sleepiness and
sleep latency

[75,77]

Methylphenidate Central nervous system
stimulant Weeks to months

Could improve
post-TBI attention and
processing speed

[78–81]

Lisdexamfetamine
dimesylate

Central nervous
system stimulant Weeks to months improve attention and

working memory [82]

Rivastigmine and
donepezil

Inactivate the
cholinesterases Weeks to months

Could improve
memory in some
subgroups of patients

[85]

Benzodiazepines Agonist of
GABA receptor Weeks to months

Generally to be
avoided; may impair
attention, coordination,
memory, and
increase sedation

[86,87]
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Table 1. Cont.

Pharmaceutical Agents Effects on CNS Timing of Usage Role in TBI Treatment Reference

Acute phase

Zolpidem Agonist of
GABA receptor Weeks to months

Could cause a
temporary response in
a fraction of patients
with severe TBI

[89]

Melatonin Agonist of
melatonin receptors Weeks to months Improve daytime

sleepiness. [92]

Ramelteon Agonist of
melatonin receptors Weeks to months Could improve total

sleep time [93]

Balofen, tizanidine Block transmission at the
neuromuscular junction Weeks to months Decrease muscle spasm,

reduce muscle tone [94–96]

Botulinum toxin
Block presynaptic release
of the acetylcholine at the
neuromuscular junction

Weeks to months
Treatment of
spasticity, improve
post-TBI headache

[97,98]

Various pharmacological treatments could affect the pathophysiology of TBI; proper
treatment can reduce the detrimental effect of brain trauma in the acute and post-acute
phases, and improve the overall prognosis. In this review, we have summarized med-
ications based on clinical evidence and usage, though more clinical studies should be
carried out for potential pharmacologic therapies. We expect that the accumulation of
clinical evidence on newer agents would eventually lead to new therapeutic strategies that
eventually improve the quality of TBI care.
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