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ABSTRACT

The relationship between structural and functional connectivity has been mostly examined in

intact brains. Fewer studies have examined how differences in structure as a result of injury

alters function. In this study we analyzed the relationship of structure to function across

patients with stroke among whom infarcts caused heterogenous structural damage. We

estimated relationships between distinct brain regions of interest (ROIs) from functional MRI

in two pipelines. In one analysis pipeline, we measured functional connectivity by using

correlation and partial correlation between 114 cortical ROIs. We found fMRI-BOLD partial

correlation was altered at more edges as a function of the structural connectome (SC)

damage, relative to the correlation. In a second analysis pipeline, we limited our analysis to

fMRI correlations between pairs of voxels for which we possess SC information. We found

that voxel-level functional connectivity showed the effect of structural damage that we could

not see when examining correlations between ROIs. Further, the effects of structural damage

on functional connectivity are consistent with a model of functional connectivity, diffusion,

which expects functional connectivity to result from activity spreading over multiple edge

anatomical paths.

AUTHOR SUMMARY

Examining the structure to function relationship at damaged edges in the structural

connectome due to lesions from stroke we find the following:

Partial correlation reflects structural connectome damage in 24% of edges tested.

Voxel-to-voxel correlation guided by structural connectivity shows the presence of SC

damage in 39% of edges tested.

Edges that show modulation when using voxel-to-voxel correlation are consistent with

diffusion as a model of functional connectivity.

Our work provides evidence that for pairs of regions that are not directly anatomically

connected due to lesions from stroke, signals must be communicated through intermediate

region-to-region steps along an anatomical path.
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Damaged SC linked to altered rs-fMRI functional connectivity

INTRODUCTION

A large body of literature has demonstrated significant temporal correlations, labeled functional

connectivity, in the blood oxygen level-dependent (BOLD) signal between spatially distinct

brain regions of interest during rest (e.g., see Greicius, Krasnow, Reiss, & Menon, 2003; Xiong,

Parsons, Gao, & Fox, 1999). Resting-state fMRI-BOLD functional connectivity appears to have

broad use as a potential biomarker (Drysdale et al., 2017; Liem et al., 2017; Rane et al., 2015)

and has been shown to predict task-based BOLD activation (Cole, Ito, Bassett, & Schultz, 2016;

Tavor et al., 2016). One critical question that arises is, what mechanism gives rise to resting-

state functional connectivity? A potential answer comes from the anatomy-axonal fiber tracts

must be the backbone that supports functional connectivity. While the origin of our hypothesis

is at the scale of neurons, the fMRI-BOLD and diffusion tensor imaging (DTI) are macroscale

(neural mass scale) brain imaging techniques. However, we can expect a persistent statistical

relationship across scales that should allow us to relate fMRI-BOLD and DTI. Recently, there

have been tools developed (Johansen-Berg & Rushworth, 2009) to map the entire set of fiber

tracts and this has been termed as the structural connectome (Sporns, Tononi, & Kötter, 2005).

However, conclusively establishing an exact relationship between structural and functional

connectivity has proved difficult (Straathof, Sinke, Dijkhuizen, & Otte, 2018).

Identifying the relationship between structural and functional connectivity requires spec-

ifying a model of how neural dynamics spread over the axonal fibers. Studies have exam-

ined different models of how simple dynamics spread over the structural connectome and

their ability to capture the functional connectivity. The simplest model one can assume is that

activity spreading over single-edge (defined as a direct structural connectome connection)

connections between two distinct regions leads to functional connectivity. Initial examina-

tions of the structural to functional connectivity relationship assuming a single-edge model

with simple Gaussian noise dynamics found that structural connectivity was indeed correlated

with functional connectivity (see Straathof et al., 2018 for a thorough review, Honey, Kötter,

Breakspear, & Sporns, 2007; Koch, Norris, & Hund-Georgiadis, 2002; O’Reilly et al., 2013;

Van Den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009) but at its best, shows shared variance in

the range of 60% with the functional connectivity. However, another line of work has exam-

ined models that incorporate multi-edge connectivity (Abdelnour, Voss, & Raj, 2014; Avena-

Koenigsberger, Misic, & Sporns, 2018; Goñi et al., 2014; Messé, Rudrauf, Giron, & Marrelec,

2015; Mišić et al., 2015), where multiedge connectivity between regions is defined as a con-

nected path over multiple direct structural connections. Incorporating multiedge connectivity

improves the variance of functional connectivity (FC) explained by the structural connectivity.

By extension, we might expect that we are better able to identify changes in the FC as a func-

tion of the absence of single-edge SC connectivity when we reduce the influence of multiedge

SC connectivity on the FC.

Patients who have had a stroke nearly always sustain damage to white-matter tracts, thus

altering the single-edge SC connectivity. We expect that there is considerable variability in

structural connectome damage across patients that arises from the uniqueness of injury (as a

function of location and volume) from stroke in each patient. We leverage the resulting hetero-

geneity in the structural connections of stroke patients to investigate the relationship between

structural connections and fMRI functional connectivity. We examined the relationship be-

tween structural connectivity and fMRI functional connectivity by using data from patients

who have suffered a stroke within a month prior to when data was collected. An estimate of

the structural connectome for each patient was obtained using virtual tractography (Kuceyeski,

Maruta, Relkin, & Raj, 2013; Pustina et al., 2017) across the pairs of 114 cortical regions of
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interest (ROIs) from the Lausanne parcellation (Cammoun et al., 2012). Virtual tractography

uses a template set of streamlines estimated from healthy subjects intersected with lesion masks

for each patient to identify the subset of undamaged streamlines for each patient. This set of

undamaged streamlines is used to determine the patient-specific structural connectome. We

examine the edge-by-edge relationships of the structural connectivity to fMRI functional connec-

tivity across patients, to identify how differences in structural connectivity across individuals

modulates functional connectivity, providing a strong test of the influence of communication

over multiedge pathways of the structural connectivity and fMRI functional connectivity.

In this study, we had the unique opportunity to examine which linear model of communica-

tion dynamics across the structural connectome best models the impact of damage to axonal

fibers from stroke. In a model that expects neural activity to spread only along direct structural

connections, functional connectivity would be expected to simply reflect the weights of the

structural connectome, that is, damage to the strongest structural connections would have the

strongest effects of functional connectivity. In a multiedge model, there is gradient of possible

relationships between structural and functional connectivity, depending on extent of informa-

tion available about the structure. The models relating structural to functional connectivity may

be diffusion (Goni et al., 2013; Noh & Rieger, 2004), where communication happens throughDiffusion:
Communication between neural
masses in distinct areas happens
through activity passing by random
walks over the structural
connectome.

random walks over the structural connectome. Under diffusion, we expect functional connec-

tivity between two regions to reflect the average number of steps taken by random walkers

passing over the structural connectome. Diffusion assumes no global information about the

structural connectome, only local information about connection strengths. Another possibil-

ity is that functional connectivity navigates the shortest path (Goñi et al., 2014), the strongest

weighted path between two regions through the structural connectome. Shortest path routing

requires global information about the connectome. We expect that, given the structure to func-

tion relationship mediated by multiedge pathways remains consistent across different strengths

of an SC connection, then we are able to assess the validity of the hypothesis that multedge

pathways are relevant to functional connectivity within a particularly powerful context—that

of previously existing edges.

We tested the relationship between structure and function under two analysis pipelines. In

the first approach, we estimated correlation and partial correlation by using ROI-averaged sig-Partial correlation:
Summary statistic of conditional
dependency, i.e., it measures,
between any two areas, the linear
relationship between them when
accounting for their relationship to
all other areas.

nals. Partial correlation is a measure of conditional dependency, that is, it measures, between

any two areas, the linear relationship between them when accounting for their relationship to

all other areas. We expected partial correlation to better measure information shared over any

single-edge path over the SC that is not passing over other edges. We hypothesized that partial

correlation would optimally reflect modulation from differences in the structural connectivity

across subjects. In our second analysis pipeline, we avoided averaging signals over an ROI by

using a voxel-level measure of correlation. Averaging signals over an ROI removes the poten-

tial variations that exist at voxel level (Korhonen, Saarimäki, Glerean, Sams, & Saramäki, 2017)

and includes voxel-level variations for which we do not possess structural connectivity infor-

mation. For each pair of ROIs, we used correlations between pairs of voxels connected by a

streamline and tested whether damage was linked to altered functional connectivity. By identi-

fying and using only the voxels representing the streamline endpoints of structural connections,

we expected that we would be able to better resolve pairs of locations in the fMRI data where

we might expect altered functional connectivity. We examined whether we could predict the

edges where damage modulated correlations by using models that incorporated only local SC

information (diffusion) or a model that incorporated global SC information (shortest path rout-

ing). We expected diffusion to be a better model as it is unlikely that neurons store and utilize

information about the SC.
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METHODS

Subjects

Twenty subjects with stroke (with onset 3–26 days prior) admitted to the inpatient rehabilitation

facility at the University of California, Irvine, Medical Center participated. All subjects signed

informed consent as approved by the Institutional Review Board. Subjects were included if they

were older than 18 years with a radiologically confirmed stroke. None of the subjects had other

active major neurological or psychiatric conditions or active substance abuse likely to interfere

with study procedures along with no prior medical history of cranial surgery. Age varied, with

mean± 1 SD between 57.5± 12 years (range 27–79), as did sex (4 female, 16 male) and their

extent of arm motor deficits as per their Fugl-Meyer score, which ranged from 10 to 65 (normal

score is 66, and higher scores reflect better motor status). Four patients had a hemorrhagic

Table 1. Participant Demographics

Stroke

Handedness lesion Stoke Time

Prior to volume Type poststroke Age

Subject ID Stroke Lesion Site Lesion Side (cm3) (I/H) Sex (M/F) days (years) FM Total

S001 L L pons L .79 I M 14 58 63

S002 R R basal ganglia R 36.47 H F 12 57 57

S003 R R parietal,
R occipital

R 19.87 I F 11 49 24

S004 R R basal ganglia R 2.54 I F 9 65 14

S005 R R basal ganglia R 10.08 H M 11 40 45

S006 A L temporal L 36.97 I M 5 69 65

S007 R R basal ganglia,
R posterior corona radiata,
R temporal lobe

R 15.2 I M 16 48 13

S008 R R temporal R 78.1 H M 9 50 57

S009 R R Middle Cerebral Artery,
R posterior insula,
R parietal operculum

R 69.49 I M 25 67 26

S010 R R pons R 2.18 I M 18 77 15

S011 R R periventricular DWM,
R PLIC

R 4.77 I M 9 58 41

S012 L R basal ganglia R 68.76 H M 6 48 17

S013 L L PLIC L 3.55 I M 71 59 8

S014 R R pons R 1.36 I M 17 79 35

S015 R L pons, L caudal midbrain L 5.43 H M 21 51 53

S016 R L corona radiata,
L cerebellar hemisphere,
L occipital lobe

L 2.44 I M 5 67 62

S017 R R basal ganglia R 60.38 H M 26 51 13

S018 R L corona radiata,
R pons,
L PLEC

L 1.44 I M 12 66 53

S019 L R medulla,
cerebellum

R 39.26 I F 8 27 61

S020 R L pons L 1.01 I M 3 53 52

Note. (Legend: L-Left, R-Right, A-Ambidextrous; FM-Fugl-Meyer; I-Ischemic, H-Hemorrhagic; PLIC-posterior limb of internal capsule).

FM Total scores range from 0–66, with higher values indicating better arm motor status.
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stroke while the other 16 had suffered an ischemic stroke. Further, across all patients, average

lesion volume was 23.01 cm3 (range .8 to 78.1 cm3). Table 1 shows demographic details about

all the subjects involved in our analysis.

MRI Processing

Neuroimaging was acquired on a 3.0 T Philips Achieva (Best, the Netherlands) scanner. An-

atomical imaging included a high-resolution T1-weighted scan that utilized a three-dimensional

magnetization-prepared rapid gradient echo sequence (repetition time (TR) = 8.1 ms, echo

time (TE) = 3.7 ms, 150 slices) and a T2-weighted FLAIR scan (TR = 9,000 ms, TE = 120 ms,

33 slices).

We drew lesion masks on T1-weighted MRIs, informed by the corresponding T2 FLAIR

images. Masks were generated using techniques (Cassidy, Tran, Quinlan, & Cramer, 2018;

Riley et al., 2011) for which reliability has been described previously (Burke et al., 2014).

For one subject who was unable to complete an MRI scan, we drew the lesion mask on their

corresponding CT scan. Infarct masks were binarized and spatially transformed to MNI space.

Lesions on the right were flipped about the midline so that all lesions were in the left side

of the brain for analysis purposes. Since motor deficits from stroke in the right hemisphere

generally are not different from motor deficits with a left hemisphere stroke, we did not make

any adjustments for behavior when flipping lesions.

Subjects completed a resting-state fMRI scan: TR = 2,000 ms, TE = 30 ms, 180 volumes,

voxel size = 3.38 × 3.38 × 3 mm3. Each patient was instructed to remain still and keep eyes

open to avoid falling asleep. Structural and fMRI scans were preprocessed using the CONN

toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012). The initial eight fMRI volumes were dis-

carded. Preprocessing steps included functional slice-time correction, functional realignment

(six rigid-body motion parameters), segmentation and spatial normalization to MNI space,

functional volume coregistration with structural volumes, functional outlier detection using

the artifact removal toolbox (ART), and functional smoothing using a 6-mm3 Gaussian ker-

nel. We visually analyzed all coregistrations to ensure quality and accuracy. Functional MRI

data underwent denoising procedures to remove unwanted motion, physiological effects, and

artifacts. For denoising CONN uses an anatomical component-based noise correction proce-

dure, which includes noise components from cerebral white matter and cerebrospinal areas

(Behzadi, Restom, Liau, & Liu, 2007), estimated subject-motion parameters (Friston et al.,

1995), identified outlier scans or scrubbing (Power, Schlaggar, & Petersen, 2014), and constant

and first-order linear session effects. Finally, global signal regression (Li et al., 2019; K. Murphy

& Fox, 2017) was applied prior to bandpass filtering (0.008–0.09 Hz).

Virtual Tractography

Virtual tractography is a new approach (Kuceyeski et al., 2013; Pustina et al., 2017) to es-Virtual tractography:
Using lesions masks and structural
connectome template to estimate
structural connectomes in a stroke
population where we can expect
structural disconnection from the
lesions suffered by patients.

timating structural connectomes in a stroke population where we can expect structural dis-

connection from the lesions suffered by patients. This method uses a template of structural

connectivity generated from healthy subjects and lesion masks for patients to generate patient-

specific structural connectomes. In this way we are able to make maximal use of lesion mask

information when we lack diffusion imaging from patients.

For our healthy subject structural connectome template, we used streamlines (representa-

tion of the axonal fibers of the brain) generated with deterministic tractography by Yeh et al.

(2018) using diffusion imaging from the HCP842 dataset (Van Essen et al., 2013). In this dataset
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experts vet the streamlines to remove potentially noisy estimates of axonal fibers. We trans-

formed the streamlines generated by Yeh et al. (2018) to the MNI152 template brain accessed

from FSL (FMRIB Software Library, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Each streamline was

approximated by a single 100-point cubic spline using code adapted from the along-tract-

stats toolbox (Colby et al., 2012). For more details on application of tractography to the HCP

diffusion imaging data please refer to Yeh et al. (2018).

We transformed the Lausanne parcellation (Cammoun et al., 2012) of 129 ROIs to the

MNI152 template brain and generated a volumetric representation for each ROI using the

easy_lausanne toolbox (Cieslak, 2015). Estimating virtual tractography for individual patients

for subcortical regions was expected to be more difficult than for cortical ROIs as the effects of

coregistration errors may be magnified in small volumes. We removed subcortical regions to

reduce the parcellation to 114 ROIs. Using the 114 ROIs and the template streamlines we built

the adjacency matrix of 114×114 ROI pairs. By identifying the streamlines that terminated in

each pair of ROIs we were able to create the structural connectome for the Lausanne parcella-

tion. We limited interhemispheric connections to white-matter tracts connecting homologous

regions to minimize the contributions of potentially noisy estimates of axonal fibers. Any edge

Wij was defined as the sum over the streamlines biased by the length of the streamline. For

ROIs i and j connected by streamlines s of length l:

Wij = ∑
sij

1

lij
(1)

Streamlines were weighted by inverse of length to reduce the bias of tractography algorithms

toward longer streamlines (Hagmann et al., 2008).We examined the impact of different SC pre-

processing strategies—streamline count normalization by ROI sizes, no length bias applied—in

our analysis when relevant. The resulting model of structural connectivity shown in Figure 1 is

referred to as the structural connectome (SC). We use the abbreviation SC to exclusively refer

to our model of the structural connectome. All code to perform virtual tractography can be

found at https://github.com/wodeyara/Virtual-Tractography.

We intersected the lesion masks (whose creation is described in MRI Processing section)

with the template streamlines of the SC. For each patient we are able to identify the template

streamlines that are disconnected by the lesion and those that are not based on which stream-

lines intersect the lesion mask. We remove the streamlines that intersect the lesion mask and

use the reduced set of streamlines to define individual structural connectomes. This process

is summarized in Figure 1. Each edge for each patient was designated as either high or low

damage. High damage indicated that, for that edge, connection strength was less than the me-

dian of connection strengths seen for that edge. We show how many edges have high damage

across patients in Figure 1. We found that over half of the connections showed high damage in

few to no patients. When categorizing the damage in this way, we found that 341 edges (out

of 720 total edges) showed high damage in at least three patients. The majority of the edges

showing high damage connected frontal (111)—especially motor (48)—and parietal (72) areas

in the damaged hemisphere to the rest of the brain. We show these edges by area in Figure 1.

Estimating FC at the ROI Level

In the first analysis pipeline we estimated fMRI-correlation (fMRI-C) by using conventional

linear correlation between ROI-averaged signals. By default, this measure of marginal depen-

dence between areas includes activity shared over multiedge paths over the SC and through

Network Neuroscience 1202
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Figure 1. Virtual tractography. (A) we show the pipeline for virtual tractography. We removed from
the set of streamlines that represent the undamaged structural connectome (top left) the streamlines
intersecting a given patient’s lesion(s), as shown in the top row, middle column. Using the reduced
set of streamlines we applied the Lausanne parcellation to get the final structural connectome for that
patient (shown on the top row, rightmost column). (B) Edges showing high damage across patients.
On the left column we show the number of edges where the 20 patients show high damage (see
Virtual Tractography section for definition of high damage). We found that for over 50% of edges
there are few (1 or 2) to no patients who sustained high damage to that edge. On the right column
we show the structural connectome with edge weight representing number of subjects showing
high damage for that edge. In the current analysis we studied all edges (341) where three or more
patients had high damage.

common inputs. We can also measure functional connectivity by using partial correlations to

define the connection strengths, a measure of the conditional dependency between areas. By

estimating the conditional dependency we expect to prioritize activity only shared over single-

edge paths and remove the influence of common inputs. We used the adaptive graphical lasso

Graphical lasso:
Optimization scheme used to
estimate the inverse of covariance
while optimizing the L1 norm,
thereby pushing small values of the
precision to zero.

Network Neuroscience 1203
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to develop an SC-based model of fMRI-partial correlation or fMRI-PC (Friston, 2011; Marrelec

et al., 2006; Reid et al., 2019; Smith et al., 2011). In the process of estimating the model based

fMRI-PC, we tested and confirmed (using cross-validation) that the SC is useful in predicting

the nonzero elements of the fMRI-PC. We compared at every edge, across patients, whether

fMRI-C or fMRI-PC better reflected the impact of damage from stroke.

Adaptive Graphical Lasso to Estimate fMRI–Partial Correlation Partial correlation is estimated us-

ing normalized inverse (precision) of the covariance of the fMRI time series. The estimate of the

precision from direct inversion tends to be noisy due to an ill-conditioned covariance matrix.

To improve the robustness of the precision, it is estimated using the graphical model esti-

mated from the graphical lasso. The graphical lasso (Friedman, Hastie, & Tibshirani, 2008) is a

method that has been applied in multiple fields in the past decade, from genomics (Menéndez,

Kourmpetis, ter Braak, & van Eeuwijk, 2010) to fMRI functional connectivity (Ryali, Chen,

Superkar, & Menon, 2012; Varoquaux, Gramfort, Poline, & Thirion, 2010) and climate models

(Zerenner, Friederichs, Lehnertz, & Hense, 2014). In order to apply the lasso, the penalized

likelihood function to estimate the precision is defined as follows (Friedman et al., 2008) (where

Θ is the covariance):

Φ̂ = argminΦ≻0

(

log(detΦ) + tr(ΘΦ) + λ ∑
j<k

|Φjk|

)

(2)

Our purpose was to make use of the lasso while taking advantage of our prior knowl-

edge of the undamaged structural connectome, which we expect are the likely locations of

nonzero precision values. We made use of the lasso optimization from QUIC (Hsieh, Dhillon,

Ravikumar, & Sustik, 2011) using a matrix penalty term (this process is also called the adaptive

lasso (Zou, 2006)) determined by the SC with edges W (and λ1 = λ2):

Φ̂ = argminΦ≻0 (3)


log(detΦ) + tr(ΘΦ) + λ1 ∗ ∑
j<k;Wjk∈SC

|Φjk|+ λ2 ∗ ∑
j<k;W jk 6∈SC

|Φjk|



 (4)

Pineda-Pardo et al. (2014) used the SCweights directly to determine the penalization weights

(λ), which imposes more structure on the penalization than we assume in our algorithm. We

expect that the SC weights will constrain connectivity strengths. However, we do not expect

the SC strengths to map directly onto the strength of the precision due to individual differences,

as well as variations within individuals across functional brain states. By using an SC template,

we are assuming a common SC across participants, and so the expected weight may differ.

For this reason we use the binarized SC (with 1s where there exist edges and 0 otherwise) to

determine the penalization structure. We estimated the penalization values λ1 and λ2 by using

cross-validation as described in the next section.

By using the adaptive graphical lasso, we leveraged the information in the SC as a prior for

our estimate of the precision. The penalization parameters λ1 and λ2 in the graphical lasso de-

termine the set of precision values retained. The output of the lasso when optimizing Equation 2

or Equation 3 is the Gaussian graphical model (GGM). We derive our graph G with vertices

Gaussian graphical model:
A network defining the nonzero
conditional dependency
relationships between variables,
here, brain areas.

V = 1, 2, . . . C and edges West = Gij = 1, i, j ∈ V from the GGM based on the nonzero values

in the precision. The final precision matrix Θ̂−1 is estimated under the Gaussian likelihood

Network Neuroscience 1204
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for the set of edges West defined by the graphical model (Φ̂) using the function ggmFitHt f

(PMTK3 toolbox; (K. Murphy & Dunham, 2008)); which optimizes (unpenalized Gaussian log-

likelihood):

Φ̃ = argminΦ≻0;|Φ|>0=G − (log(detΦ) + tr((Θ + δ ∗ I)Φ)) (5)

Since Θ (covariance) is frequently rank deficient, we add a small value (δ) along the diagonal

to make it full rank. We define δ as 0.001 times the maximum value along the upper triangle

of the covariance.

All of the code used to perform the analysis described above are available at https://github

.com/wodeyara/fMRI-PC.

Cross-validation to Test SC Model of Functional Connectivity We tested whether the adaptive

graphical lasso produced estimates of the precision that show reduced error relative to applying

the graphical lasso, thereby directly demonstrating the link between structural and functional

connectivity. We split the fMRI data from patients into two halves. Using graphical lasso and

adaptive graphical lasso we estimated the precision Φ̃1 on one half of samples of fMRI-BOLD

data and estimated the deviance when using this precision as the estimate of the inverse forDeviance:
Cross-validated error in estimating
the precision derived from the
log-likelihood for Gaussian
Graphical Models

the covariance of the other half Θ2 of the data (and vice versa). Deviance was estimated as:

Dev = .5(−log(detΦ̃1) + tr(Θ2Φ̃1)− log(detΦ̃2) + tr(Θ1Φ̃2)) (6)

We applied the process of cross-validation over the same range of penalization for λ1 in the

adaptive graphical lasso (3) and for λ in the graphical lasso (Equation 2). For the adaptive

graphical lasso (Equation 3) we maintained λ2 (the penalization for non-SC edges) constant

at 0.2.

Figure 2. Using the adaptive graphical lasso (AGL) for fMRI-PC. This figure shows the general
processing pipeline for applying the AGL to estimated patient fMRI covariance. The binarized un-
damaged SC is used to bias the penalization used when optimizing under the AGL to estimate the
precision. We used the normalized precision to generate the partial correlation (fMRI-EC).
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Figure 3. Cross-validation of graphical lasso (GL) and adaptive graphical lasso (AGL). We show
performance (cross-validated deviance) across penalization for the GL (on the left) and AGL (right
figure). The error bars represent the standard deviation of the deviance across patients. We found
that for all but very high penalization the AGL outperformed the GL. Further, the AGL showsminimal
cross-validated deviance for an optimal set of SC edges (at an SC penalization of 0.125) while the
graphical lasso shows minimum deviance only for very sparse models.

We found that with the graphical lasso a sparser model (fewer connections) is always bet-

ter (indicated by the decreasing cross-validated deviance). However, when using our adap-

tive graphical lasso, we find there is an optimal penalty which minimizes the cross-validated

deviance and consistently outperforms the graphical lasso see (Figure 3). This clearly demon-

strates the structure-function relationship as the prior of using the SC provides useful infor-

mation in predicting the fMRI–partial correlation (evidenced by the reduced cross-validated

deviance) over and above using a uniform prior. The results from this analysis are shown in

Figure 2. Based on the minimum deviance from cross-validation, we estimated fMRI-PC using

the adaptive graphical lasso with the penalization value of 0.125 on the SC edges (i.e., λ1 from

Equation 3) and 0.2 (λ2 from Equation 3) on the edges not in the SC.

Partial Correlation We estimate partial correlation as the summary statistic for the Gaussian

graphical model. We estimate the partial correlation (for any two areas x and y and estimated

precision Φ̃):

PCxy =

∣

∣

∣

∣

∣

Φxy
√

Φxx ∗ Φyy

∣

∣

∣

∣

∣

(7)

We use PC as our estimate of the single-edge functional connectivity and refer to it as the

fMRI-PC. We use this partial correlation similarly to the correlation matrix when estimating

the impact of SC damage. This is discussed in section Estimating Functional Connectivity at

the ROI Level.
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Modeling Impact of SC Damage We transformed the correlation and partial correlation across

subjects by taking their absolute value and applying the Fisher r-to-z transform. For the partial

correlation we added a small value (10−4) to make all values nonzero since the gamma distri-

bution is undefined for 0. Let Cijk represent the transformed correlation between ROIs i and j

for subject k and Pijk the transformed partial correlation. We treat the Cijk and Pijk as gamma-

distributed variables (see Supporting Information Figure S1 for gamma distribution fit) because

the values are positively valued and tend to be skewed toward the positive axis of the real line.

Using this notation, Cij: and Pik: represent the response vectors for gamma-(GLSM) generalized

linear models by using a log link function. We used the stratified SC damage as a predictor forGeneralized linear model:
An extension to linear regression that
allows us to model response
variables that, given the predictors,
are not gaussian distributed, here,
gamma distributed.

the GLM (represented as SCij:). Thus the models built for each structural connection Wij can

be represented as (E is the expectation):

ln(E(Cij:)) = β0 + β1 ∗ SCij: (8)

ln(E(Pij:)) = β0 + β1 ∗ SCij: (9)

The fMRI-C and partial correlation edge by edge models were multiple comparisons corrected

using false detection rate (FDR) correction with α set to 0.05.

Estimating Functional Connectivity at the Voxel Level

To calculate the functional connectivity estimates (correlation and partial correlation), we ini-

tially averaged over all voxels within each ROI, which averaged the fMRI data over both voxels

that contributed to the structural connectivity count and voxels that did not. We identified the

voxel-based analysis as a means of reducing this shortcoming of averaging the fMRI signal over

an ROI and instead hoped to identify the fMRI-C over single-edge paths (as a function of the

streamlines), which we expected would be a better correlate of structural connectivity from

the neural signals recorded by fMRI within each ROI.

The Lausanne estimate of any structural connectome edge aggregates structural connections

by counting the number of streamlines that connect a pair of ROIs. The termination points of

streamlines can be approximated as a voxel within each ROI, and only a subset of voxels serve

as termination points. Other voxels within the ROI have different streamline patterns, that is,

they either connect to different ROIs or we do not have connectivity information for them

entirely.

We ran a fine-grained streamline-by-streamline analysis as we predicted we would be better

placed to then identify changes in the concomitant functional connectivity. Using the unique

pairs of voxel termination-points for every streamline, we estimated the fMRI streamline func-

tional connectivity (sFC) using the correlation of that pair of voxels (see Figure 4). This resulted
fMRI streamline
functional connectivity:
Using the termination points of
streamlines to determine the pair of
voxels for which we use the fMRI
data to estimate correlation.

in, for every edge of the SC matrix for 114 ROIs, a set of fMRI correlations derived for stream-

lines across subjects that were intact, and a set of fMRI correlations derived for streamlines

across subjects that were disconnected.

Finally, we tested different models of communication to identify which model better pre-

dicted which edges were likely to bemodulated.We expected that modulated edges were more

likely to be part of multiedge pathways. So for this delimited set of edges we compared models

of functional connectivity generation (diffusion and shortest path routing) over the structural

connectome that use multiedge pathways but require different extents of information about

the structure.
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Figure 4. Streamline functional connectivity (sFC). We show how sFC was calculated for two
streamlines in two different patients. For each streamline the termination points were identified as
fMRI voxels (shown as the yellow shaded cubes in the brain in the leftmost column above), and we
estimated the correlation between these voxels. The same was done for both connected (top row
where the color blue indicates the streamline remained connected) and disconnected streamlines
(bottom row, where the color red indicates a disconnected streamline). Arrows in the figure identify
the fMRI time series for the voxel termination points with the correlation between each pair of
voxels reported between the pair of time series. We repeated this process for all streamlines for
each subject.

Modeling Impact of SC Damage We took the absolute value of the streamline correlations and

applied the Fisher r-to-z transform.We again assumed that the correlation sCijkl for ROIs i and j

and streamline k for each subject l is gamma distributed (see Supporting Information Figure S2

for gamma distribution fit) and used this as the response variable. We used an indicator vari-

able sSCijkl that defined for ROIs i and j whether streamline k for a specific subject l was

disconnected (1) or connected (0) as the dependent variable. We built gamma GLMs across

subjects for each edge:

ln(E(sCij::)) = β0 + β1 ∗ sSCij:: (10)

We corrected for multiple comparisons using FDR with α set to 0.05.

Communication Models of Functional Connectivity We tested using models of functional con-

nectivity whether we could estimate which edges showed the impact of damage when using

fMRI-sFC.We simulated functional connectivity weights (FC weights) given models of diffusion

(Goni et al., 2013) and shortest path (Goñi et al., 2014). Diffusion assumes that neural activity

randomly propagates across the connectome (with the probability of an edge being traversed

being proportional to its ROI relative weight) when passing between any two ROIs. In con-

trast, given a shortest path communication process, it’s assumed that neural activity takes the

shortest weighted path between any two ROIs. Note that a shortest path process depends on

global information of the structural connectome, while diffusion needs only local information
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of the structural connectome. As the baseline case we also examine single-edge routing, the

process of activity spreading across direct SC edges.

We estimate functional connectivity under a diffusion process using themean_first_passage_

time.m function from the Brain Connectivity Toolbox (Rubinov & Sporns, 2010). This function

estimates the “mean first passage time” (MFPT) between any two ROIs a and b—the average

number of weighted steps for a random walker going from a to b. We standardize (subtract

the mean and divide by the standard deviation) the MFPT across nodes and make it sym-

metric for analyses. A lower value of MFPT for an edge indicates it is more rapidly reached

by a random walker, indicating a higher expected functional connectivity. We estimate func-

tional connectivity under a shortest path routing process by using the betweenness centrality

(Rubinov & Sporns, 2010) for every edge. The edge betweenness centrality (BC) calculates how
Edge betweenness centrality:
A measure of how many shortest
paths over a network use an edge. many shortest paths use any edge in the structural connectome. We standardized the BC for our

analysis. A higher value of the BC indicates greater use by a shortest path routing process and

thus a higher expected functional connectivity. Finally, we directly used the standardized SC

weights as a third possible predictor of functional connectivity—increased structural connec-

tivity weights directly correspond to increased functional connectivity. All simulated functional

connectivity strengths were estimated using an undamaged weighted structural connectome.

The set of edges (represented by Wdmg) where SC damage influenced our connectivity mea-

sure (fMRI-sFC) was assumed to be a binomially distributed random variable (with 1s when

damage significantly influenced connection strength and zero otherwise). Using Wilcoxon

rank-sum tests, we first examined whether there was a significant difference in diffusion (us-

ing MFPT), shortest path (using BC), and SCweight between edges where stroke-related damage

altered connection strength versus edges where it did not. When there was a significant differ-

ence between the two groups for multiple predictors, we built a logistic regression model as

follows (assuming for this example case that all three—MFPT/BC/SCweight—showed significant

differences):

logit(E(Wdmg)) = β0 + β1 ∗ MFPT + β2 ∗ SCweight + β3 ∗ BC (11)

RESULTS

ROI Level Analysis Shows that SC Damage Modulates fMRI-PC But Not fMRI-C

We averaged the fMRI data over each ROI of the Lausanne parcellation. Using this data we

computed the fMRI-C and fMRI-PC between the 114 cortical ROIs. We estimated the fMRI-PC

using the adaptive graphical lasso. We examined the models built between all pairs of appro-

priate SC edges with the response being the partial correlation/correlation, and the predictor

is the presence of white-matter damage. We initially only examined the set of edges where at

least three patients showed the presence of high damage. When examining fMRI-C we found

only 1 edge out of 341 was significantly modulated by damage. When using the fMRI-PC

(Figure 5) on the other hand, 24% (80/341) of edges were significantly modulated by damage

(applying an FDR correction for multiple comparisons). We also tested how many edges were

modulated by damage when we altered the number of patients who needed to show the pres-

ence of high damage before we modeled that edge. When we set our threshold at least five

patients showing high damage, we again only found 1 edge showing the presence of damage

in fMRI-C and 25% (52/207 edges) using fMRI-PC. Finally, when we set the threshold to at least

seven patients, in fMRI-PC 22% (8/37) edges showed the presence of damage and no edges

in the fMRI-C showed the presence of damage. For an examination of all possible thresholds

and number of edges significant, please see Supporting Information Table S1.
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Figure 5. fMRI–partial correlation and structural connectivity. The top row of figures show repre-
sentative streamline connectivity (every edge where damage influenced fMRI-PC has one streamline
shown) for which damage influenced partial correlation. In the figure on the lower row we show a
matrix with edges modeled in gray and edges where fMRI-PC was modulated in orange. U-Areas
represent sets of areas in the undamaged (contralesional) hemisphere, and D-Areas represent groups
of areas in the damaged (ipsilesional) hemisphere.

Voxel-Level Analysis Shows that SC Damage Modulates fMRI-sFC

Similar to the analysis we used when we averaged fMRI data over ROIs, we examined the

streamline-based functional correlation. The fMRI-sFC analysis was also organized using the

114 ROI Lausanne parcellation. We built gamma GLMs between fMRI-sFC and the presence of

streamline disconnection for each edge where at least three patients showed high damage. We

found that we could identify modulation from disconnection in the fMRI-sFC in 39% (132/341)

of the edges we modeled (see Figure 6). When at least five patients showed high damage, 38%

(79/207) of edges had sFC that was influenced by streamline disconnection, and when over

seven patients showed high damage then 15 out of 37 (41%) edges had sFC modulated by

disconnection.
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We examined the breakdown of where damage influenced fMRI-PC and fMRI-sFC by look-

ing at groups of ROIs (for a breakdown by pairs of regions, see Supporting Information Tables

S2 and S3). For the fMRI-sFC, we found that damage could be detected in 42% (37/89) of dam-

aged motor connections, 52% (16/31) of damaged occipital connections, and 39% (37/94) of

parietal connections. On the other hand for the fMRI-PC, we found that temporal (24%, 35/144

edges), parietal (28%, 26/94 edges) and the insula (25%, 8/32) reflected the impact of damage

the most often. For the sFC, intrahemispheric connections (42.5%, 77/181 of edges modeled)

were more easily identified relative to interhemispheric connections (31%, 50/160 of edges

modeled). However, we saw this (weakly) reversed for the fMRI-PC where interhemispheric

connections were more easily identified 27% (43/160) relative to 20% (37/181) of intrahemi-

spheric connections modeled.

Relevance of SC Edges Modulating fMRI-sFC

Using the undamaged structural connectome, we estimated the MFPT and edge betweenness

centrality (BC) between all pairs of nodes. We extracted and standardized the SC weights

(SCweight), MFPT, and BC for the 341 edges where we modeled the impact of damage. We

treated these values as FC weight estimates and examined if they predicted the set of edges

where we could estimate the presence of damage in fMRI-sFC. Our analysis approach directly

compares these FC estimates against one another, while traditional analyses comparing differ-

ent communication models examine them across the entire connectome, including in places

where there isn’t a direct structural connection.

We found that all three FC weight estimates (MFPT, BC, and SCweight) were significantly

different (Wilcoxon rank-sum test, p < 0.05) between edges where fMRI-sFC was modulated

or unmodulated by structural damage. To see their relative influence, we used them together

in a logistic regression model. The response for the model was a vector of length 341×1 with

zeroes for nonmodulated edges (fMRI-sFC did not significantly differ between damaged and

undamaged streamlines) and ones for modulated edges (fMRI-sFC significantly differed be-

tween damaged and undamaged streamlines). We found that MFPT (βMFPT = −0.63 ± 0.4,

95% CI; p = 0.003) had a stronger influence on the odds of an edge showing the impact of

damage than the betweenness centrality (βBC = 0.27 ± 0.32, 95% CI, p > 0.1) and the raw SC

weights (βSCweight = 1.5 ± 1.75, 95% CI, p > 0.1). The negative value indicates that for a unit

increase in (the standardized) MFPT, which indicates a reduced FC weight estimate, the odds

of damage impacting the fMRI-sFC are multiplicatively reduced by 0.52.

We reestimated the three FC weight estimates (MFPT, BC, and SCweight) when streamline

counts for each edge were not biased by length and also when we normalized the streamline

count by the product of ROI sizes for each pair of ROIs connected by an edge. When the

SC edges were determined by the streamline counts directly (no normalization or biasing by

length), we again found the MFPT (βMFPT = −0.72± 0.31; p = 7.75× 10−6) to have a stronger

influence on the odds relative to betweenness centrality (βBC = 0.22 ± 0.32, p > 0.1) and the

SC weights (βSCweight = 0.24± 0.27, p = 0.09) directly. Finally, when we normalized streamline

counts by the product of ROI sizes, we found that MFPT continues to have a stronger influence

on the odds, βMFPT = −0.77 ± 0.3 (p = 1.3 × 10−6), while BC (βBC = 0.05 ± 0.26; p > 0.1)

and SC weights (βSCweight = 0.27 ± 0.3; p = 0.09) aren’t significant predictors.

DISCUSSION

We found that a measure of functional connectivity averaged over ROIs that emphasized in-

formation shared over single-edge paths (partial correlation) was modulated in 24% of edges
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Figure 6. Streamline functional connectivity and structural connectivity. In the top row figures
show representative streamline connectivity for edges for which damage influenced fMRI-sFC. On
the bottom row is a matrix with edges modeled in gray and edges where sFC was modulated in
orange. U-Areas represents sets of areas in the undamaged (contralesional) hemisphere and D-Area
represents groups of areas in the damaged (ipsilesional) hemisphere.

with structural connectivity damage. Further, using the SC as a prior when estimating the fMRI–

partial correlation showed reduced predictive error to using a uniform prior. In parallel, we

found that functional connectivity at the voxel level showed the impact of structural con-

nectivity damage in 39% of edges modeled, with the edges modulated under damage better

predicted by a multi-edge model of functional connectivity that uses only local information

about the SC (diffusion). Together, when we considered BOLD signal at both the voxel scale

and the ROI scale, we saw how differences in structural connectivity were linked to changes

in functional connectivity. Thus, we found that, in the brain, communication between neural

masses is mediated through anatomical connections. For pairs of regions that are not directly

anatomically connected due to lesions from stroke, signals must be communicated through

intermediate region-to-region steps along an anatomical path.
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The current study found that damage does not effectively modulate fMRI functional con-

nectivity as measured by correlation between ROIs. Partial correlation, as we hypothesized,

does show the impact of damage, though in a circumscribed set of edges. Past work employing

partial correlations to examine structural connectivity to functional connectivity relationships

have been few. In humans, partial correlation was used to study the voxel-level functional

connectivity and its relationship to the structural connectome (Horn, Ostwald, Reisert, &

Blankenburg, 2014). In this study (Horn et al., 2014), the authors found that while a signif-

icant relationship existed between voxel-level functional connectivity and the structural con-

nectome, the correlation between them was comparable to the correlation between voxel-

level functional and structural connectivity. Another study (Park, Eo, & Park, 2017) found that

structural connectome edge strength was correlated with the variability of partial correlation

across multiple sessions. Further, these authors (Park et al., 2017) found that the structural

connectome edge strength was less correlated with the fMRI-C, suggesting partial correlation

is a more robust link to structure. Finally, in a mouse study of the structure-to-function link

(Huebner et al., 2017), demyelination led to reduced partial correlations for long-range con-

nections. Our work is in line with the latter studies, since damage is clearly linked to fMRI-PC

rather than to fMRI-C.

Functional MRI data has millimeter-scale spatial resolution of neural activity. However,

when estimating the fMRI-C and fMRI-PC, we removed this source of variability by averag-

ing over voxels in an ROI, which served to reduce the influence of noise, but also averaged

over heterogeneity in the neural activity present within an ROI. Critically, averaging over vox-

els in an ROI combines fMRI data from voxels for which we have structural information with

those for which we do not have this information. By using fMRI-sFC, we tried to examine fMRI

data potentially at the scale at which we have structural connectivity information. One other

study followed a similar approach (Skudlarski et al., 2008) and found that when only exam-

ining pairs of voxels with a direct structural connection, and estimating a pseudo functional

connectivity from the structure by using all polysynaptic paths, they saw a correlation of 0.26

between the pseudo functional connectivity and empirical functional connectivity. When all

voxels were used to correlate their estimate of the pseudo functional connectivity with the

empirical functional connectivity, they saw a correlation of 0.18 across 5,000 voxels (note

that 61% of voxels were disconnected, i.e., pseudo functional connectivity was 0). Horn et al.

(2014) looked at the correlation between structural and functional connectivity at the voxel

level. They found the correlations were much weaker, 0.046 at 40,000 voxels; however, they

examined all-to-all voxel structural connections and voxel correlations. In our work, when ex-

amining voxel-level correlations between pairs of voxels connected by a-streamline, we saw

that the fMRI-sFC was modulated by streamline disconnection across 39% of the edges mod-

eled. Collectively, these findings suggest that choosing voxels by using streamlines may be a

good approach to constrain the data space for fMRI functional connectivity to that accessi-

ble to tractography applied to diffusion-weighted imaging when the goal is to link functional

connectivity to structural connectivity.

Several studies have examined what communication models most tightly link the func-

tional connectivity to structure. In a macaque study, the amygdala was inhibited using de-

signer receptors exclusively activated by designer drugs (DREADDs), which led to a reduction

in functional connectivity between amygdala and the rest of the brain (Grayson et al., 2016).

The decrease in functional connectivity could be predicted by a model of neural communica-

tion over the structural connectome that incorporated all walks (potentially repeated multiedge

pathways) across the network, requiring each node to possess only local information, captured

by the communicability. Using communication models that incorporate all walks over the net-

work can be reexpressed as a graph eigenmode comparison problem (Tewarie et al., 2020).

Network Neuroscience 1213



Damaged SC linked to altered rs-fMRI functional connectivity

Comparing the structure and function graph eigenmodes, Atasoy, Donnelly, & Pearson (2016)

and Robinson et al. (2016) demonstrated a tight relationship between the structure and func-

tion. Goñi et al. (2014) directly tested the relationship between the information about the con-

nectome needed by communication between two ROIs to occur over the shortest path and the

functional connectivity, finding that lesser information needed to find the shortest path led to

higher functional connectivity. Other works (Abdelnour et al., 2014; Messé et al., 2015; Mišić

et al., 2015; Osmanlıoğlu et al., 2019) have used generative models that use only local infor-

mation about the connectome and have shown that functional connectivity is well explained

by these models. In related work to our analysis, Griffis, Metcalf, Corbetta, & Shulman (2020)

showed that using an estimate of shortest paths in a damaged structural connectome could pre-

dict altered functional connectivity. However, they did not compare different communication

models. We examined whether specific communication models incorporating local informa-

tion (diffusion) or global information (shortest paths) about the SC could be distinguished based

on the set of edges where damage was linked to altered fMRI-sFC. We found that edges with

rapid diffusion are more likely to show the fMRI-sFC modulation by damage, as compared

to edges that were central to the shortest paths between ROIs. By limiting our tests between

models to the actual edges of the structural connectome we provide new evidence for dif-

fusion as a relevant model of communication for functional connectivity. Finally, a crucial

analysis for future studies is the examination of nonzero functional connectivity at edges of

anatomical path lengths greater than 1 and their relationship to behavior and potential clinical

relevance.

For a short interval immediately following stroke (on the scale of weeks), past studies have

demonstrated an increased capacity for neural plasticity (Cramer et al., 2011; T. H. Murphy

& Corbett, 2009). Neural plasticity after a stroke can occur through new structural changes

or new functional organization of surviving neural elements, or both. In our work, we have

examined a group of patients in the subacute interval (between 3 days to 1 month) when we

expected that while there is increased capacity for plasticity, the effects of plasticity are as yet

not expressed in all patients. We have treated every patient as having the same structure to

function relationship at every edge; however, this expectation may not be true. Our inability

to see the influence of damage at every edge modeled likely reflects this additionally hetero-

geneity in the data. Future work will hopefully examine the relationship between structure

and function in even more localized temporal intervals (say within the first week poststroke)

or during intervals far beyond initially elevated periods of plasticity to identify its impact (3 or

more months poststroke (Cassidy et al., 2020)). These studies will reveal in greater clarity the

structure-function relationship immediately poststroke, and the relationship after the effects of

neuroplasticity are expressed.

Our work is relevant to understanding the relationship between structure and function in

injury, pursuant to the caveats arising from our expectations of the influence of plasticity. The

fact that a large percentage of edges showed that the functional connectivity disruption will be

distinguishable in the presence of structural damage indicates that there is some constancy

in the relationship between structure and function under structural injury. There has been

simulation work (Alstott, Breakspear, Hagmann, Cammoun, & Sporns, 2009; Cabral, Hugues,

Kringelbach, & Deco, 2012; Irimia & Van Horn, 2014; Váša et al., 2015) that found changes

to global network properties, and global functional dynamics (decrease in FC distant from le-

sion) in the presence of circumscribed lesion damage. These past studies have predominantly

assumed nonlinear associations between areas, and further, assumed that the structure-to-

function relationship is unaltered under damage, except for a change in connection strengths.

Future empirical and theoretical work would be needed to assess whether global network
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consequences are simply a superposition of local SC-FC edge relationships (a linear relation-

ship) or result from nonlinear relationships. Given our knowledge of neuronal communication,

nonlinear relationships are expected at the neuronal scale; however, the SC-FC relationship

may be well approximated at the macroscale by a linear relationship. Our work (as well as

that of Griffis et al., 2020) suggests weak evidence in favor of a linear relationship between SC

and FC, even under damage to the SC.

Major limitations in our work are linked to issues with tractography first, and secondly,

with virtual tractography. There are difficulties in tractography linked to overlapping fiber bun-

dles that make it hard to identify correct bundle endpoints, and strict correction of incorrect

streamlines can rapidly lead to large numbers of false negatives (Maier-Hein et al., 2017). Our

decision to remove nonhomologous interhemispheric connectivity may have introduced a few

false negatives. By examining the structural connectome against a template, virtual tractogra-

phy ignores individual variability in white matter, both healthy and in relation to damage from

a lesion.While estimating structural connectivity damage with diffusion imaging for patients of

stroke is challenging (Karnath, Sperber, & Rorden, 2018), it remains plausible (Gleichgerrcht,

Fridriksson, Rorden, & Bonilha, 2017). Further, there is the potential for additional burden of

cerebrovascular risk factors within the set of subjects studied. As we do not know of their ac-

tual structure, our virtual tractography only approximates the entire extent of structural damage.

The results presented here made the best possible use of the stroke lesion imaging available via

structural MRI in conjunction with a pre-existing DTI atlas to obtain an estimate of white-matter

damage. It remains up to future work to examine the relationship of structure to function by

using individual estimates of structural connectomes drawn directly from diffusion-weighted

imaging. Another methodological limitation of this study is the use of a common space (MNI

template) to run our analyses. Also, we use streamline end points to estimate fMRI-sFC. How-

ever, there will be cases where these end points are distant from gray matter. In our analysis

procedure, when this occurs, there is no fMRI signal at the voxels, and the streamline does

not contribute to discrimination of when damage influences fMRI-sFC. Finally, we have used

a short interval of fMRI data for our analysis (180 samples), and, optimally, future work will

examine data collected for longer periods of time.

Despite these caveats, we found that we could see the influence of damage in 24% of SC

edges when using partial correlation and in 39% of SC edges when using streamline func-

tional connectivity. Our work provides impetus to more deeply probe the structure-function

relationship, particularly the influence of multiedge pathways on functional connectivity both

in healthy brains and in injury.
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