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Obesity affects the function of multiple organs/tissues including the exocrine organ salivary glands.
However, the effects of obesity on transcriptomes and cell compositions in the salivary glands have
yet been studied by bulk RNA-sequencing and single-cell RNA-sequencing. Besides, the cell types in
the sublingual gland, one of the three major salivary glands, have yet been characterized by the approach
of single-cell RNA-sequencing. In this report, we find that the histological structure of the three major
salivary glands are not obviously affected in the obese mice. Bulk RNA-sequencing analysis shows that
the most prominent changes observed in the three major salivary glands of the obese mice are the mobi-
lization of transcriptomes related to the immune response and down-regulation of genes related to the
secretory function of the salivary glands. Based on single-cell RNA-sequencing analysis, we identify
and annotate 17 cell clusters in the sublingual gland for the first time, and find that obesity alters the rel-
ative compositions of immune cells and secretory cells in the major glands of obese mice. Integrative
analysis of the bulk RNA-sequencing and single-cell RNA-sequencing data confirms the activation of
immune response genes and compromise of secretory function in the three major salivary glands of obese
mice. Consequently, the secretion of extracellular matrix proteins is significantly reduced in the three
major salivary glands of obese mice. These results provide new molecular insights into understanding
the effect of obesity on salivary glands.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In mammals, the mouth is surrounded by numerous minor
glands and three major salivary glands (SGs), namely submandibu-
lar gland (SMG), sublingual gland (SLG) and parotid gland (PG). As
an exocrine system, the function of SGs is to produce the saliva to
water and lubricate the mouth, aid in digestion and protect the
teeth and oral cavity. Some factors, such as Sjögren’s Syndrome
(SS) (a chronic autoimmune disease) [1,2] or radiation therapy
for treating head and neck cancer patients [1,2], are known to
affect the function of SGs regarding saliva secretion and contents
[3]. The outcome is the reduction in saliva secretion and alteration
in the saliva contents which will affect the oral function and health,
including food intaking and taste, periodontitis and oral infections
etc. PG and SLG are mainly composed of serous and mucous acini,
respectively, whereas SMG, the largest gland in murine, is com-
posed of both serous and mucous acini [4,5]. Classic histological
and recent single-cell RNA-sequencing (scRNA-seq) analysis have
identified main cell types in SMG and PG, including serous acinar
cells, mucous acinar cells, seromucous cells, intercalated ductal
cells, striated ductal cells, excretory ductal cells, granular convo-
luted tubules (GCT) and circulating blood and immune cells [1,4–
10]. However, the cell types in SLG have yet been characterized
by the approach of scRNA-seq.

Obesity, characterized by increased fat deposition in the body,
can be caused not only by genetic factors but also environmental
factors such as high energy diet and life style [11,12]. Obesity is
associated with many chronic diseases and the prevalence of obe-
sity has become a great threat to human health and is now a
world-wide concern. Obesity inevitably affects the function of mul-
tiple organs/tissues including the SGs. Reports have shown that
obese individuals were diagnosed of reduction in saliva secretion,
alterations in the saliva composition and increase in oxidative
damage, which have been hypothesized to cause dental caries
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and periodontal disease [13–17], however, the cellular and molec-
ular bases for these symptoms remain elusive. High-fat diet (HFD)
induced obese mice (DIO mice) have widely been used as a model
to study the consequence of obesity. In DIO mice, SMG showed
changes in the expression of long non-coding RNAs (lncRNAs)
and messenger RNAs (mRNAs) by a microarray analysis [18]. How-
ever, the effects of obesity on gene expression profiles and cell
compositions in three major SGs have yet been studied by bulk
RNA-sequencing (RNA-seq) and scRNA-seq.

In this study, we analyzed the transcriptomes in the three major
SGs by bulk RNA-seq and cell compositions in SMG, SLG and PG by
scRNA-seq in both normal and DIO mice. This study has two aims:
1) to identify genes whose expression in three major SGs is affected
in DIO mice, and 2) to find out whether the ratios of different cell
types are affected in the SMG, SLG and PG in the DIO mice. Detailed
gene ontology (GO) analysis of the bulk RNA-seq data allowed us to
conclude that DIO mice mobilized transcriptomes related to the
immune response and down-regulated the genes related to the
secretory pathways in coping with obesity. Meanwhile, we identi-
fied and annotated 17 cell types in SLG through the scRNA-seq
approach. Consistent with the bulk RNA-seq analysis, we found
that the ratios of immune cells within three major SGs were signif-
icantly increased in the DIO mice. The implications of our findings
in understanding the effect of obesity on the SGs of obese patients
are discussed.
2. Material and methods

2.1. Animal model

To exclude the effect of periodic change of estrogen and proges-
terone levels on the female physiology and gene expression,
C57BL/6J male mice were used in this study. All animal procedures
were performed in full accordance with the Guide for the Care and
Use of Laboratory Animals and were approved by the Animal Ethics
Committee in Zhejiang University (approved application number:
11871). Mice were housed in a temperature-controlled environ-
ment under a 12 hr light:dark cycle with free access to water
and food. C57BL/6J male mice were fed ad libitum with either
chow diet containing 20.5 % protein, 4 % fat and 5 % fiber (SLACAM
company, Shanghai) (NC mice) or high-fat diet containing 26 %
protein, 35 % fat and 26 % carbohydrate (Research Diets, 35 % fat)
started at week 5 postnatal (DIO mice). Weight was weighed at
the time point as stated in the text.

2.2. Blood glucose content measurement

For glucose- and insulin-tolerance tests, over-night-fasted mice
(for glucose tolerance test) or 6hr-fasted mice (for insulin tolerance
test) were injected intraperitoneally with glucose (2 g per kg body
weight) or insulin (0.75 U per kg body weight), respectively. Blood
glucose levels were measured at 0, 15, 30, 60, 90 and 120 min after
glucose or insulin administration. The content of blood glucose in
the glucose or insulin tolerance test was measured through tail
vein bleeding with the use of the Accu-Chek Active Blood Glucose
Meter (Roche, Germany).

2.3. Oil red O staining, hematoxylin-eosin (H&E) staining and Alcian
blue staining

Oil red O staining, hematoxylin-eosin (H&E) staining and Alcian
blue staining were performed by HaokeBio (Hangzhou,China). For
Oil red O staining, the liver tissue was dissected from NC and
DIO mice, respectively, and was fixed with 4 % PFA (paraformalde-
hyde) and sectioned for Oil red O staining (Sigma-Aldrich, USA),
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counter-stained with hematoxylin. For H&E or Alcian blue staining,
SMG, SLG and PG were separately dissected from NC and DIO mice
and were fixed with 4 % PFA and sectioned for H&E and Alcian blue
staining, respectively. The latter was counter-stained with nuclear
fast-red staining. Stained samples were visualized and pho-
tographed under a microscopic scanner (KF-PRO-120).
2.4. Quantitative analysis of Oil red O or Alcian blue staining

The signals of Oil red O or Alcian blue staining were quantita-
tively analyzed by Image-Pro Plus 6.0 software (Media Cybernetics,
USA). Three non-overlapping fields were randomly selected for
each section under a 20-fold objective lens, and images were col-
lected. The pixels of the Oil red O or the Alcian blue staining signal
were the cumulative values of the area of interest and the total pix-
els of all colors in the same area were also collected. The relative
Oil red O or Alcian blue staining signal intensity was expressed
as the ratio of red (for Oil red O) or blue (for Alcian blue) pixels ver-
sus total pixels.
2.5. RNA-seq samples and data analysis

SMG, SLG and PG from the same individual mice were dissected
and combined together as one sample for total RNA extraction.
RNA purification, library construction and cDNA sequencing were
performed by poly-T oligo-attached magnetic beads, random hex-
amer primer and M�MuLV Reverse Transcriptase, DNA Polymerase
I and RNase H, AMPure XP system (Beckman Coulter,Beverly, USA).
RNA samples were analyzed by the Agilent Bioanalyzer 2100 sys-
tem. The clustering of the index-coded samples was performed
on a cBot Cluster Generation System using TruSeq PE Cluster Kit
v3-cBot-HS (Illumia) according to the manufacturer’s instructions.
After cluster generation, the library preparations were sequenced
on an Illumina Novaseq platform and 150 bp paired-end reads
were generated. The sequencing data were deposited in National
Genomics Data Center, China National Center for Bioinformation
(CNCB-NGDC), Genome Sequence Archive (GSA, https://ngdc.
cncb.ac.cn/gsa/) (submission ID: subCRA011670; BioProject ID:
PRJCA010884). Clean reads were mapped to the mouse genome
(GRCm39) using the software Hisat2 v2.0.5 with default parame-
ters [19]. The raw counts generated by the software featureCounts
v1.5.0-p3 were concatenated together and submitted to DEseq2 to
obtain normalized expression levels [20]. The threshold parame-
ters for differentially expressed genes (DEGs) were an absolute
log2 fold change � 1 and corrected p-value < 0.05. Unsupervised
hierarchical clustering analysis was performed using the pheatmap
package (version 1.0.8, https://cran.r-project.org/web/packages/
pheatmap/index.html) and Gene Ontology (GO) analysis using
the KOBAS-i (version 3.0) software tool [21].
2.6. Quantitative PCR

Total RNA was extracted frommouse SGs using TRIpureReagent
(Aidlab, RN0102) according to the manufacturer’s instructions.
Total RNA was treated with DNaseI (Thermo Scientific, EN0521)
prior to reverse transcription. Synthesis of cDNA was performed
using 1 lg total RNA from each sample using M�MLV Reverse
Transcriptase (Invitrogen, 28025–021). qPCR was performed on a
CFX96 Real-Time System (Bio-Rad,C1000ThermalCycler) with
AceQq PCR SYBR Green Master Mix (Vazyme, Q111-02) according
to the manufacturer’s instructions and analyzed on a Bio-Rad
CFX96 apparatus (Bio-Rad). Primer sequences are listed in Supple-
mentary Table S1.
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2.7. Stimulated saliva collection, saliva flow rate and peroxidase
activity assay

For stimulation of saliva secretion, anesthetized mice after
intraperitoneal injection with anesthetic consisting of ketamine
(25 l g per gram of body weight) and xylazine (1.1 lg per gram
of body weight) were injected with 100 lg/mL pilocarpine
hydrochloride (HY-B0726, MCE, America) (0.5 l g per gram of body
weight). Cotton wool was plugged into the mouth of mice to
absorb the saliva and stimulated saliva were collected by a pipette
from the mouth. Collected saliva was used immediately. Saliva
flow rate was estimated by the volume of saliva collected within
30 min. 30 ll of saliva was used for the peroxidase activity assay
using the Micro Peroxidase (POD) Assay kit (BC0095, Solarbio, Bei-
jing) according to the manufacturer’s instruction.

2.8. Protein analysis and immunohistochemical staining

Antibodies against CD4 (ER1706-80, HuaBio, Hangzhou), CD8A
(0108–7, HuaBio, Hangzhou), CD79A (EM1902-29, HuaBio, Hang-
zhou), MUC13 (ER1913-37, HuaBio, Hangzhou), MUC20 (A15968,
ABclonal,Wuhan), a-Amylase (3796,Cell Signaling Technology,
America) andb-Actin (AC026, ABclonal, Wuhan) were purchased.
For western blot analysis, total protein was extracted from the sali-
vary glands by RIPA buffer (P0013B, Beyotime) and the protein
concentration was determined with Bradford Protein Assay Kit
(P0006C, Beyotime). 30 lg of protein sample was separated by
SDS PAGE (10 %) followed by transferring to polyvinylidene difluo-
ride membranes. Following blocking with 5 % nonfat milk at room
temperature for 1 h, the membranes containing significant pro-
teins were incubated with primary antibodies at 4�C overnight. Sub-
sequently, the membranes were incubated with a HRP-conjugated
antibody (HA1001, HA1006, HuaBio, Hangzhou) for 1.5 h at room
temperature. Target proteins were detected with an enhanced
chemiluminescence kit (E411-04, Vazyme, Nanjing) and the stain-
ing signals were acquired with a ChemiScope 3400 (Clinx Science
Instruments, Shanghai). Western blot was performed as previously
described [22].

For immunohistochemical staining, the expression of target
proteins was detected by the correspondent antibodies. In brief,
paraffin sections were treated with 3 % H2O2 to block endogenous
peroxidase activity. Sodium citrate heat induced (about 120�C) anti-
gen retrieval was used for all specimens. The sections were washed
three times with PBS plus 0.1 % Tween for 10 min each. The sec-
tions were blocked by 3 % bovine serum albumin followed by over-
night incubation at 4�C with primary antibodies and incubation at
room temperature for 1 h with biotinylated secondary antibodies.
Immunopositive reactions were visualized using
3,30 diaminobenzidine tetrahydrochloride solution. Sections were
counterstained with hematoxylin at room temperature for 1 min.
Images were captured using a microscopic scanner (KF-PRO-120).

2.9. scRNA-seq and data analysis

The microwell-seq approach [23] was adopted for scRNA-seq in
this study. SMG, SLG and PG samples were separately dissected
and digested with 1 mg/mL collagenase typeⅡ(A004174,Sangon
Biotech), 0.5 mg/mL dispase (A002100,Sangon Biotech) and ACCU-
TASE (STEMCELL Technologies) (SMG and SLG were digested at
37 �C for 30 min and PG for 60 min). Single cell library was gener-
ated as described [24]. High-throughput DNA sequencing was per-
formed on Illumina HiSeq X Ten PE150 platform. Aligned reads and
gene-barcode matrices were then generated from FASTQ files
including Read 1 and Read 2 using dropEst (v0.8.5). Data analysis
was performed with R package Seurat (v4.0). Elbow plot was used
to determine the optimal principal components (PCs) for cluster-
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ing. Data filtering and analysis for each SGs was as the following:
for SLG, nFeature_RNA (unique genes) between 100 and 2500, per-
cent.mt (mitochondrial gene percentage) < 20, dimensions 1:30,
resolution 0.5; for SMG, nFeature_RNA between 120 and 2500, per-
cent.mt < 20, dimensions 1:30, resolution 0.5; for PG, nFea-
ture_RNA between 100 and 2500, percent.mt < 10, dimensions
1:20, resolution 0.5. The sequencing data were deposited together
with the bulk RNA-seq data in the CNCB-NGDC, Genome Sequence
Archive (GSA, https://ngdc.cncb.ac.cn/gsa/) (submission ID: sub-
CRA011670; BioProject ID: PRJCA010884).

The CIBERSORTx tool [25] was used as a deconvolution
approach to validate the compositions of cell types in SLG in the
NC mouse with a published SLG RNA-seq data [26]. The CellChat
package [27] was adopted to analyze the cell–cell interaction in
the SMG, SLG and PG, respectively, with the purpose to compare
the cell–cell interaction difference between the NC and DIO mice.
The CIBERSORTx and CellChat analysis were performed according
to the method instruction by using the default parameters,
respectively.
2.10. Statistics and reproducibility

Unless stated otherwise, all parameters were tested using
unpaired two-tailed Student’s t-test. Significant p-value in all sta-
tistical analyses was obtained using GraphPad Prism 8 (GraphPad
Software). A p-value below 0.05 was considered statistically signif-
icant. Unless stated otherwise, the experiments were not random-
ized and investigators were not blinded to allocation during
experiments. Comparison of cell compositions between NC and
DIO mice was performed using the scCODA method [28].
3. Results

3.1. Histological structure of SGs in DIO mice appeared to be relatively
normal

C57BL/6J male mice were divided into two groups (four mice
each), with one group fed always with normal chow diet (NC mice)
while another with HFD (DIO mice) for 30 weeks starting at week-
5 postnatal (Fig. 1A, top panel). HFD induced significant weight
gains to DIO mice from week-13 postnatal onwards (Fig. 1A, lower
panel). At week-35 postnatal, all four DIO mice (DIO-1 to DIO-4)
exhibited an obvious obese phenotype (Fig. 1B, left panel), weighed
51.2 g (g) in average while the four NC mice (NC-1 to NC-4)
weighed 33.1 g in average (Fig. 1B, right panel). At week-30 post-
natal, this batch of NC and DIO mice was subjected to glucose tol-
erance test by intraperitoneal injection of glucose (2 g/kg of the
body weight) after overnight-fasting. The result showed that the
blood glucose content reached to the peak 30 min (min) after injec-
tion and then began to decrease in both the NC and DIO mice
(Fig. 1C). However, after reaching peak, the blood glucose content
decreased much faster in the NC mice than in the DIO mice within
the duration of examination (120 min after injection) (Fig. 1C). At
week-31 postnatal, these mice were tested for insulin tolerance
by intraperitoneal injection of insulin (0.75U/kg of the body
weight) after 6 h (hrs) fasting. The blood glucose contents in both
NC and DIO mice dropped to a low point 60 min after insulin injec-
tion and was then gradually recovered (Fig. 1D). We noticed that,
despite containing a higher level of blood glucose, the DIO mice
displayed a similar reduction rate of blood glucose content as did
the NC mice after insulin injection, however, the recovery rate,
though not statistically significant, appeared to be slower in DIO
mice compared with NC mice (Fig. 1D, Supplementary Fig. S1).
These results suggest that the DIO mice retained a relatively nor-
mal insulin response although they appeared to display hyper-
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Fig. 1. Evaluation of the DIO mouse model. (A) Top panel: Diagram showing the feeding strategy and the time point for injection of glucose (GTT) (purple arrow, 30 wk) or
insulin (ITT, 31 wk) (green arrow). Lower panel: Growth curve of mice fed with normal chow diet (NC) (black curve) and HFD (red curve) (DIO) starting at week 5 postnatal for
30 weeks. Significant difference (p < 0.001) was seen starting from week 13 postnatal. Data are mean ± s.e.m. (B) Left: A photo showing a NC mouse and a DIO mouse. Right:
Statistics showing the significant difference in weight between NC and DIO mice (n = 4) at 35 wk. (C-D) Blood glucose level in NC and DIO mice (n = 4) at different time points
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mice (F). Statistical significance was determined using unpaired two-tailed Student’s t-test. ***, p < 0.001, ****, p < 0.0001.
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glycemia. The hyperglycemia symptom is possibly due to the
chronic effect of HFD feeding on the liver function [29,30] since
Oil red O staining showed that DIO-2 and DIO-3 mice conferred a
fatty liver phenotype when compared with NC-2 and NC-3 mice
at week-35 postnatal (Fig. 1E-F).

Next, we went to examine whether HFD induced obesity would
lead to any alterations to the SGs morphology. We dissected SMG
and SLG from two NC (NC-2 and NC-3) and two DIO (DIO-2 and
DIO-3) mice and PG from other two NC (NC-7 and NC-8) and two
DIO (DIO-7 and DIO-8) mice, respectively, at week-35 postnatal.
Hematoxylin-eosin (H&E) staining did not reveal obvious changes
in the characteristic histological structures of acini and ducts in
SMG, SLG and PG between NC and DIO mice although it appeared
that there was less mucous excretion in three SGs in the DIO mice
(Fig. 2A-C). These results suggest that HFD feeding does not affect
the gross development of the three major SGs.

3.2. Identification of DEGs between NC and DIO mice by bulk RNA-seq

The SMG, SLG and PG dissected from the same mouse were
combined as one SG sample for total RNA extraction. Total six SG
samples, including three NC mice (NC-1, �2 and �3) and three
DIO mice (DIO-1, �2, and �3) at week-35 postnatal from the above
108
batch (Fig. 1B), were used in the RNA-seq analysis for comparing
the SG transcriptomes between NC and DIO mice. Number of clean
bases from the six SG RNA-seq samples were all exceeded 5.8 GB,
and data filtering based on the Clean Q30 Bases Rate program
revealed that the Q30 for all six samples was more than 92.8 %
(Supplementary Table S2), demonstrating that the reads obtained
were of high quality. Next, we aligned the clean sequences to the
mouse genome (GRCm39 database, webpage: https://www.ncbi.
nlm.nih.gov/assembly/GCF_000001635.27) and found that at least
97 % of total clean reads had a corresponding match in the mouse
genome for each SG sample (Supplementary Table S2). 19422,
20,188 and 19,907 genes in three NC mice, and 19545, 19,394
and 19,525 genes in three DIO mice were detected (Supplementary
Table S2; accession number in database: GSA: PRJCA010884),
respectively. The expression levels of genes in each sample were
calculated based on the TPM (transcripts per million) method [31].

Hierarchical clustering of all mapped genes from six SG samples
showed that the three NC mice represented a clad while the three
DIO mice represented another (Supplementary Fig. S2A). Further
data analysis using DESeq2 [20] identified 543 upregulated DEGs
and 212 downregulated DEGs (TPM > 1 in at least one replicate, |
log2 fold-change| �1, p-adjust < 0.05) in the DIO-mice (Supplemen-
tary Fig. S2B, Tables S3-S5). To evaluate the quality of the data, we
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analyzed, via qPCR, the expression of 17 genes in the three NC and
three DIO mice, including 7 upregulated, 4 downregulated, and 6
no-change genes. Except one up-regulated (Dclk1) and one down-
regulated (Acy3) genes, all other genes were consistent with the
RNA-seq data (Supplementary Fig. S3A).

3.3. Mobilization of immune response genes is the most prominent
feature among the upregulated DEGs in the SGs of DIO mice

To gain insight into the specific pathways and genes affected in
the SGs of the DIO mice, we performed a GO analysis of the up- and
down-regulated DEGs in the DIO mice. GO analysis of the 543
109
upregulated DEGs (Fig. 3A) in the DIO mice using the biological
process (BP) term showed that all the top 10 categories were
related to immune response (together 231 genes, �42.5 % of the
543 upregulated DEGs), including innate immune response, adap-
tive immune response and immune response process (Fig. 3B, BP
panel; Supplementary Table S6). In the cellular component (CC
term), 8 out of the top 10 categories were related to extracellular
proteins, membrane proteins or their trafficking (together 349
genes, �64.3 % of the 543 upregulated DEGs) (Fig. 3B, CC panel;
Supplementary Table S7). Cross-comparison of the genes in the
top 10 categories in the BP and CC terms identified 220 DEGs to
be shared (Supplementary Table S8). These 220 DEGs are mainly
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Fig. 3. GO analysis of the upregulated DEGs shows that mobilization of the immune response genes is the most significant change in the SGs of DIO mice. (A) Heatmap
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responsible for a variety of immune responses, including genes
encoding surface antigens (Cd28, Cd3d, Cd3g, Cd4, Cd8a, Cd8b1,
Cd19, Cd38, Cd79a, Cd79b, Cd84, Cd86, Cd180, Cd274, Ly9 etc)
(Fig. 3C, Supplementary Table S8), antigen binding proteins (Ighg2c,
Ighm, Ighv1-26, Ighv1-36, Ighv1-53, Ighv1-54, Ighv1-74, Ighv1-61,
Ighv1-62–2, Ighv1-64, Ighv1-66, Ighv1-78, Ighv2-2, Ighv3-6, Ighv5-
4, Ighv5-6, Ighv5-9, Ighv7-1, Igkc, Igkv3-2, Igkv3-10, Igkv4-57–1,
Igkv4-59, Igkv4-70 etc) (Fig. 3D, Supplementary Table S8), cytoki-
nes and receptors (Il1b, Il7r Itgb2, Ltb, Mpeg1, Tnfrsf1b, Tnfrsf13b,
Tnfrsf13c, Tnfrsf14, Tnfsf8 etc) (Fig. 3E, Supplementary Table S8),
interferon response factors (Aim2, Gbp5, GPr183, Ifi44, Iigp1, Isg20,
Nlrc5, Oasl1, Prdm1, Rsad2, Themis2, Zbp1 etc) (Fig. 3F, Supplemen-
tary Table S8), and chemokines and their receptors (Ccl5, Ccl6, Ccl7,
Ccl8, Ccl9, Ccl12, Ccr5, Ccr7, Cxcl9, Cxcl10, Cxcl13, Cxcr3, Cxcr4, Cxcr5,
110
Cxcr6 etc) (Fig. 3G, Supplementary Table S8). The up-regulation of
17 immune response related genes, including Cd4, Cd8a and Cd79a,
were confirmed by the qPCR (Fig. S3B). The elevation of CD4, CD8A
and CD79A protein levels in the salivary glands of DIO mice were
confirmed by both immunohistochemical staining (Fig. 4A-C) and
western blotting analysis (Fig. 4D). The above analysis strongly
suggests that obesity triggers an activation of the immune
response genes in the SGs of DIO mice.

3.4. Genes related to exocrine activities were downregulated in the SGs
of DIO mice

For the 212 down-regulated DEGs (Fig. 5A), 7 out of the top 10
categories in the CC term were related to the secretory pathways
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(extracellular matrix, cell membrane and recycling endosome) (to-
gether 116 genes, �54.7 % of the 212 downregulated DEGs)
(Fig. 5B, Supplementary Table S9). Although the secretory path-
ways were among the prominent categories in both up- and
down-regulated genes in the CC term, detailed analysis revealed
that the upregulated DEGs encoded secretory proteins mainly
related to immune response, including immunoglobulins, surface
antigens, cytokines and their receptors and signaling, and chemo-
kine and their receptors (Fig. 3C-G, Supplementary Tables S7 and
S8). In contrast, the downregulated DEGs encode mainly mem-
brane channels or transporters for water (Aqp2), anion (Bsnd, Clc-
nka), cation (Hcn2, Kcnip2, Kcnj8, Scnn1g, Tmem37), sugar (Slc2a4),
and peptide (Tmem158) (Fig. 5C, Supplementary Table S9), extra-
cellular matrix components (Adamts2, Adamts10, Adamts17, Colca2,
Emid1, Fmod, Pm20d1, Tsku, Ucma etc) (Fig. 5D, Supplementary
Table S9), ligands and their perception and signaling (Ardb1, Efna4,
Efnb1, Fgfbp3, Fzd10, Inha, Mdk, Nrtn, P2rx3, Sema3b, Tfr2 etc)
(Fig. 5E, Supplementary Table S9), and protein trafficking and
cycling endosome (Gal3st3, Pheta1, Porcn, Rab17, Rin1, Snca,
Snx21, St6galnac2 etc) (Fig. 5F, Supplementary Table S9). Downreg-
ulation of these genes suggests that obesity appears to compromise
the secretory function of the SGs in DIO mice. Interestingly, Cntfr,
111
Ngef and Nrep genes involved in synaptic function were also among
the downregulated genes (Supplementary Table S9), suggesting
that obesity might also have an effect on the neuronal regulation
of the SG functions.

The top 10 categories in the BP term for the 212 downregulated
DEGs were diversified, including processes related to cell differen-
tiation, negative cell growth, multicellular organ development etc
(Fig. 5B, Supplementary Table S10), which might explain the com-
promised cellular function of the SGs in DIO mice although there
was no obvious morphological changes. In addition, three genes
related to cold-response pathways (Adrb1, P2rx3 and Ucp3) were
also downregulated (Fig. 5G). Interestingly, we found that three
genes regulating circadian rhythm, namely Per2, Per3 and Nr2f6
were downregulated in the DIO mice (Fig. 5H). This data suggests
that obesity might lead to energy production and sleeping disor-
ders apart from causing abnormal immune response and exocrine
activity.

To find out whether downregulation of genes related to secre-
tory activities would affect the secretion of extracellular matrix
proteins in the DIO mice, we stained the NC and DIO mice with
Alcian blue. The result showed that the staining signals of the
extracellular matrix appeared to be reduced in all three major
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SGs in the DIO mice, especially PG which showed approximately
twofold reduction (Fig. 6A-C). Western blot analysis showed that
the production of MUC20, MUC13 and a-Amylase was obviously
reduced in the SGs of the DIO mice compared with that in the
NC mice (Fig. 4D). In addition, the DIO mice showed a reduced
stimulated saliva flow rate (Fig. 6D) and a subtle but significant
elevation in the peroxidase activity (Fig. 6E). Furthermore, the
stimulated saliva from the DIO mice contained less Mucin 13 and
a-Amylase than that from the NC mice (Fig. 6F). These results are
consistent with previous report in both obese mice and human
[13–17].

3.5. scRNA-seq analysis identified 17 cell clusters in SLG

In murine, SMG is the largest glands (�75 % mass of all SGs), fol-
lowed by PG (�15 %) and SLG (�8%). The scRNA-seq approach has
been adopted to analyze the cell types and their changes in SMG
during SG development or in response to the condition of Sjögren’s
112
Syndrome (SS) [1,7,8,10,32]. For PG, one murine report determined
the cell types for young mouse (18 days postnatal) based on 492
cells characterized[8], and a recent report identified 10 cell types
in human parotid with majority of cells being T and B cells [6].
For SLG, however, currently there is no report on cell typing based
on scRNA-seq analysis.

We dissected SMG, SLG and PG from the NC mice (SMG com-
bined from 3 mice and SLG one mouse at 35 weeks postnatal, PG
from one mouse at 40 weeks postnatal) and from the DIO mice
(SMG combined from 3 mice and SLG from one mouse at 35 weeks
postnatal, PG from one mouse at 40 weeks postnatal), respectively,
for scRNA-seq analysis (Supplementary Table S11). In total, 5689,
2416 and 1491 cells for SMG, SLG and PG from the NC mice,
6545, 3254 and 1917 cells for SMG, SLG and PG from the DIO mice,
passed the quality control criteria (Supplementary Fig. S4A-F). PCs
for cell clustering were determined by the ElbowPlot provided by
the Seurat package (Supplementary Fig. S4G). Cells were clustered
using the unsupervised clustering with affinity propagation based
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on the expression of high-variance genes (Supplementary Fig. S5A-
C, Table S12) and cell clusters were plotted with the uniform man-
ifold approximation and projection (UMAP) figure.

For 5670 SLG cells combined of the NC and DIOmice, 17 clusters
were identified (Fig. 7A, Supplementary Fig. S5B). Annotation of
these 17 clusters with feature genes [1,7–10,32–37] (Supplemen-
tary Table S12 and S13) identified serous (cluster 4), seromucous
(cluster 6) and mucous (cluster 11) three types of acinar cells,
and striated (cluster 1), intercalated (cluster 7), excretory (cluster
8) and GCT (cluster 9) four types of ductal cells (Fig. 7A, Supple-
mentary Fig. S5B). Dot plot and violin plot showed that, A2ml1
113
and Smgc were enriched in mucous cells, so were Bpifa2 and Dcpp1
in serous cells, Car6 and 2310057J18Rik in seromucous cells, Sult1c1
and Atp6v1g3 in excretory and striated ductal cells, Cyp2f2 and
Esp18 in intercalated ductal cells, and Egf and Klk1b8 in GCT cells
(Fig. 7B-C). These genes could serve as marker genes for these cell
types in the SLG. The rest clusters included stromal cells (cluster
12), endothelial cells (cluster 13) and various immune cells
(Fig. 7A, Supplementary Fig. S5B and Table S13). To validate our
scRNA-seq data, we adopted the CIBERSORTx tool [25] to analyze
the expression of 1261 feature genes (identified by our scRNA-
seq) in a publicly available NC mouse SLG RNA-seq dataset (male,
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12 weeks age) [26]. Deconvolution analysis of these feature genes
in the clustered 2416 SLG cells obtained from the NC mouse
revealed a largely nice correlation between our scRNA-seq data
and the published SLG RNA-seq regarding the compositions of dif-
ferent cell types (Supplementary Fig. S6A). However, we noticed
that the compositions of mucous acinar and serous acinar two cell
types were more highly represented by the published dataset (Sup-
plementary Fig. S6A). Whether this is due to the age difference (12
114
vs 35 weeks) for sampling or a genuine methodology difference or
individual mouse variations needs to explored in the future.

For 12,234 SMG cells combined of the NC and DIO mice, 16 clus-
ters were well defined (Supplementary Fig. S5A and S6B). Annota-
tion with feature genes (Supplementary Table S12 and S13)
identified seromucous (cluster 3) and serous (cluster 4) two types
of acinar cells, and GCT (cluster 5), striated (cluster 6) and
intercalated (cluster 7) three types of ductal cells in the SMG
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(Supplementary Fig. S5A and S6B), which nicely coincided with
previous reports [1,7,8,10,32]. Dot plot confirmed the known
SMG serous acinar markers Aqp5 and Lpo, serous and seromucous
acinar markers Wfdc12 and Car6, intercalated duct marker Esp18,
striated duct marker Fxyd2 and Ascl3, and GCT markers Egf and
Ngf [1,7,8,10,32] (Supplementary Fig. S7A-B). Meanwhile, dot plot
and violin plot identified putative newmarkers for SMG serous aci-
nar (A630073D07Rik), intercalated duct (Cyp2f2), striated duct
(Atp6v1g3) and GCT (Klk1b1), respectively (Supplementary Fig. S7-
B-C).

For 3408 PG cells combined of the NC and DIO mice, 9 clusters
were identified (Supplementary Fig. S5C and S6C). Annotation with
feature genes (Supplementary Table S12 and S13) identified serous
(cluster 0), mucous (cluster 1), Mucl2+ (cluster 2) and seromucous
(cluster 6) four types of acinar cells, and striated (cluster 3) and
intercalated (cluster 4) two types of ductal cells (Supplementary
Fig. S5C and S6C). Dot plot confirmed the known PG serous acinar
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Fig. 8. SGs exhibited an increased ratio of T and B cells in DIO mice. (A-C) Histogram show
and PG (C) between NC and DIO mice. The scCODA method was adopted for this analysis
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markers Prol1 and Bpifa2, seromucous acinar markers Dcpp1 and
Dcpp2, Mucl2+ acinar marker Mucl2, striated duct marker Esp4,
and intercalated duct marker Wfdc18 [1,7,8,10,32] (Supplementary
Fig. S8A-B). Dot plot and violin plot also identified putative new
markers for PG serous acinar (Scgb2b27), Mucl2+ acinar (Scgb1b2
and Scgb1b29), striated duct (Gm5938 and Mup4) and intercalated
duct (Sftpd and Cyp2f2), respectively (Supplementary Fig. S8B-C).

3.6. scRNA-seq analysis reveals an enhanced recruitment of immune
cells into SMG, SLG and PG in DIO mice

The scCODA method [28] was adopted to estimate the relative
change in the cell compositions in the SMG, SLG and PG cells
between NC and DIO mice, respectively (Fig. 8A-C). The ratios of
T and B cells were found to display a significant increase in all three
SGs (DIO vs NC, in SMG: 19.3 % vs 6.5 % for CD8+ T cells, 9.9 % vs 4 %
for B cells; in SLG: 10 % vs 5.8 % for CD8+ T cells, 2.9 % vs 1.7 % for B
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cells; in PG: 22.9 % vs 7.8 % for T cells, 15.5 % vs 9.9 % for B cells)
(Fig. 8A-C). Interestingly, macrophages appeared to be reduced in
the DIO SMG (DIO vs NC: 12.6 % vs 32 %). In contrast, the ratios
of the seromucous acinar cells were significantly reduced in SMG
and SLG in DIO mice (DIO vs NC, SMG: 4.6 % vs 8.4 %; SLG:
10.2 % vs 14.4 %) (Fig. 8A-C), indicative of compromised SG secre-
tory functions in DIO mice [18,38].

3.7. Cell-cell interaction analysis confirms a stronger immune response
in the DIO mice

Next, based on the scRNA-seq data we analyzed the cell–cell
interactions in SMG, SLG and PG, respectively, and compared the
cell–cell interaction differences between the NC and DIO mice for
each gland by adopting the CellChat tool [27] (Supplementary
Tables S14-S19). The list of significant interaction pathways is pro-
vided in Supplementary Table S20. For SMG, the number of
inferred interactions for the NC and DIO cells was not drastically
different, being 889 and 914 (Supplementary Fig. S9A, left panel;
Tables S14 and S15), respectively, however, the DIO cells showed
a stronger interaction strength (0.02) than that did the NC cells
(0.005) (Supplementary Fig. S9B, left panel). Rank significant sig-
naling networks based on the information flow identified the
cytokine-cytokine receptor (CXCL) and ECM-receptor (FN1) two
CellChat pathways to be unique to the NC cells while nine CellChat
pathways (including CDH, CD200, PECAM1, SELL, SELPLG and
CD48) were unique to the DIO cells (Supplementary Fig. S9C, left
panel). The other eight significant CellChat pathways were stronger
in the DIO cells (Supplementary Fig. S9C, left panel). The interac-
tion output among different cell clusters showed an enhanced
interaction between CD8+ (cluster 2) and B cells (cluster 8) and
between CD8+ and CD14+ cells (cluster 9). CD8 + cells also dis-
played a strong self-interaction (Fig. 9A).

For SLG, 670 and 415 inferred interactions were identified for
the NC and DIO cells (Supplementary Fig. S9A, middle panel; Tables
S16 and S17), respectively, where the DIO cells showed a much
stronger interaction index (0.011) than the NC cells (0.002) (Sup-
plementary Fig. S9B, middle panel). Five significant CellChat path-
ways (CCL, JAM, EGF, CSF and CDH) were assigned to the NC cells
while APP and IL2 two pathways were unique to the DIO cells (Sup-
plementary Fig. S9C, middle panel). Meanwhile, MHC-1 and CD48
two pathways were more prominent in the DIO cells (Supplemen-
tary Fig. S9C, middle panel). Regarding the interactions among dif-
ferent cell clusters, CD8+ cells (cluster 2), as in the SMG, again
showed an strong self-crosstalk (Fig. 9B). CD8+ cells also showed
a strong interaction with the NK cells (cluster 0) and appeared to
affect the intercalated duct cells (cluster 7) (Fig. 9B).

For PG, much less inferred interactions were identified by Cell-
Chat, being 297 and 329 for the NC and DIO cells, respectively
(Supplementary Fig. S9A, right panel; Tables S18 and S19).
Although the interaction strength was slightly stronger for the
DIO cells (0.005) than that for the NC cells (0.003) (Supplementary
Fig. S9B, right panel), the magnitude of the strength for the DIO
cells was much weaker compared with the SMG and SLG (Supple-
mentary Fig. S9B). Much less significant CellChat pathways were
identified for the PG cells, with three pathways (THBS, COLLAGEN
and FN1) being unique to the DIO cells and the CDH and CSF two
pathways to the NC cells (Supplementary Fig. S9C, right panel).
As in the SMG and SLG, T cells (cluster 5) in the DIO showed a
strong self-interaction (Fig. 9C). The T cells also showed certain
interactions with B cells (cluster 7) and mucous acinar cells (clus-
ter 1). Interestingly, the serous acinar cells in the NC cells displayed
a prominent self-interaction (Fig. 9C), which was not observed in
the SMG and SLG (Fig. 9A-B). The cell–cell interaction analysis con-
firmed that the immune response was activated in the SGs in the
DIO mice.
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4. Discussion

Extensive studies have demonstrated the vital role of SGs in
maintaining mouth health and facilitating food digestion as an
exocrine tissue [4,5,39,40], however, only limited efforts have been
spent on exploring the effect of obesity on the function of SGs
[13,14,16,18]. In this report, we started with the bulk RNA-seq
approach to study the effect of obesity on gene expression profiles
in the DIO mice. We identified a total of 755 DEGs, including 543
upregulated and 212 downregulated DEGs, approximately 4 % of
the total detected genes. GO analysis of the upregulated DEGs
showed that the most prominent feature is the upregulation of
more than 231 immune response related genes in the SGs of DIO
mice. Based on the GO analysis, these genes are known to take part
in multiple immune response pathways, including innate immune
response, adaptive immune response and immune cell differentia-
tion and maturation. In human, it is generally perceived that exces-
sive and abnormal accumulation of fat in obese patients will
trigger the generation of pro-inflammatory factors, such as Leptin,
various cytokines, Adiponectin and various chemokines that circu-
late in the body to reach the target tissues to cause chronic inflam-
mation [41–45]. Obesity-induced inflammation has been related to
the initiation and development of cancer [43], nonalcoholic fatty
liver disease (NAFLD) [44], neurodegenerative diseases [41] and
metabolic disorders [42,45]. Our results demonstrate that the SGs
are also subjected to chronic inflammation in the obese mice.
Interestingly, among the 755 DEGs (mouse genes), 604 have been
assigned with corresponding human counterparts (using the Pro-
filer utility provided by the ESEMBL database) (Supplementary
Table S21). Considering the above fact, we believe the data
obtained in this study could serve as a reference for studying
whether the SGs also suffer from a chronic inflammation by upreg-
ulating a similar group of genes in obese human patients in the
future.

Extracellular matrix connects and supports the acinar and duc-
tal systems within the glands which facilitates the saliva secretion
[4,5]. We found that the majority of the downregulated DEGs
encode proteins belonging to extracellular matrix components,
membrane channel proteins for import and export of water, anion
and cations, membrane receptors for different ligands, and pro-
teins involved in protein trafficking and endocytosis. These
changes suggest that the exocrine function of the SGs of DIO is
likely compromised. Indeed, our data showed that the deposition
of the extracellular matrix, the stimulated saliva flow rate and
the content of mucin in the saliva was found to be reduced in
the SGs of DIO mice. In human, studies have shown that over-
weight or obese adolescents exhibited a significant less saliva
and total protein secretion after stimulation [14,15,17]. Whether
the reduced saliva secretion in human is also a consequence of
downregulation of genes encoding proteins for import and export
of water, anion and cations, and for proteins trafficking in the
SGs is worth to be explored in the future.

Circadian genes play essential roles in controlling or regulating
animal development, physiology and behavior [46]. The expression
of circadian genes is largely controlled by a regulatory network
formed by the transcriptional regulators including BMAL1, CLOCK,
PER and CRY [47]. It has been reported that obesity affects the cel-
lular rhythmic response in a range of tissues. For example, using a
transgenic reporter mice PER2::luciferase, Larion and colleagues
found that PER2 lost its normal rhythmic expression pattern and
its expression level in the liver was reduced at 24:00 h in the db/
db obese mice [47]. In human, epigenetic studies showed that
CLOCK, a positive regulator of PER2, was highly methylated at its
promoter in the white cells obtained from overweight and obese
women and the baseline methylation of CLOCKwas correlated with
the level of wight-loss in these women [48]. In children with the
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obesity trait, whole genome epigenetic studies of the white blood
cells revealed a negative correlation between the methylation of
PER3 in the gene body region with the body mass index (BMI)
[49]. The downregulation of Per2, Per3 and Nr2f6 in the DIO mice
suggests that obesity might disrupt the cellular circadian rhythm
in the salivary glands as well.

It is well known that SMG, SLG and PG three major SGs play
similar and also distinct functions, which is clearly reflected in
their histologic structures [7,10,32,50]. Establishment of the cell
atlas for these three major SGs provides a foundation for under-
standing their similar and distinct functions. We applied scRNA-
seq to determine the cell types within these three major SGs. For
SMG and PG, consistent with previous reports [1,7,8,10,32], 16
and 9 cell clusters are identified. We identified, for the first time,
17 cell clusters in SLG and assigned feature genes for these 17 clus-
ters. We suggest A2ml1, Car6, Cyp2f2 and Sult1c1 to be the charac-
teristic gene for mucous acinar, seromucous, intercalated duct and
excretory duct in SLG, respectively.

As the first report, we used the scRNA-seq approach to compare
the effect of obesity on the cell compositions in SMG, SLG and PG in
DIO mice, respectively. We found that the number of immune cells,
especially the T and B cells, were significantly increased in all three
major SGs in DIO mice. Consistently, cell–cell interaction analysis
using the CellChat tool revealed significant enhanced crosstalk
among different immune cells and also between immune cells
and acinar or ductal cells in the DIO cells. Interestingly, both
SMG and SLG cells from the DIO mice exhibited more prominent
interactions related to multiple pathways while the PG appeared
to be less complicate, suggesting that three SGs might have differ-
ent ways in response to obesity. These observations further sup-
port the conclusion that immune response pathways are
mobilized which might lead to a compromised secretory function
in the SGs of DIO mice.

It is generally conceived that high energy diet represents one of
the greatest environmental factors to induce obesity [12,51]. Our
results shown here suggest that controlling immune response
and chronic inflammationmight be an effective approach to reduce
the effect of obesity on the function of SGs in obese patients.
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