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Abstract: Silver nanoparticles (AgNPs) have recently gained interest in the medical field because
of their biological features. The present study aimed at screening Rhizophora apiculata secondary
metabolites, quantifying their flavonoids and total phenolics content, green synthesis and characteri-
zation of R. apiculata silver nanoparticles. In addition, an assessment of in vitro cytotoxic, antioxidant,
anti-inflammatory and wound healing activity of R. apiculata and its synthesized AgNPs was carried
out. The powdered plant material (leaves) was subjected to Soxhlet extraction to obtain R. apiculata
aqueous extract. The R. apiculata extract was used as a reducing agent in synthesizing AgNPs from
silver nitrate. The synthesized AgNPs were characterized by UV-Vis, SEM-EDX, XRD, FTIR, particle
size analyzer and zeta potential. Further aqueous leaf extract of R. apiculata and AgNPs was subjected
for in vitro antioxidant, anti-inflammatory, wound healing and cytotoxic activity against A375 (Skin
cancer), A549 (Lung cancer), and KB-3-1 (Oral cancer) cell lines. All experiments were repeated three
times (n = 3), and the results were given as the mean ± SEM. The flavonoids and total phenolics
content in R. apiculata extract were 44.18 ± 0.086 mg/g of quercetin and 53.24 ± 0.028 mg/g of gallic
acid, respectively. SEM analysis revealed R. apiculata AgNPs with diameters ranging from 35 to
100 nm. XRD confirmed that the synthesized silver nanoparticles were crystalline in nature. The
cytotoxicity cell viability assay revealed that the AgNPs were less toxic (IC50 105.5 µg/mL) compared
to the R. apiculata extract (IC50 47.47 µg/mL) against the non-cancerous fibroblast L929 cell line.
Antioxidant, anti-inflammatory, and cytotoxicity tests revealed that AgNPs had significantly more
activity than the plant extract. The AgNPs inhibited protein denaturation by a mean percentage of
71.65%, which was equivalent to the standard anti-inflammatory medication diclofenac (94.24%).
The AgNPs showed considerable cytotoxic effect, and the percentage of cell viability against skin
cancer, lung cancer, and oral cancer cell lines was 31.84%, 56.09% and 22.59%, respectively. R. apiculata
AgNPs demonstrated stronger cell migration and percentage of wound closure (82.79%) compared to
the plant extract (75.23%). The overall results revealed that R. apiculata AgNPs exhibited potential
antioxidant, anti-inflammatory, wound healing, and cytotoxic properties. In future, R. apiculata
should be further explored to unmask its therapeutic potential and the mechanistic pathways of
AgNPs should be studied in detail in in vivo animal models.

Keywords: Rhizophora apiculata leaf; aqueous extract; silver nanoparticles; in vitro; wound healing;
cytotoxicity; antioxidant; anti-inflammatory

Molecules 2022, 27, 6306. https://doi.org/10.3390/molecules27196306 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27196306
https://doi.org/10.3390/molecules27196306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-3579-1386
https://orcid.org/0000-0002-9052-5454
https://orcid.org/0000-0001-9812-2628
https://doi.org/10.3390/molecules27196306
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27196306?type=check_update&version=2


Molecules 2022, 27, 6306 2 of 24

1. Introduction

The biosynthesis of AgNPs utilizing valuable medicinal plant extracts has expanded
significantly due to the growing interest in studies of the nano-range of 1–100 nm for
biomedical applications [1,2]. However, one of the essential components of modern nan-
otechnological techniques is the production of nanoparticles with an appropriate quality [1].

A vast array of the literature has described various strategies for metal nanoparticle
synthesis involving chemical, electrochemical, photochemical, and other methods of reduc-
tion [3–5]. On the other hand, biological approaches have been claimed to be superior to
chemical methods in terms of their economic feasibility and environmental safety. Micro-
organisms’ biosynthesis of AgNPs is a well-established technique [6]. However, using
plant-based materials rather than microbes for the green synthesis of metal nanoparticles
has garnered much interest because of the lower toxicity, shorter processing time and
the added benefit of natural capping agents. Furthermore, it lowers the cost of isolating
microorganisms and improving culture conditions for microbe-assisted biosynthesis, and it
employs a variety of reductant sources, including leaves, flowers and catkins [7].

AgNPs are primarily employed in antibacterial and anticancer treatments, but they
are also used as biosensors, vaccine adjuvants, anti-diabetic agents, and in promoting bone
and wound healing. High stability, high carrier capacity, the ability to incorporate both
hydrophilic and hydrophobic molecules, and the ability to administer drugs via a variety
of routes, including via oral application and inhalation, are key technological benefits of
nanoparticles used as drug carriers. Excellent electrical conductivity, chemical stability,
catalytic and antibacterial characteristics, as well as cytotoxic effects on cancer cells have all
been demonstrated in silver nanoparticles.

At low concentrations, AgNPs have been shown to exhibit antibacterial, anti-biofilm
and antiviral activities. Infection control is vital in medicine and various other industries,
and a chemical-free option has become the need of the hour. Disinfection has become a vital
parameter for pandemics such as COVID-19, and colloidal silver can be utilized as a novel
standard for the preventative treatment of ventilator-acquired pneumonia in intensive care
units of hospitals. Silver nanoparticles are effective antibacterial agents when used alone
or in conjunction with existing medicines. After bioreduction by biosynthesized AgNPs,
pharmaceutically important compounds can be preserved, which could have therapeutic
implications. Because of their antibacterial properties, silver nanoparticles are commonly
employed in the packaging industry to extend the shelf-life of food products [8–10].

Cancer is among the most significant causes of mortality around the globe, accounting
for over 10 million deaths in 2020, or roughly one in every six. Cancers of the breast, lungs,
gastrointestinal tract (including the cervix), and prostate are among the most prevalent.
The five-year survival rate for oral, lung, and skin cancer (melanoma) is 55%, 26%, and
68%, respectively. The success rate of chemotherapy is not very encouraging, and many
patients also experience severe side effects. Therefore, there is a pressing need to continue
researching useful diagnostic and cutting-edge therapy targets of natural origin. Due to its
lower toxicity, researchers have recently focused on creating/discovering novel therapeutic
compounds using natural resources.

Rhizophora apiculata is one such mangrove plant, which belongs to the Plantae kingdom
under the Rhizophoraceae family. It is well-known for its medicinal properties [11]. R.
apiculata has medicinal properties in its roots, bark, and leaves. These trees are high in
phytochemicals and have anticancer, antibacterial, antiemetic, antidiarrheal, and hemostatic
activity [12,13]. Previously, R. apiculata has been assessed for its antibacterial activity [14],
hepatoprotective activity [15], and cytotoxic activity [16,17]. Throughout the prehistoric
era, plants were used as a source of treatment for various diseases worldwide. Numerous
undiscovered natural products and nutrients have biologically beneficial properties [18].
As a result, there is an urgent need to discover and test new treatment alternatives that can
effectively be used in disease management while causing minimal side effects. Hence, we
thought it worthwhile to carry out this research with the following objectives: (1) phyto-
chemical screening and quantification of secondary metabolites from R. apiculata, (2) green



Molecules 2022, 27, 6306 3 of 24

synthesis and characterization of silver nanoparticles from R. apiculata, (3) determination of
in vitro antioxidant and anti-inflammatory activity of R. apiculata and its synthesized Ag-
NPs, (4) in vitro anticancer activity of aqueous leaf extract of R. apiculata and its synthesized
AgNPs against skin cancer, lung cancer, and oral cancer, and (5) in vitro wound-healing
activity of aqueous leaf extract of R. apiculata and its synthesized AgNPs by scratch assay.

2. Results
2.1. Phytochemical Analysis

The findings of the phytochemical study showed that significant bioactive compo-
nents such as glycosides, saponins, terpenoids, flavonoids, and phenols were present
in the test extract (Table 1). The aqueous leaf extract of R. apiculata exhibited a total of
44.18 ± 0.08 mg/g of quercetin-equivalent flavonoid content and 53.24 ± 0.02 mg/g of
gallic-acid-equivalent phenolic content.

Table 1. Phytochemical Analysis of aqueous leaf extract of R. apiculata.

Tests Water Extract
Alkaloids −

Flavonoids +
Glycosides +

Phenols +
Saponins +
Tannins −

Terpenoids +
Steroids −

+: present; −: absent.

2.2. Visual Observation and UV-VIS Characterization

The addition of R. apiculata leaf aqueous extract to 1 mM AgNO3 solution caused a
color shift from yellowish to brown after 4 h, indicating the bioreduction of AgNO3 from
silver metal ions (Ag+) to silver nanoparticles (Ag0) (Figure 1). After 1 h, the reaction was
complete with a brown color. Silver nanoparticles were confirmed by UV-VIS spectral
spectroscopy of the colloidal solution at 200–1100 nm. The maximal absorption peak (max)
was at 459 nm (Figure 2).
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Figure 2. Silver nanoparticles were confirmed by UV-VIS spectral spectroscopy of colloidal solution.

2.3. SEM and EDX Studies

SEM investigations validated the morphology and surface of the AgNPs. The SEM
images revealed silver nanoparticles with an irregular form and a diameter between 35 and
100 nanometers. EDX experiments helped to determine the purity and composition of the
AgNPs. The formation of AgNPs was confirmed by the high signal in the 3 Kev metallic silver
region. Besides silver, other elements including carbon and oxygen were found to make up
30.71% and 61.41%, respectively, of its elemental composition analyses (Figures 3 and 4).
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Figure 4. EDX analysis of R. apiculata AgNPs showing its elemental composition.

2.4. FTIR Analysis

The functional groups responsible for the bioreduction of Ag+ into Ag0 nanoparticles
were identified using FTIR spectroscopy. It was found that functional groups such as
aromatic and aliphatic amines, alkyl halides, alkynes, alcohols, esters, carboxylic acids,
ethers, and nitrogen compounds were present in the infrared spectra of the plant extracts as
well as the AgNPs (Figures 5 and 6). The FTIR analysis of the AgNPs showed major peaks
at 3729.19 cm−1, 3434.14 cm−1, 2957.37 cm−1, 2860.83 cm−1, 1745.22 cm−1, 1635.04 cm−1,
1541.04 cm−1, 1458.00 cm−1, 1380.21 cm−1, 1265.41 cm−1, 1124.12 cm−1, 1039.87 cm−1,
and 554.85 cm−1 corresponding to the presence of alcohol, amines, imines, alkanes, nitro-
compounds, phenols, and alkyl halides as a major functional groups. These functional
groups might have been acting as capping, stabilizing, and reducing agents in the synthesis
of nanoparticles from the plant extract.
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Figure 6. FTIR analyses of AgNPs synthesized from aqueous leaf extract of R. apiculata to determine
functional groups responsible for the bioreduction.

2.5. Particle Size Analyzer and Zeta Potential

Using a zeta potential analyzer with D.L.S., the average hydrodynamic size and
dispersion of the AgNPs were analyzed. AgNPs with an average diameter of 99 nm, with a
zeta potential of −6 mV, were found by the DLS analysis (Figures 7 and 8).
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XRD Analysis

The XRD analysis showed sharp peaks at different angles i.e., 23.5210, 27.7920, 32.1954,
33.2915, 37.6234, 38.0849, 38.5761, 44.1340, and 46.1686. These degrees of angles cor-
responded to the crystalline nature of the material. Hence, it was confirmed that the
synthesized silver nanoparticles were crystalline (Figure 9).

2.6. In Vitro Antioxidant Activity

The in vitro antioxidant activity of the synthesized AgNPs and plant extract was
estimated using FRAP, H2O2, DPPH, and PM assays.

2.6.1. FRAP Assay

The FRAP assay was used to test different concentrations of the R. apiculata aqueous
leaf extract and its AgNPs, with ascorbic acid as a standard. The antioxidant activity
and absorbance increased when the concentration of both standard and AgNPs rose. The
AgNPs had higher antioxidant activity than the standard, with an absorbance of 1.81 ± 0.02,
while the standard showed an absorbance of 1.46 ± 003. The absorbance of the plant extract
was 0.86 ± 0.02 (Table 2).
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Table 2. FRAP assay of aqueous leaf extract of R. apiculata and its synthesized AgNPs.

Sl.No
Concentration

(µL/mL)
Optical Density at 700 nm

Std Ascorbic Acid R. apiculata Extract AgNPs

1 100 0.46 ± 0.003 0.44 ± 0.003 0.60 ± 0.036

2 200 0.75 ± 0.004 0.48 ± 0.003 0.80 ± 0.036

3 300 0.99 ± 0.004 0.53 ± 0.005 1.03 ± 0.054

4 400 1.13 ± 0.004 0.63 ± 0.003 1.51 ± 0.017

5 500 1.46 ± 0.003 0.86 ± 0.025 1.81 ± 0.025 *

Results were performed in triplicates and expressed as mean ± standard error. * One-way ANOVA followed by
post Tukey’s test revealed statistically significant differences (p ≤ 0.001) between the groups.

2.6.2. H2O2 Assay

The hydrogen peroxide radical scavenging assay revealed that the AgNPs showed
higher scavenging activity (74.98 ± 0.31% inhibition) than the standard (74.46 ± 0.13) and
the plant extract showed a 63.58 ± 0.44% inhibition (Table 3).
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Table 3. H2O2 assay of aqueous leaf extract of R. apiculata and its synthesized AgNPs.

Sl. No Concentration
(µg/mL) Samples Percentage (%)

Inhibition

1 100 Standard 74.46 ± 0.13 *

2 100 R. apiculata extract 63.58 ± 0.44 *

3 100 AgNPs 74.98 ± 0.31 *
Results were performed in triplicates and expressed as mean ± standard error. * One-way ANOVA followed by
post Tukey’s test revealed statistically significant differences (p ≤ 0.001) between the groups.

2.6.3. DPPH Assay

The R. apiculata leaf extract and its AgNPs were tested against ascorbic acid to deter-
mine their antioxidant potential. The aqueous leaf extract was shown to have equivalent
antioxidant activity to the AgNPs, while the standard ascorbic acid exhibited the highest
activity (Table 4).

Table 4. DPPH assay of aqueous leaf extract of R. apiculata and its synthesized AgNPs.

Sl.no
Concentration

(µg/mL)
Percentage Inhibition

Std Ascorbic Acid R. apiculata Extract AgNPs

1 10 67.78 ± 0.17 43.56 ± 0.70 51.04 ± 1.42

2 20 73.65 ± 0.23 46.27 ± 0.23 55.34 ± 0.98

3 30 78.20 ± 0.30 63.64 ± 0.35 63.48 ± 1.33

4 40 80.80 ± 0.35 72.9833 ± 0.66 66.39 ± 0.70

5 50 83.91 ± 0.35 77.36 ± 0.35 76.74 ± 0.76 *
Results were performed in triplicates and expressed as mean ± standard error. * One-way ANOVA followed by
post Tukey’s test revealed statistically significant differences (p ≤ 0.001) between the groups.

2.6.4. PM Assay

In this study, aqueous leaf extract of R. apiculata and its synthesized AgNPs were
put through a PM assay along with the standard ascorbic acid. The AgNPs exhibited
the highest antioxidant activity, followed by the aqueous plant extract and the standard
ascorbic acid (Table 5).

Table 5. PM assay of aqueous leaf extract of R. apiculata and its synthesized AgNPs.

Sl.no
Concentration

(µg/mL)
Optical Density at 695 nm

Std Ascorbic Acid R. apiculata Extract AgNPs

1 100 0.27 ± 0.004 0.52 ± 0.002 0.71 ± 0.039

2 200 0.50 ± 0.004 0.79 ± 0.013 0.95 ± 0.008

3 300 0.68 ± 0.004 0.92 ± 0.011 1.12 ± 0.044

4 400 0.90 ± 0.003 1.07 ± 0.001 1.37 ± 0.042

5 500 1.13 ± 0.007 1.27 ± 0.004 1.44 ± 0.004 *
Results were performed in triplicates and expressed as mean± standard error. * One-way ANOVA followed by
post Tukey’s test revealed statistically significant differences (p ≤ 0.001) between the groups.

2.6.5. In Vitro Anti-Inflammatory Assay

A protein denaturation assay was used to test the anti-inflammatory activity of a
known concentration of the AgNPs and aqueous leaf extract of R. apiculata. The anti-
inflammatory effect of the extracts was comparable to that of the standard drug Diclofenac
sodium. There were significant differences (p ≤ 0.001) in protein denaturation between the
groups. The results showed that the standard drug had the highest anti-inflammatory activ-
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ity (94.24 ± 1.90%), followed by AgNPs (71.65 ± 0.88%) and the plant extract (54.34 ± 3.26%)
(Table 6).

Table 6. Anti-inflammatory activity of aqueous leaf extract of R. apiculata and its synthesized AgNPs.

Sl. No. Concentration
(µg/mL) Treatment % Inhibition

1 100 Standard 94.24 ± 1.90 *

2 500 AgNPs 71.65 ± 0.88 *

3 500 R. apiculata extract 54.34 ± 3.26 *
Results were performed in triplicates and expressed as mean± standard error. * One-way ANOVA followed by
post Tukey’s test revealed statistically significant differences (p ≤ 0.001) between the groups.

2.7. Cytotoxicity Activity of Aqueous Leaf Extract of R. Apiculata and Its Synthesized AgNPs
against Non-Cancerous Fibroblast L929 Cell Line

The present cytotoxicity cell viability assay revealed that in both the tested samples,
dose-dependent activity was observed. In comparison, the aqueous leaf extract of R.
apiculata showed a larger decrease in the cell viability than the AgNP-treated cells. In the
case of the plant extract, the percentage of cell viability was observed to be 46.81 ± 0.002%,
whereas for the AgNPs, it was observed to be 77.50 ± 0.005 % (Table 7 and Figure 10).
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Table 7. Cytotoxicity of aqueous leaf extract of R. apiculata and its synthesized AgNPs against L929
cell line.

Samples Concentration in µg/mL Percentage of Cell Viability IC50 in µg/mL

R. apiculata extract

10 97.44 ± 0.001

47.47
20 84.03 ± 0.005

30 73.55 ± 0.001

40 58.65 ± 0.001

50 46.81 ± 0.002

AgNPs

10 98.57 ± 0.005

105.50
20 92.47 ± 0.001

30 90.22 ± 0.001

40 83.69 ± 0.005

50 77.50 ± 0.005

Results were performed in triplicates and represented as mean ± standard error.

2.8. Cytotoxic Activity of Aqueous Leaf Extract of R. apiculata and Its Synthesized AgNPs against
A375 (Skin Cancer), A549 (Lung Cancer), and KB-3 (Oral Cancer)

The silver nanoparticles showed significant activity with a high percentage of cell
death and a lower percentage of cell viability, i.e., for skin cancer (A375), the AgNPs showed
31.84 ± 0.004%, for lung cancer (A549) it was 56.09 ± 0.010%, and for oral cancer (KB-3) it
was 22.59 ± 0.022%. On comparison within the tested group of cancer cell lines, the AgNPs
showed a higher activity in oral cancer followed by skin cancer and lung cancer. In the case
of the plant extract, the MTT cell viability results showed that, compared to the AgNPs,
the extract showed moderate activity, i.e., for skin cancer (A375) 82.69 ± 0.002%, for lung
cancer (A549) 73.73 ± 0.002%, and ovary cancer 67.17 ± 0.002% (Table 8 and Figure 11).

Table 8. Anticancer activity of R. apiculata and its synthesized AgNPs against different cancer
cell lines.

Samples Concentration in
µg/mL

Percentage of Cell
Viability for A375

Percentage of Cell
Viability for A549

Percentage of Cell
Viability for KB-3-1

R. apiculata extract

10 99.72 ± 0.001 99.07 ± 0.003 92.20 ± 0.005
20 97.35 ± 0.001 92.72 ± 0.001 88.59 ± 0.015
30 91.05 ± 0.001 87.36 ± 0.002 81.15 ± 0.002
40 87.75 ± 0.001 83.22 ± 0.003 75.51 ± 0.005
50 82.69 ± 0.002 73.73 ± 0.002 67.17 ± 0.001

AgNPs

10 86.01 ± 0.005 95.56 ± 0.009 70.95 ± 0.005
20 65.60 ± 0.002 88.58 ± 0.002 58.12 ± 0.005
30 54.49 ± 0.002 74.76 ± 0.001 43.16 ± 0.010
40 44.46 ± 0.005 67.95± 0.004 33.69 ± 0.002
50 31.84 ± 0.004 56.09 ± 0.010 22.59 ± 0.022

Results were performed in triplicates and represented as mean ± SEM.
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2.9. In Vitro Wound Healing Activity of Aqueous Leaf Extract of R. apiculata and Its
Synthesized AgNPs

The cell migration results showed an increase in the cell migration in the standard
and AgNPs- treated cells than the aqueous leaf extract of R. apiculata. In comparison, the
standard drug ascorbic acid showed higher cell migration activity followed by the AgNPs,
plant extract, and the untreated group. For the standard at 6 h, 12 h, and 24 h, the cell
migration was found to be 25.47 µm, 28.03 µm, and 21.74 µm, respectively. Similarly, the
AgNPs showed 14.43 µm, 20.56 µm, and 18.23 µm of cell migration at 6 h, 12 h, and 24 h,
respectively. The aqueous leaf extract of R. apiculata showed 11.63 µm, 14.58 µm, and
18.74 µm. In the case of the wound closure study, 24 hrs of incubation was considered
for the analysis and calculation. In comparison, the standard drug ascorbic acid showed
a value of 96.26% of wound closure. In contrast, the AgNPs and aqueous leaf extract of
R. apiculata showed 82.79% and 75.23%, respectively, and for the untreated group, it was
found to be 9.13% (Tables 9 and 10 and Figure 12).
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Table 9. Cell migration of different test samples at different duration.

Sl.No Test Sample Duration Cell Migration in µm

1 Untreated 6 h 2.96

12 h 2.50

24 h 2.07

2 Ascorbic acid 6 h 25.47

12 h 28.03

24 h 21.74

3 R. apiculata extract 6 h 11.63

12 h 14.58

24 h 18.74

4 AgNPs 6 h 14.43

12 h 20.56

24 h 18.23

Table 10. Percentage of wound closure of different test samples.

Sl.No Test Sample Percentage of Wound Closure at 24 h

1 Untreated 9.13

2 Standard drug Ascorbic acid 96.26

3 R. apiculata extract 75.23

4 AgNPs 82.79Molecules 2022, 27, 6306 14 of 25 
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3. Discussion

The “green” method for making nanoparticles, which is faster than traditional chemical
synthesis, is fascinating because it is good for the environment, saves money, is practical,
and can be used in many different ways. Biosynthesized nanoparticles are a relatively new
field, and they can be used in many different ways, such as drug delivery, cancer therapy,
gene treatment and DNA analysis, antibacterial agents, biosensors, increasing response
rates, and so on. Nanoparticles are used in electrical engineering, medicine, biology,
textiles, and chemistry. The shape and size of colloidal metal particles are significant
in many applications, such as making magnetic and electronic devices, healing wounds,
expressing antimicrobial genes, and making bio composites. Based on the size and shape of
the particles, the optical and electromagnetic properties of noble metal colloids vary [19].

Unlike physical and chemical methods, the green eco-friendly synthesis of nanoparti-
cles is biocompatible, cost-effective, takes less time and energy, and is non-toxic. Biological
sources such as plant extracts, bacteria, fungi, and algae are used to make silver nanoparti-
cles [20,21]. This study used a method called “phytoreduction” to make silver nanoparticles
from the R. apiculata plant. In the process of turning silver into silver nanoparticles, the leaf
extract from R. apiculata was used as a reducing and capping agent. Screening for phyto-
chemicals showed a wide range of secondary metabolites, most of which were saponins,
glycosides, terpenoids, phenols, flavonoids, and tannins. The high levels of phenols and
flavonoids in the aqueous leaf extract of R. apiculata were also quantified. For the creation
of silver nanoparticles, a concentrated aqueous leaf extract was added to a solution of
silver nitrate, and the change in the color confirmed the formation of AgNPs. After 4 h, the
solution turned a dark brown color. The surface and shape of the AgNPs were confirmed
by SEM studies. The SEM analysis revealed R. apiculata AgNPs with diameters ranging
from 35 to 100 nm. The EDX analysis gives a qualitative and quantitative status of the
elements that may contribute to the formation of N.P.s. EDX spectroscopy was used for
elemental analysis. Based on the analysis, Ag seemed to be the key ingredient. Due to
surface plasmon resonance (SPR) [22], metallic AgNPs show a typical optical absorption
peak around 3.00 keV. A strong signal of metallic silver nanoparticles at 3 Kev confirmed
the formation of silver nanoparticles.

The FTIR spectra of the plant extract and AgNPs revealed the presence of functional
groups such as alkyl halides, alkynes, aromatics and aliphatic amines, esters, ethers, alcohol,
carboxylic acids, and nitro compounds, which may have acted as capping and reducing
agents for the synthesis of the AgNPs. The FTIR findings were consistent with the findings
of Rashid et al., 2021, who used FTIR analysis to determine the type of bonds and functional
group in Au:ZnO (core:shell) nanoparticles via laser ablation nanoparticles prepared in
deionized water [23].

The zeta potential method shows how the surface charge changes over time. This
method is used to control the stability of metal nanoparticles in colloidal form. When the
zeta potential of metal nanoparticles is either very positive or very negative, they tend to
push away from each other and do not want to come together. However, when the absolute
zeta potential is low, these particles stick together and clump together because no force
keeps them from doing so. Using the dynamic light scattering measurement technique,
the size of the silver nanoparticles was identified. Dynamic light scattering (DLS) is a way
to measure the size of particles by pointing a laser beam on a suspension of particles or
molecules moving in a Brownian motion. Size and zeta potential are important because
they directly affect the particles stability, biodistribution, and uptake by cells [24,25]. In
this study, a zeta potential analyzer with the DLS technique was used to figure out the
average hydrodynamic size and size distribution of the green-made AgNPs. The DLS
measurements showed that the AgNPs had an average diameter of 99 nm and a zeta
potential of -6 mV. The amount of electrolyte and the pH of the dispersion have a big
effect on the zeta potential of the particles. Due to negative repulsion, AgNPs have a good
colloidal nature, stay stable over time, and spread out well when they have a high negative
potential value [26].
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Free radicals are chemical species with one or more electrons that are not paired with
another electron. These are very unstable, and they take electrons from other molecules
and damage them. These free radicals speed up the body’s abnormal, uncontrolled oxi-
dation process. This causes the antioxidant defense system to fail and damages the cell
structures, which increases the risk of Alzheimer’s, Parkinson’s, heart disease, liver dis-
ease, inflammation, and cancer, among other diseases. The risk of chronic disease and its
progression can be reduced by boosting the body’s natural antioxidant defense or taking
proven antioxidant supplements [27]. Antioxidant mechanisms in biological tissues are
very complicated, and it is hard to judge the antioxidant power of crude extracts with just
one method [28]. There are several in vitro testing methods for the antioxidant activity of
pure compounds or extracts. So, in this study, four in vitro tests were used: the FRAP, PM,
H2O2, and DPPH tests.

In the case of the FRAP assay, dose-dependent activity was observed. Among the
tested groups, the silver nanoparticles showed the highest absorbance value, i.e., 1.81 ± 0.02
than standard ascorbic acid and aqueous leaf extract of R. apiculata. The standard drug
ascorbic acid and the aqueous leaf extract showed 1.46 ± 0.003 and 0.86 ± 0.02, respectively.

The single concentration of silver nanoparticles, aqueous R. apiculata leaf extract, and
standard ascorbic acid were tested for scavenging activity in a hydrogen peroxide assay. The
AgNPs proved to be significant with the highest percentage of inhibition, i.e., 74.98 ± 0.31,
whereas the standard ascorbic acid and aqueous leaf extract showed 74.46 ± 0.13 and
63.58 ± 0.44, respectively.

In the DPPH assay, the results were expressed in terms of the percentage of inhibition.
The AgNPs and aqueous leaf extract were compared with the standard drug ascorbic acid.
The results proved that the aqueous leaf extract showed higher activity than the AgNPs
and standard ascorbic acid with 83.91 ± 0.3 percentage of inhibition, whereas the AgNPs
and standard ascorbic acid showed 76.74 ± 0.7 and 77.36 ± 0.3 respectively.

In the case of the PM assay, the antioxidant activity was measured and expressed in the
form of absorbance. The AgNPs showed higher absorbance, i.e., 1.447 ± 0.004, whereas the
standard ascorbic acid showed 1.131 ± 0.007 and aqueous leaf extract showed 1.27 ± 0.004.

Inflammation plays a big part in many diseases, such as atherosclerosis, arthritis,
asthma, heart disease, cancer, and other diseases [29]. Steroids and non-steroidal anti-
inflammatory drugs are the main types of medicines used to treat inflammation. Their
associated side effects (GI problems and leukopenia, for example) have made it necessary
to discover other anti-inflammatory drugs that work the same way but do not have any
adverse effects [30,31]. A protein denaturation assay was used to test the anti-inflammatory
activity of known concentrations (100 g) of synthesized AgNPs and aqueous leaf extract of
R. apiculata. In vitro, the anti-inflammatory effect of the extracts was comparable to that of
the standard drug, Diclofenac sodium.

The levels of cell viability and rates of cell growth are good ways to judge if a cell
is healthy. Cell health and metabolism can be changed by physical and chemical things.
These agents can be toxic to cells in different ways, such as by destroying cell membranes,
stopping protein synthesis, binding irreversibly to receptors, stopping polydeoxynucleotide
elongation, and stopping enzymes from carrying out their jobs [32]. In vitro cell viability
and cytotoxicity assays are often conducted with cultured cells to test chemical safety and
find new drugs. In recent years, there has been more interest in how these tests can be used.
At the moment, these assays are also used in oncology research to test both the toxicity of a
compound and its ability to stop tumor cells from growing. Because they are quick, cheap,
and don’t need to use animals, their applications are growing in the research area.

In the present study, a toxicity assay was studied by using an in vitro MTT cell viability
assay against a non-cancerous fibroblast L929 cell line. The cytotoxicity cell viability
assay revealed that, in both tested samples, a dose-dependent activity was observed.
On comparison, the aqueous leaf extract of R. apiculata showed a larger decrease in cell
viability as compared to the AgNP-treated cells. In the case of the plant extract, the
percentage of cell viability was observed to be 46.81 ± 0.002, whereas for the AgNPs it was
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observed to be 77.50 ± 0.005. The results from the present study corroborate with those of
previously reported studies. For example, Wen et al., 2020, reported that R. apiculata silver
nanoparticles had strong cytotoxic effects on human osteosarcoma MG-63 cells, which
could be attributable to the silver nanoparticles’ antioxidant activity [16]. Similarly, Daphne
et al., 2018, reported that AgNPs synthesized by potent yeast isolates demonstrated positive
antioxidant and antibacterial action, with AgNPs being bacteriostatic at low concentrations
(5 ug/mL) and bactericidal at high concentrations (100 ug/mL) [21].

AgNPs are superior to other bulk materials because they have a good structure, are
stable, and have a larger surface area [33]. Physical and chemical routes of synthesis are
hazardous compared to biological methods [34]. Recently, physical, chemical, radiation
therapy, chemotherapy, and surgical treatments are not working as well as they used to for
the management of cancer. A big reason why drugs do not work is that cancer cells become
resistant to them [35]. The discovery and development of new drugs to stop the growth of
cancer cells is challenging because of their side effects, toxicity, and high cost [36].

Most people with light skin develop skin cancer. In many developed countries,
skin cancer cases have increased in the last few decades, which is a big health risk [37].
Therapeutic agents that are currently approved to treat malignant skin cancers have serious
side effects, so it is important to come up with new therapeutic agents that work better
and have fewer side effects [38,39]. Lung cancer is the most common type of cancer, and
it kills and sickens many people all over the world. It is getting worse every day, and it
is thought that about 10,000 new cases will happen every year [40]. In addition, it is the
second most common non-communicable disease, with 50% of men and 30% of women
having it [41,42].

In the present study, the cytotoxic activity was studied by taking different concen-
trations (10–50 µg) of aqueous leaf extract of R. apiculata and its synthesized AgNPs in
A375 (Skin cancer), A549 (Lung cancer), and KB-3 (oral cancer) cell lines. Untreated and
standard drug cisplatin-treated cells were taken as negative and positive groups. The silver
nanoparticles showed significant activity with a high percentage of cell death and a lower
percentage of cell viability in all the tested cell lines. On comparison within the tested
group of cancer cell lines, the AgNPs showed a higher activity in oral cancer followed by
skin cancer and then lung cancer. These results are consistent with previous studies, which
reported a higher cytotoxic activity of the synthesized nanoparticles [16,24].

The skin is the body’s largest organ and is responsible for maintaining bodily home-
ostasis and protecting the body from pathogenic bacteria, UV radiation, and toxins, among
other things [43]. Wounds form when the skin’s integrity is disturbed, and they usually
recover in three months. Chronic wounds are defined as wounds that do not heal within
three months for various reasons [44]. Chronic wounds, a silent killer, are one of the many
risks that older people face. Non-healing chronic wounds affect not just elderly people,
but also people with diabetes, nephropathies, cardiovascular diseases, and other lifestyle
conditions [44]. A persistent wound that does not heal reduces an individual’s productivity
and places a significant financial burden on the individual as well as the healthcare sys-
tem [45]. The most commonly used medications to treat wounds in impoverished nations
are cetrimide solution, sodium hypochloride, chlorhexidine, and others. These drugs have
been shown to be ineffective and have negative effects when taken for long periods [46,47].
Burn patients are sensitive to infections because severe thermal injury damages the skin’s
surface barrier and causes an immunological condition [48].

In the present study, the in vitro wound healing activity of aqueous leaf extract of
R. apiculata and its synthesized AgNPs was studied by using scratch assay against a non-
cancerous fibroblast cell line L929. The cell migration results showed an increase in the
cell migration in the standard- and AgNP-treated cells than the aqueous leaf extract of R.
apiculata. The standard drug ascorbic acid showed higher cell migration activity, followed
by the AgNPs, the plant extract, and the untreated group. In the case of the wound closure
study, the standard drug ascorbic acid showed 96.26% of wound closure, whereas the
AgNPs and aqueous leaf extract of R. apiculata showed 82.79% and 75.23%, respectively,



Molecules 2022, 27, 6306 17 of 24

whereas for the untreated group it was found to be 9.13%. These results are consistent
with the findings of Veeraraghavan et al., 2021, who reported that silver nanoparticles from
aqueous extract of Scutellaria barbata had potent wound healing activity confirmed with a
wound scratch assay on fibroblast cells (L929) [49]

The emerging biochemical applications of nanotechnology are focused on the devel-
opment of nanoparticles with enhanced antioxidant and antibacterial properties to combat
degenerative diseases such as Alzheimer’s and cancer, among others [50,51]. Due to their
unique physiochemical properties, metal nanoparticles have received a lot of attention
and are now a hot topic for research in fields such as sensors, imaging, cosmetics, cancer
therapy, and drug delivery [52]. When silver nanoparticles were invented, they altered
the way silver was used in the medical industry [44]. Increasingly, silver nanoparticles are
being used in wound dressings, medicine transporters, and even in artificial implantations
because of their antibacterial properties [53,54].

AgNPs toxicity to human tissues has been studied extensively in recent years, and it
has been found safe for medicinal formulations [55]. A recent review has highlighted the
applications of AgNPs in the pharmaceutical and cosmetic industry, tissue engineering,
anti-infective therapy and wound care, food, and the textile industry [56]. The present
study’s findings are consistent with those of previous studies that have reported the various
biomedical applications of AgNPs [57–60]. As a result, nanotechnology is significantly
advancing healthcare field. Researchers use nanoparticles in drug delivery systems, medical
imaging, and tumor targeting. Nanoparticle-based medicines have several uses; they can
both detect cancers and transport drugs to treat them [58,59].

4. Materials and Methods
4.1. Collection of Plant Material

The plant material (leaves) was collected from the Anshi jungle region of the Western
Ghats, in Uttar Kannada District, Karnataka State, India, in March 2022, and was identified
by Dr. Kotresha K, of Karnataka Science College’s Department of Botany, Dharwad,
Karnataka, by consulting the voucher specimen that is deposited in Karnataka Science
College, Dharwad, Karnataka. The leaves were shade-dried, and a motorized grinder was
used to reduce the dried leaves into a coarse powder. The powder was maintained in sealed
containers at room temperature for further use. All the chemicals and solvents used in this
research were purchased from Hi-media in India and were of analytical quality.

4.2. Preparation of Plant Extract

For 48 h, a Soxhlet device was used to extract 25 gm of powdered leaves in 1000 mL
of distilled water. The above procedure was repeated for four batches, i.e., 4000 mL of
distilled water and 100 gm of powdered leaves were used for the extraction process. The
resulting aqueous extract was concentrated using a rotary evaporator. The subsequently
concentrated extract was then dried in desiccators to give a final yield of 3.8 g of dried
extract and kept in an airtight bottle at 4 ◦C for further use. The percentage yield was
calculated using the following formula: % Yield = R/S 100, where R = extracted weight by
leaf residue and S = initial sample weight. AgNPs were synthesized using the R. apiculata
aqueous extract as a reductant and stabilizer [61].

4.3. Qualitative Analysis of Metabolites

Following the procedure described by Deepti et al. (2012): the crude aqueous leaf
extract of R. apiculata was qualitatively tested for the presence of various groups of metabo-
lites, including flavonoids, alkaloids, phenols, glycosides, lignins, sterols, saponins, an-
thraquinones, tannins, and reducing sugars [62].

4.4. Estimation of Total Phenolic Content

Spectrophotometry was used to determine the total phenolics in the plant extract
(Singleton et al., 1999) [63]. Calibrating curves for gallic acid (G.A.) were made in the
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range of 20–100 µg/mL. Lastly, the phenolic concentrations were changed into gallic acid
equivalents, i.e., µg GA/g of dry weight (dw) of the extract. The standard calibration curve
(Y = 0.001X + 0.113) was used to determine the total amount of phenolics.

4.5. Estimation of Flavonoids Content

The amount of flavonoids present in the plant extract was determined using the
method described by Chang et al., 2002 [64] using quercetin as a reference standard, and
the absorbance of the sample was quantified at 415 nm using a UV-VIS spectrophotometer.

4.6. Synthesis of Silver Nanoparticles

A total of 1 mL of R. apiculata leaf extract (concentration 50 mg/mL) was added to
10 mL of 1 mM AgNO3 aqueous solution (ratio 1:10) and shaken vigorously for 30 s. The
complete reaction mixing procedure was conducted in a dark environment at room temper-
ature (26–27 ◦C) to minimize unwanted photochemical reactions. The oxidation/reduction
process was visible after the colorless reaction mixture had been incubated and reacted for
the required time [65]. An aqueous mixture containing AgNPs was centrifuged at 10,000
rpm for 10 min and then re-dispersed in double-distilled water to remove the remaining
aqueous extract from the freshly synthesized AgNPs, which were allowed to dry in pow-
der [66]. The AgNP synthesis was performed on a pilot scale to optimize the conditions.
Later on, the process was scaled-up for the synthesis of R. apiculata AgNPs in a single batch.

4.7. Characterization of Newly Synthesized AgNPs

All of the characterizations and bioassays performed in this investigation used a single
batch of the synthesized R. apiculata AgNPs. An array of analytical methods were employed
to characterize the produced AgNPs. These included FTIR and U.V.–visible analysis; energy
dispersive X-ray analysis; scanning electron microscopy; zeta potential, and particle size
analyzer.

4.7.1. U.V.–Visible Spectroscopy-Based Analysis

To confirm the colloidal solution’s reduction in silver ions, a U.V.–visible spectroscopy
(U-3310, Hitachi, Tokyo, Japan), was used to examine the U.V. spectrum of 1 mL of an aliquot
sample in a quartz cuvette, scanning for wavelengths between 200 and 700 nanometers, in
comparison to distilled water as a control and 1 mM AgNO3 as a blank [67].

4.7.2. FTIR-Based Analysis

To identify the functional groups (bio-groups) that bind to the silver surface and play
a role in the creation of AgNPs, FTIR spectroscopy was utilized (S700, Nicolet, MA, USA).
After 72 h of incubation, the reaction mixtures were centrifuged three to four times at
10,000 rpm for 15 min to separate the AgNPs. Deionized water was used to replace the
supernatant, and the particles were powdered and stored. The dried AgNPs were pelleted
with potassium bromide in 1:100 ratios and submitted to FTIR analysis [68,69].

4.7.3. Scanning-Electron-Microscopy-Based Analysis

Scanning electron microscopy (JSM-IT 500, Jeol, Boston, MA, USA), was used to
determine the surface morphology of nanoparticles. After a 4- to 6-h reaction, the sample
was prepared by centrifuging a colloidal solution at 10,000 rpm for five minutes. The pellet
was re-centrifuged and re-dispersed in deionized water, a procedure carried out numerous
times before the dry pellet was obtained. Once the AgNPs had been cleaned, they were
suspended using sonication for 5–10 min, one cycle at a time. Carbon-coated grids were
then used to set the suspension’s drop on. The sample was entirely dried under light. SEM
analysis was performed on the prepared sample [69].
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4.7.4. Energy Dispersive X-ray

In this study, reduced AgNPs were dried on a carbon-coated copper grid, then exposed
to EDX (JSM-IT 500, Jeol, Boston, MA, USA), and the elemental composition of the reduced
AgNPs was determined using this approach [68].

4.7.5. Zeta Potential Observations of N.P.s

The zeta potential of the colloidal N.P.s may be employed to gather further information
on their stability. The zeta potential amplitude suggests the possible colloid stability based
on its measurement. According to Meléndrez and colleagues (2010) [70], particles with zeta
potentials more positive than +30 mV or more negative than −30 mV are normally con-
sidered stable. With the laser zeta meter, we examined potentials on the surface (Malvern
zeta seizer 2000, Malvern, Worcestershire, UK). NaCl was used as a suspending electrolyte
solution (2 10–2 M NaCl) to dilute the liquid nanoparticle samples (5 mL). After that, the pH
was set to the desired level. For 30 min, the samples were shaken vigorously. Metal particles’
zeta potential and equilibrium pH were obtained after shaking. The silver nanoparticles’
surface potential was measured using a zeta potential analyzer. Each measurement was
based on an average of three measurements.

4.7.6. Particle Size Analyzer

The PSA analysis was performed on a lyophilized and ultrasonicated sample (SZ-100,
Horiba, Kyoto, Japan) to determine the samples’ particle sizes [68].

4.7.7. X-ray Diffraction (XRD) Analysis

In the present study, the synthesized silver nanoparticles from aqueous leaf extract
of R. apiculata were subjected to XRD analysis (Smart Lab SE, Rigaku, Tokyo, Japan) to
determine the nature and average size of the nanoparticles [23].

4.8. In Vitro Measurement of Antioxidant Activity
4.8.1. Ferric Ion-Reducing Antioxidant Power Assay (FRAP)

According to Oyaizu. (1986) [71] with a minor adjustment, the ferric ions’ reduc-
ing power was assessed. Concentrations of aqueous extract of R. apiculata leaf and the
synthesized AgNPs ranged from 100, 200, 300, 400, and 500 µg/mL. The mixture was
then incubated for 30 min at 50 degrees Celsius with 2.5 milliliters of 20 mM phosphate
buffer and 2.5 milliliters of 1 percent w/v potassium ferricyanide. It was then cooled and
incubated for another 10 min before adding 2.5 mL trichloroacetic acid and 0.5% ferric
chloride to the mixture. A UV-VIS spectrophotometer was used to detect the absorbance at
700 nm. Ascorbic acid was utilized as a benchmark. Each sample was tested three times
in triplicates.

4.8.2. Hydrogen Peroxide Scavenging Assay

R. apiculata leaf extracts and their generated AgNPs were tested for their capacity to
scavenge hydrogen peroxide using ascorbic acid as a reference to evaluate their antioxidant
activity. A total of 0.6 mL of phosphate buffer (pH-7.4) containing 4 mM H2O2 was added
to 0.5 mL of standard ascorbic acid at a known concentration, as well as to tubes containing
plant extracts at various concentrations ranging from 100 to 500 µg/mL in phosphate
buffer (pH-7.4). We assessed the solution’s absorbance at 230 nm after ten minutes using
a phosphate buffer and a hydrogen-peroxide-free blank solution. Phosphate buffer was
substituted for the sample or standard in the control preparation. Each sample was tested
three times. The formula approach was used to compute the percentage of inhibition.

Percentage of inhibition % = Ac − At/Ac × 100
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4.8.3. DPPH Free-Radical-Scavenging Ability Assay

The free-radical-scavenging activities of the R. apiculata aqueous leaf extract and its
produced AgNPs were evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free
radical test [72]. A total of 3 mL of 0.1 mM DPPH in methanol solution was added to
each aqueous extract and its AgNPs. Tubes were vigorously shaken and left at room
temperature for 30 min in the dark. At 517 nm, absorbance was measured using a UV-VIS
spectrophotometer. The control was distilled water, and the standard was ascorbic acid.
Following the below formula, each sample’s ability to scavenge DPPH was determined.

% inhibition = Ac − At/Ac × 100

where in Ac is the absorbance of the control and At is the absorbance of the test sample.
Experiments were carried out in triplets. All of the substances that were tested had their
IC50 values determined. A higher level of free radical activity was indicated by lower
absorbance of the reaction mixture.

4.8.4. Phosphomolybdenum (PM) Assay

According to Prieto et al., 1999 [73], the standard PM test was used to determine the
total antioxidant activity. Leaf extracts and the AgNPs were added to each test tube at
a concentration of 100, 200, 300, 400, and 500 µg/mL, and each tube included 3 mL of
distilled water and 1 mL of molybdate reagent. For 90 min, these tubes were held at 95 ◦C.
A 695 nm absorbance reading was taken after the reaction mixture was adjusted to room
temperature for 20–30 min. Ascorbic acid was utilized as a standard.

4.9. Evaluation of In Vitro Anti-Inflammatory Activity

Using the protein denaturation technique published by Padmanabhan et al., 2012 [74],
the anti-inflammatory efficacy of R. apiculata aqueous leaf extract and its AgNPs was
investigated. The potent non-steroidal anti-inflammatory drug diclofenac sodium was
used as a standard drug. A total of 2 mL of synthesized AgNP (100 µg/mL) was added to
2.8 mL of phosphate-buffered saline (pH 6.4) and 2 mL of egg albumin (from fresh hen’s egg
(1 mM)) in the reaction mixture, which was incubated for 15 min at 27 ± 1 ◦C. The mixture
was heated in a water bath at 70 ◦C for ten minutes to produce denaturation. After cooling
to room temperature, the absorbance was measured at 660 nm. Each experiment was
carried out three times over. To calculate the percentage of protein denaturation inhibition,
the following formula was used:

% inhibition= Ac−At/Ac × 100

where, At = absorbance of test sample; Ac = absorbance of control.

4.10. Determination of the Cytotoxic Activity of Aqueous Leaf Extract of R. apiculata and Its
Synthesized Silver Nanoparticles Using MTT Assay

A standard colorimetric MTT assay using 3-(4,5-dimethylthiazol- 2-yl)-2,5-dimethyl
tetrazolium bromide dye (Sigma, St. Louis, MO, U.S.A.) was used by Carmichael et al. [75]
to test the effect of R. apiculata aqueous leaf extract and synthesized silver nanoparticles on
the viability of non-cancerous fibroblast cells L929 (1987). Based on dose–response curves
created for each cell line, an IC50 value for the concentration of the test medication needed
to suppress cell growth by 50% (IC50) was computed. Mitochondrial dehydrogenase of
undamaged cells reduces MTT to a purple formazan residue [76].

Inhibition Percentage = OD of Test sample ÷ OD of control × 100

4.11. In Vitro Wound Healing Study by Using Scratch Assay Test

Plant extract and silver nanoparticles were examined for the migration capabilities
of the L929 cell line [77]. Animal cell culture plates with DMEM medium supplemented
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with 10% FBS and 2 percent penstrip antibiotic were used to start the cell culture process.
After achieving a cell density of roughly 50,000, a sterile 100 µL plastic pipette tip scratch
was used to generate a monolayer confluent of cells. PBS solution was used to wash away
cell debris. Untreated cells were used as a negative control, whereas standard ascorbic
acid was used as a positive control. A 24-h incubation period at 37 ◦C with 5% CO2 was
then carried out on the cells. To evaluate relative cell migration and wound closure, the
scratched cell layers were incubated for various lengths of time: 0 h, 6 h, 12 h, and 24 h.
MagVision Software was used to calibrate 4× magnification to assess the gap distance.
Applying the following formula, wound closure and migration rates were calculated:

Wound closure (%) = A0h − ATh/ATh × 100

Rm (Rate of migration) = Wi—Wf/T

where A0h represents the wound’s initial size, ATh represents the wound’s size after h hours,
Rm represents the rate of migration (m/h), Wi represents the initial wound width (µm), Wf
represents the final wound width (µm), and T represents the duration of migration (hour).

4.12. Statistical Analysis

All experiments were conducted in triplicate (n = 3), and the results were reported as
the mean standard deviation and the standard error of the mean. Using a one-way ANOVA
analysis in the IBM SPSS Version-20, we determined the differences in means between the
various groups.

5. Conclusions

The present study is one of the first to report the R. apiculata AgNPs wound healing
potential and cytotoxic activity against the A375 (Skin cancer), A549 (Lung cancer), and
KB-3-1 (Oral cancer) cell lines. In the present study, aqueous leaf extract of R. apiculata
was used as a reducing agent for the synthesis of silver nanoparticles from silver nitrate.
The synthesized silver nanoparticles were characterized by several techniques such as
SEM-EDX, FTIR, a particle size analyzer, XRD, and zeta potential. All the analytical
techniques confirmed the synthesis of silver nanoparticles. Antioxidant, anti-inflammatory,
and cytotoxicity investigations against cancer cell-lines revealed that the AgNPs had
significantly higher activity than the plant extract. In the case of the in vitro wound
healing activity, the AgNPs showed more potent cell migration and wound closure than the
plant extract. In future, R. apiculata should be further explored to unmask its therapeutic
potential and the mechanistic pathways of AgNPs should be studied in detail in in vivo
animal models. In light of these encouraging findings, we recommend further research into
the following areas: the effect of harvesting location, season, and quantity on metabolite,
phenolic, and flavonoid presence; the feasibility of performing at least one additional
scale-up synthesis of an additional extract to demonstrate effects similar to those reported
in the manuscript; and the stability of extracts and nanoparticles during storage to ensure
its safety.
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