
Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2011, Article ID 952819, 16 pages
doi:10.1155/2011/952819

Research Article

True 4D Image Denoising on the GPU

Anders Eklund,1, 2 Mats Andersson,1, 2 and Hans Knutsson1, 2

1 Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
2 Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden

Correspondence should be addressed to Anders Eklund, anders.eklund@liu.se

Received 31 March 2011; Revised 23 June 2011; Accepted 24 June 2011

Academic Editor: Khaled Z. Abd-Elmoniem

Copyright © 2011 Anders Eklund et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The use of image denoising techniques is an important part of many medical imaging applications. One common application is to
improve the image quality of low-dose (noisy) computed tomography (CT) data. While 3D image denoising previously has been
applied to several volumes independently, there has not been much work done on true 4D image denoising, where the algorithm
considers several volumes at the same time. The problem with 4D image denoising, compared to 2D and 3D denoising, is that the
computational complexity increases exponentially. In this paper we describe a novel algorithm for true 4D image denoising, based
on local adaptive filtering, and how to implement it on the graphics processing unit (GPU). The algorithm was applied to a 4D CT
heart dataset of the resolution 512 × 512 × 445 × 20. The result is that the GPU can complete the denoising in about 25 minutes
if spatial filtering is used and in about 8 minutes if FFT-based filtering is used. The CPU implementation requires several days of
processing time for spatial filtering and about 50 minutes for FFT-based filtering. The short processing time increases the clinical
value of true 4D image denoising significantly.

1. Introduction

Image denoising is commonly used in medical imaging in
order to help medical doctors to see abnormalities in the
images. Image denoising was first applied to 2D images
[1–3] and then extended to 3D data [4–6], 3D data can
either be collected as several 2D images over time or as one
3D volume. A number of medical imaging modalities (e.g.,
computed tomography (CT), ultrasound (US) and magnetic
resonance imaging (MRI)) now provide the possibility to
collect 4D data, that is, time-resolved volume data. This
makes it possible to, for example, examine what parts of
the brain that are active during a certain task (functional
magnetic resonance imaging (fMRI)). While 4D CT data
makes it possible to see the heart beat in 3D, the drawback
is that a lower amount of X-ray exposure has to be used for
4D CT data collection, compared to 3D CT data collection, in
order to not harm the patient. When the amount of exposure
is decreased, the amount of noise in the data increases
significantly.

Three-dimensional image denoising has previously been
applied to several time points independently, but there has
not been much work done on true 4D image denoising
where the algorithm considers several volumes at the same

time (and not a single volume at a time). Montagnat et al.
[7] applied 4D anisotropic diffusion filtering to ultrasound
volumes and Jahanian et al. [8] applied 4D wavelet denoising
to diffusion tensor MRI data. For CT data, it can be extra
beneficial to use the time dimension in the denoising, as
some of the reconstruction artefacts vary with time. It is
thereby possible to remove these artefacts by taking full
advantage of the 4D data. While true 4D image denoising
is very powerful, the drawback is that the processing time
increases exponentially with respect to dimensionality.

The rapid development of graphics processing units
(GPUs) has resulted in that many algorithms in the medical
imaging domain have been implemented on the GPU, in
order to save time and to be able to apply more advanced
analysis. To give an example of the rapid GPU development,
a comparison of three consumer graphic cards from Nvidia
is given in Table 1. The time frame between each GPU
generation is 2-3 years. Some examples of fields in medical
imaging that have taken advantage of the computational
power of the GPU are image registration [9–13], image
segmentation [14–16] and fMRI analysis [17–20].

In the area of image denoising, some algorithms have also
been implemented on the GPU. Already in 2001 Rumpf and

mailto:anders.eklund@liu.se

2 International Journal of Biomedical Imaging

Table 1: Comparison between three Nvidia GPUs, from three different generations, in terms of processor cores, memory bandwidth, size
of shared memory, cache memory, and number of registers; MP stands for multiprocessor and GB/s stands for gigabytes per second. For the
GTX 580, the user can for each kernel choose to use 48 KB of shared memory and 16 KB of L1 cache or vice versa.

Property/GPU 9800 GT GTX 285 GTX 580

Number of processor cores 112 240 512

Normal size of global memory 512 MB 1024 MB 1536 MB

Global memory bandwidth 57.6 GB/s 159.0 GB/s 192.4 GB/s

Constant memory 64 KB 64 KB 64 KB

Shared memory per MP 16 KB 16 KB 48/16 KB

Float registers per MP 8192 16384 32768

L1 cache per MP None None 16/48 KB

L2 cache None None 768 KB

Strzodka [21] described how to apply anisotropic diffusion
[3] on the GPU. Howison [22] made a comparison between
different GPU implementations of anisotropic diffusion and
bilateral filtering for 3D data. Su and Xu [23] in 2010 pro-
posed how to accelerate wavelet-based image denoising by
using the GPU. Zhang et al. [24] describe GPU-based image
manipulation and enhancement techniques for dynamic
volumetric medical image visualization, but enhancement in
this case refers to enhancement of the visualization, and not
of the 4D data. Recently, the GPU has been used for real-
time image denoising. In 2007, Chen et al. [25] used bilateral
filtering [26] on the GPU for real-time edge-aware image
processing. Fontes et al. [27] in 2011 used the GPU for real-
time denoising of ultrasound data and Goossens et al. [28]
in 2010 managed to run the commonly used nonlocal means
algorithm [29] in real time.

To our knowledge, there has not been any work done
about true 4D image denoising on the GPU. In this work we
therefore present a novel algorithm, based on local adaptive
filtering, for 4D denoising and describe how to implement
it on the GPU, in order to decrease the processing time and
thereby significantly increase the clinical value.

2. Methods

In this section, the algorithm that is used for true 4D image
denoising will be described.

2.1. The Power of Dimensionality. To show how a higher
number of dimensions, the power of dimensionality, can
improve the denoising result, a small test is first conducted
on synthetic data. The size of the 4D data is 127×127×9×9,
but there is no signal variation in the last two dimensions.
The data contains a large step, a thin line, and a shading from
the top left corner to the bottom right corner. A large amount
of 4D additive noise was finally added to the data. Image
denoising of different dimensionality was then applied. For
the 2D case, the denoising was done on one 127×127 image,
for the 3D case, the denoising was done on one 127×127×9
volume and for the 4D case all the data was used. A single
anisotropic lowpass filter was used for the denoising, and
the filter had the same dimensionality as the data and was
oriented along the structures. The original test data, the

test data with noise and the denoising results are given in
Figure 1. It is clear that the denoising result is improved
significantly for each new dimension.

2.2. Adaptive Filtering in 4D. The denoising approach that
our work is based on is adaptive filtering. It was introduced
for 2D by Knutsson et al. in 1983 [2] and then extended to
3D in 1992 [4]. In this work, the same basic principles are
used for adaptive filtering in 4D. The main idea is to first
estimate the local structure tensor [30] (by using a first set
of filters) in each neighbourhood of the data and then let
the tensor control the reconstruction filters (a second set of
filters). The term reconstruction should in this paper not be
confused with the reconstruction of the CT data. The local
structure tensor T is in 4D a 4× 4 symmetric matrix in each
time voxel,

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

t1 t2 t3 t4

t2 t5 t6 t7

t3 t6 t8 t9

t4 t7 t9 t10

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

xx xy xz xt

xy yy yz yt

xz yz zz zt

xt yt zt tt

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1)

and contains information about the local structure in the
data, that can be used to control the weights of the
reconstruction filters. The result of the adaptive filtering is
that smoothing is done along structures (such as lines and
edges in 2D), but not perpendicular to them.

2.3. Adaptive Filtering Compared to Other Methods for Image
Denoising. Compared to more recently developed methods
for image denoising (e.g., nonlocal means [29], anisotropic
diffusion [3] and bilateral filtering [26]), adaptive filtering is
in our case used for 4D image denoising for three reasons.
First, adaptive filtering is computationally more efficient
than the other methods. Nonlocal means can give very good
results, but the algorithm can be extremely time consuming
(even if GPUs are used). Anisotropic diffusion is an iterative
algorithm and can therefore be rather slow. Adaptive filtering
is a direct method that does not need to be iterated. Bilateral
filtering does not only require a multiplication for each filter
coefficient and each data value, but also an evaluation of
the intensity range function (e.g., an exponential) which
is much more expensive to perform than a multiplication.

International Journal of Biomedical Imaging 3

Original Degraded 2D Denoising 3D Denoising 4D Denoising

(1) (2) (3) (4) (5)

Figure 1: (1) Original test image without noise. There is a large step in the middle, a bright thin line and a shading from the top left corner
to the bottom right corner. (2) Original test image with a lot of noise. The step is barely visible, while it is impossible to see the line or the
shading. (3) Resulting image after 2D denoising. The step is almost visible and it is possible to see that the top left corner is brighter than the
bottom right corner. (4) Resulting image after 3D denoising. Now the step and the shading are clearly visible, but not the line. (5) Resulting
image after 4D denoising. Now all parts of the image are clearly visible.

Second, the tuning of the parameters is for our denoising
algorithm rather easy to understand and to explore. When
a first denoising result has been obtained, it is often obvious
how to change the parameters to improve the result. This is
not always the case for other methods. Third, the adaptive
filtering approach has been proven to be very robust (it is
extremely seldom that a strange result is obtained). Adaptive
filtering has been used for 2D image denoising in commercial
clinical software for over 20 years and a recent 3D study [31]
proves its potential, robustness, and clinical acceptance. The
nonlocal means algorithm only works if the data contains
several neighbourhoods with similar properties.

2.4. Estimating the Local Structure Tensor Using Quadrature
Filters. The local structure tensor can, for example, be
estimated by using quadrature filters [5, 30]. Quadrature
filtersQ are zero in one half of the frequency domain (defined
by the direction of the filter) and can be expressed as two
polar separable functions, one radial function R and one
directional function D,

Q(u) = R(‖u‖)D(u), (2)

where u is the frequency variable. The radial function is a
lognormal function

R(‖u‖) = exp
(
C ln2

(‖u‖
u0

))
, C = −4

B2 ln(2)
, (3)

where u0 is the centre frequency of the filter and B is the
bandwidth (in octaves). The directional function depends
on the angle θ between the filter direction vector n̂ and the
normalized frequency coordinate vector u as cos(θ)2,

D(u) =
⎧⎪⎨
⎪⎩

(
uT n̂

)2
, uT n̂ > 0,

0, otherwise.
(4)

Quadrature filters are Cartesian nonseparable and complex
valued in the spatial domain, the real part is even and in 2D
acts as a line detector, while the imaginary part is odd and
in 2D acts as an edge detector. In 3D, the even and odd filters
correspond to a plane detector and a 3D edge detector. In 4D,

the plane and 3D edge may in addition be time varying. The
complex-valued filter response q is an estimate of a bandpass
filtered version of the analytical signal with magnitude A and
phase φ,

q = A
(
cos
(
φ
)

+ i · sin
(
φ
)) = Aeiφ. (5)

The tensor is calculated by multiplying the magnitude of the
quadrature filter response qk with the outer product of the
filter direction vector n̂k and then summing the result over
all filters k,

T =
Nf∑

k=1

∣∣qk
∣∣(c1n̂kn̂T

k − c2I
)

, (6)

where c1 and c2 are scalar constants that depend on the
dimensionality of the data [5, 30], Nf is the number of
quadrature filters and I is the identity matrix. The resulting
tensor is phase invariant, as the magnitude of the quadrature
filter response is invariant to the type of local neighbourhood
(e.g., in 2D bright lines, dark lines, dark to bright edges,
etc.). This is in contrast to when the local structure tensor
is estimated by using gradient operators, such as Sobel filters.

The number of filters that are required to estimate the
tensor depends on the dimensionality of the data and is
given by the number of independent components of the
symmetric local structure tensor. The required number of
filters is thus 3 for 2D, 6 for 3D and 10 for 4D. The given
tensor formula, however, assumes that the filters are evenly
spread. It is possible to spread 6 filters evenly in 3D, but it is
not possible to spread 10 filters evenly in 4D. For this reason,
12 quadrature filters have to be used in 4D (i.e., a total of 24
filters in the spatial domain, 12 real valued and 12 complex
valued). To apply 24 nonseparable filters to a 4D dataset
requires a huge number of multiplications. In this paper a
new type of filters, monomial filters [32], are therefore used
instead.

2.5. Estimating the Local Structure Tensor Using Monomial
Filters. Monomial filters also have one radial function R
and one directional function D. The directional part of the
monomial filters are products of positive integer powers of

4 International Journal of Biomedical Imaging

the components of the frequency variable u. The monomial
filter matrices of order one, F1, and two, F2, are in the
frequency domain defined as

F1,n = R(‖u‖)ûn, F2,mn = R(‖u‖)ûmûn. (7)

The monomial filters are first described for 2D and then
generalized to 4D.

2.5.1. Monomial Filters in 2D. In 2D, the frequency variable
is in this work defined as u = [u v]T . The directional part of
first-order monomial filters are x, y in the spatial domain and
u, v in the frequency domain. Two-dimensional monomial
filters of the first-order are given in Figure 2. The directional
part of second-order monomial filters are xx, xy, yy in the
spatial domain and uu,uv, vv in the frequency domain. Two
dimensional monomial filters of the second order are given
in Figure 3.

The monomial filter response matrices Q are either
calculated by convolution in the spatial domain or by
multiplication in the frequency domain. For a simple signal
with phase θ (e.g., s(x) = A cos(uTx + θ)); the monomial
filter response matrices of order one and two can be written
as

Q1 = −iA sin(θ)[uv]T ,

Q2 = A cos(θ)

⎛
⎝uu uv

uv vv

⎞
⎠.

(8)

The first-order products are odd functions and are thereby
related to the odd sine function, the second order products
are even functions and are thereby related to the even cosine
function (note the resemblance with quadrature filters that
have one even real part and one odd imaginary part). By
using the fact that u2 + v2 = 1, the outer products of the
filter response matrices give

Q1Q1
T = sin2(θ)|A|2

⎛
⎝uu uv

uv vv

⎞
⎠,

Q2Q2
T = cos2(θ)|A|2

⎛
⎝uu uv

uv vv

⎞
⎠.

(9)

The local structure tensor T is then calculated as

T = Q1Q1
T + Q2Q2

T = |A|2
⎛
⎝uu uv

uv vv

⎞
⎠. (10)

From this expression, it is clear that the estimated tensor,
as previously, is phase invariant as the square of one odd
part and the square of one even part are combined. For
information about how to calculate the tensor for higher-
order monomials, see our recent work [32].

2.5.2. Monomial Filters in 4D. A total of 14 nonseparable 4D
monomial filters (4 odd of the first-order (x, y, z, t) and 10
even of the second-order (xx, xy, xz, xt, yy, yz, yt, zz, zt, tt))

Frequency domain
u v

(a)

Spatial domain
x y

(b)

Figure 2: (a) Two-dimensional monomial filters (u, v), of the first
order, in the frequency domain. Green indicates positive real values
and red indicates negative real values. The black lines are isocurves.
(b) Two-dimensional monomial filters (x, y), of the first order, in
the spatial domain. Yellow indicates positive imaginary values, and
blue indicates negative imaginary values. Note that these filters are
odd and imaginary.

with a spatial support of 7 × 7 × 7 × 7 time voxels are
applied to the CT volumes. The filters have a lognormal
radial function with centre frequency 3π/5 and a bandwidth
of 2.5 octaves. The filter kernels were optimized with respect
to ideal frequency response, spatial locality, and expected
signal-to-noise ratio [5, 33].

By using equation (10) for the 4D case, and replacing
the frequency variables with the monomial filter responses,
the 10 components of the structure tensor are calculated
according to

t1 = f r1 · f r1 + f r5 · f r5 + f r6 · f r6 + f r7 · f r7

+ f r8 · f r8,

t2 = f r1 · f r2 + f r5 · f r6 + f r6 · f r9 + f r7 · f r10

+ f r8 · f r11,

t3 = f r1 · f r3 + f r5 · f r7 + f r6 · f r10 + f r7 · f r12

+ f r8 · f r13,

t4 = f r1 · f r4 + f r5 · f r8 + f r6 · f r11 + f r7 · f r13

+ f r8 · f r14,

t5 = f r2 · f r2 + f r6 · f r6 + f r9 · f r9 + f r10 · f r10

+ f r11 · f r11,

International Journal of Biomedical Imaging 5

Frequency domain
uu uv vv

(a)

Spatial domain
xx xy yy

(b)

Figure 3: (a) Two-dimensional monomial filters (uu,uv, v), of the second order, in the frequency domain. Green indicates positive real
values, and red indicates negative real values. The black lines are isocurves. (b) Two-dimensional monomial filters (xx, xy, yy), of the second
order, in the spatial domain. Green indicates positive real values, and red indicates negative real values. Note that these filters are even and
real.

t6 = f r2 · f r3 + f r6 · f r7 + f r9 · f r10 + f r10 · f r12

+ f r11 · f r13,

t7 = f r2 · f r4 + f r6 · f r8 + f r9 · f r11 + f r10 · f r13

+ f r11 · f r14,

t8 = f r3 · f r3 + f r7 · f r7 + f r10 · f r10 + f r12 · f r12

+ f r13 · f r13,

t9 = f r3 · f r4 + f r7 · f r8 + f r10 · f r11 + f r12 · f r13

+ f r13 · f r14,

t10 = f r4 · f r4 + f r8 · f r8 + f r11 · f r11 + f r13 · f r13

+ f r14 · f r14,

(11)

where f rk denotes the filter response for monomial filter k.
The first term relates to Q1Q1

T , and the rest of the terms
relate to Q2Q2

T , in total Q1Q1
T + Q2Q2

T .
If monomial filters are used instead of quadrature filters,

the required number of 4D filters is thus decreased from 24 to
14. Another advantage is that the monomial filters require a
smaller spatial support, which makes it easier to preserve de-
tails and contrast in the processing. A smaller spatial support

also results in a lower number of filter coefficients, which
decreases the processing time.

2.6. The Control Tensor. When the local structure tensor T
has been estimated, it is then mapped to a control tensor C,
by mapping the magnitude (energy) and the isotropy of the
tensor. The purpose of this mapping is to further improve the
denoising. For 2D and 3D image denoising, this mapping can
be done by first calculating the eigenvalues and eigenvectors
of the structure tensor in each element of the data. The
mapping is first described for 2D and then for 4D.

2.6.1. Mapping the Magnitude of the Tensor in 2D. In the 2D
case, the magnitude γ0 of the tensor is calculated as

γ0 =
√
λ2

1 + λ2
2, (12)

where λ1 and λ2 are the two eigenvalues. The magnitude γ0 is
normalized to vary between 0 and 1 and is then mapped to γ
with a so-called M-function according to

γ =
⎛
⎝ γ

β
0

γ
α + β

0 + σ β

⎞
⎠, (13)

where α, β, and σ are parameters that are used to control
the mapping. The σ variable is directly proportional to the
signal-to-noise (SNR) ratio of the data and acts as a soft

6 International Journal of Biomedical Imaging

noise threshold, α mainly controls the overshoot (that can
be used for dynamic range compression or to amplify areas
that have a magnitude slightly above the noise threshold),
and β mainly controls the slope/softness of the curve. The
purpose of this mapping is to control the general usage of
highpass information. The highpass information should only
be used where there is a well-defined structure in the data. If
the magnitude of the structure tensor is low, one can assume
that the neighbourhood only contains noise. Some examples
of the M-function are given in Figure 4.

2.6.2. Mapping the Isotropy of the Tensor in 2D. The isotropy
φ0 is in 2D calculated as

φ0 = λ2

λ1
(14)

and is mapped to φ with a so called mu-function according
to

φ =
(
φ0(1− α)

)β
(
φ0(1− α)

)β +
(
α
(
1− φ0

))β , (15)

where α and β are parameters that are used to control the
mapping, α mainly controls the transition of the curve and
β mainly controls the slope/softness. The purpose of this
mapping is to control the usage of highpass information in
the nondominant direction, that is, the direction that is given
by the eigenvector corresponding to the smallest eigenvalue.
This is done by making the tensor more isotropic if it is
slightly isotropic, or making it even more anisotropic if it is
anisotropic. Some examples of the mu-function are given in
Figure 5. Some examples of isotropy mappings are given in
Figure 6. The M-function and the mu-function are further
explained in [5].

2.6.3. The Tensor Mapping in 2D. The control tensor C is
finally calculated as

C = γe1e1
T + γφe2e2

T , (16)

where e1 is the eigenvector corresponding to the largest
eigenvalue λ1 and e2 is the eigenvector corresponding to
the smallest eigenvalue λ2. The mapping thus preserves the
eigensystem, but changes the eigenvalues and thereby the
shape of the tensor.

2.6.4. The Complete Tensor Mapping in 4D. For matrices of
size 2 × 2 and 3 × 3, there are direct formulas for how
to calculate the eigenvalues and eigenvectors, but for 4 × 4
matrices, there are no such formulas and this complicates
the mapping. It would of course be possible to calculate the
eigenvalues and eigenvectors by other approaches, such as
the power iteration algorithm, but this would be extremely
time consuming as the mapping to the control tensor
has to be done in each time voxel. The mapping of the
local structure tensor to the control tensor is in this work
therefore performed in a way that does not explicitly need

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
M-function

Original magnitude

M
ap

pe
d

m
ag

n
it

u
de

Figure 4: Examples of the M-function that maps the magnitude
of the structure tensor. If the magnitude of the structure tensor is
too low, the magnitude is set to zero for the control tensor, such
that no highpass information is used in this part of the data. The
overshoot is intended to amplify structures that have a magnitude
that is slightly above the noise threshold.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
mu-function

Original isotropy

M
ap

pe
d

is
ot

ro
py

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: Examples of the mu-function that maps the isotropy of
the structure tensor. If the structure tensor is almost isotropic (a
high value on the x-axis) the control tensor becomes more isotropic.
If the structure tensor is anisotropic (a low value on the x-axis) the
control tensor becomes even more anisotropic.

the calculation of eigenvalues and eigenvectors. The tensor
magnitude is first calculated as

Tmag =
∥∥T8

∥∥1/8
, (17)

where ‖ · ‖ denotes the Frobenius norm. The exponent will
determine how close to λ1 the estimated tensor magnitude
will be; a higher exponent will give better precision, but an

International Journal of Biomedical Imaging 7

(a)

1 2 3

(b)

Figure 6: Three examples of isotropy mappings. (a) Original
structure tensors. (b) Mapped control tensors. If the structure
tensor is anisotropic, the control tensor becomes even more
anisotropic (examples 1 and 2). If the structure tensor is almost
isotropic, it becomes more isotropic (example 3).

exponent of 8 has proven to be sufficient in practice. To
reduce the computational load, T8 is calculated as

T2 = T∗ T,

T4 = T2 ∗ T2,

T8 = T4 ∗ T4,

(18)

where ∗ denotes matrix multiplication. γ0 is then calculated
as

γ0 =
√√√√ Tmag

max
(

Tmag

) , (19)

where the max operator is for the entire data set, such that
the maximum value of γ0 will be 1, γ0 is then mapped to γ by
using the M-function.

To map the isotropy, the structure tensor is first normal-
ized as

T̂ = T
Tmag

, (20)

such that the tensor only carries information about the
anisotropy (shape). The fact that T̂ and I − T̂ have the same
eigensystem is used, such that the control tensor can be
calculated as

C = γ
(
φI +

(
1− φ

) · T̂
)

, (21)

where I is the identity matrix. The following formulas are an
ad hoc modification of this basic idea, that do not explicitly
need the calculation of the isotropy φ and that give good
results for our CT data. The basic idea is that the ratio
of the eigenvalues of the tensor change when the tensor is
multiplied with itself a number of times, and thereby the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Transfer function for mapping of eigenvalues of the structure tensor

Original eigenvalue

M
ap

p
ed

ei
ge

nv
al

u
e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7: The transfer function that maps the eigenvalues of the
structure tensor.

shape of the tensor also changes. This approach does not
give exactly the same results as the original isotropy mapping,
but it circumvents the explicit calculation of eigenvalues and
eigenvectors. A help variable T̂ f is first calculated as

T̂ f = T̂2 ∗
(

I + 2 ·
(

I− T̂
))

, (22)

and then the control tensor C is calculated as

C = γ
(

I−
(

I− T̂ f

)8 ∗
(

I + 8 · T̂ f

))
. (23)

The resulting transfer function that maps each eigenvalue
is given in Figure 7. Eigenvalues that are small become even
smaller, and eigenvalues that are large become even larger.
The result of this eigenvalue mapping is similar to the
isotropy mapping examples given in Figure 6.

2.7. Calculating the Denoised Data. Eleven nonseparable
reconstruction filters, one lowpass filter H0 of the zeroth
order and 10 highpass filters H2,mn of the second order, with
a spatial support of 11× 11× 11× 11 time voxels are applied
to the CT volumes. The denoised 4D data id is calculated as
the sum of the lowpass-filtered data, ilp, and the highpass
filtered data for each highpass-filter k, ihp(k), weighted with
the components Ck of the control tensor C,

id = ilp +
10∑

k=1

Ck · ihp(k). (24)

The result is that the 4D data is lowpass filtered in all
directions and then highpass information is put back where
there is a well-defined structure. Highpass information is put
back in the dominant direction of the local neighbourhood
(given by the eigenvector related to the largest eigenvalue)
if the tensor magnitude is high. Highpass information is
put back in the nondominant directions (given by the
eigenvectors related to the smaller eigenvalues) if the tensor
magnitude is high and the anisotropy is low.

8 International Journal of Biomedical Imaging

Table 2: The table shows the in and out data resolution, the used equations and the memory consumption for all the processing steps for
spatial filtering (SF) and FFT-based filtering (FFTBF). Note that the driver for the GPU is stored in the global memory, and it normally
requires 100–200 MB.

Processing step Resolution, SF Memory consumption, SF Resolution, FFTBF
Memory
consumption, FFTBF

Lowpass filtering and
downsampling of CT volumes

in 512× 512× 51× 20
406 MB

in 512× 512× 31× 20
294 MB

out 256× 256× 26× 20 out 256× 256× 16× 20
Filtering with 14 monomial filters
and calculating the local structure
tensor ((10), (11))

in 256× 256× 26× 20
1376 MB

in 256× 256× 16× 20
1791 MB

out 256× 256× 20× 20 out 256× 256× 10× 20

Lowpass filtering of the local
structure tensor components
(normalized convolution, (25))

in 256× 256× 20× 20
1276 MB

in 256× 256× 10× 20
720 MB

out 256× 256× 20× 20 out 256× 256× 10× 20

Calculating the tensor magnitude
and mapping it with the
M-function ((17), (18), (19), (13))

in 256× 256× 20× 20
1376 MB

in 256× 256× 10× 20
770 MB

out 256× 256× 20× 20 out 256× 256× 10× 20

Mapping the local structure tensor
to the control tensor ((20), (22),
(23))

in 256× 256× 20× 20
1376 MB

in 256× 256× 10× 20
770 MB

out 256× 256× 20× 20 out 256× 256× 10× 20

Lowpass filtering of the control
tensor components (normalized
convolution, (25))

in 256× 256× 20× 20
1476 MB

in 256× 256× 10× 20
820 MB

out 256× 256× 20× 20 out 256× 256× 10× 20

Filtering with 11 reconstruction
filters, interpolating the control
tensor on the fly, and calculating
the denoised data (24)

in 512× 512× 51× 20
2771 MB

in 512× 512× 16× 20
2110 MB

out 512× 512× 39× 20
out 512× 512× 6× 20

(three rounds×6 slices =
18 denoised slices in total)

2.8. The Complete Algorithm. All the processing steps of
the denoising algorithm are given in Table 2. In our case
the CT data does not contain any significant structural
information in the frequencies over π/2 in the spatial
dimensions, the volumes are therefore lowpass filtered and
then downsampled a factor 2 in x, y, z. When the local
structure tensor has been estimated, it is lowpass filtered,
with a separable lowpass filter of size 5 × 5 × 5 × 3, to
improve the estimate in each time voxel and to make sure
that the resulting reconstruction filter varies smoothly. Note
that this smoothing does not decrease the resolution of the
image data, but only the resolution of the tensor field. After
the tensor mapping, the control tensor is interpolated to the
original resolution of the CT data.

While the presented algorithm is straightforward to
implement, spatial filtering with 11 reconstruction filters of
size 11 × 11 × 11 × 11 (14 641 filter coefficients) applied to
a dataset of the resolution 512 × 512 × 445 × 20 requires
about 375 000 billion multiplications. This is the reason why
the GPU is needed in order to do the 4D denoising in a
reasonable amount of time.

2.9. Normalized Convolution. One of the main drawbacks of
the presented algorithm is that, using standard convolution,
the number of valid elements in the z-direction (i.e., slices)
decreases rapidly. If the algorithm is applied to a dataset of
the resolution 512×512×34×20, two slices are first lost due
to the convolution with the lowpass filter of size 3 × 3 × 3.
After the downsampling, there are 16 slices in the data. The
monomial filters are of size 7×7×7×7, thereby only 10 of the
filter response slices are valid. During the lowpass filtering of

each structure tensor component, another four slices are lost
and then another four are lost during lowpass filtering of the
control tensor. The result is thus that only 2 valid slices are
left after all the convolutions. The same problem could exist
in the time dimension, but since the heart cycle is periodic
it is natural to use circular convolution in the time direction,
and thereby all the time points are valid.

The loss of valid slices can be avoided by using normal-
ized convolution [34], both for the lowpass filtering of the
data before downsampling and the lowpass filtering of the
tensor components. In normalized convolution, a certainty
is attached to each signal value. A certainty-weighted filter
response cwr is calculated as

cwr = (c · s)∗ f

c ∗ f
, (25)

where c is the certainty, s is the signal, f is the filter, · denotes
pointwise multiplication, and ∗ denotes convolution. The
certainty is set to 1 inside the data and 0 outside the data.
Note that this simple version of normalized convolution
(normalized averaging) can not be applied for the monomial
filters and for the reconstruction filters, as these filters have
both negative and positive coefficients. It is possible to apply
the full normalized convolution approach for these filters,
but it will significantly increase the computational load.

3. GPU Implementation

In this section, the GPU implementation of the denoising
algorithm will be described. The CUDA (compute unified
device architecture) programming language by Nvidia [35],

International Journal of Biomedical Imaging 9

explained by Kirk and Hwu [36], has been used for the
implementation. The Open Computing Language (OpenCL)
[37] could be a better choice, as it makes it possible to run the
same code on any hardware.

3.1. Creating 4D Indices. The CUDA programming language
can easily generate 2D indices for each thread, for example,
by using Algorithm 1. To generate 3D indices is harder, as
each thread block can be three dimensional but the grid
can only be two dimensional. One approach to generate 3D
indices is given in Algorithm 2. To generate 4D indices is even
more difficult. To navigate in the 4D data, the 3D indexing
approach described above is used, and the kernel is then
called once for each time point.

3.2. Spatial versus FFT Based Filtering. Fast-Fourier-trans-
form (FFT-) based filtering can be very efficient when large
nonseparable filters of high dimension are to be applied to
big datasets, but spatial filtering is generally faster if the
filters are small or Cartesian separable. The main advantage
with FFT-based filtering is that the processing time is the
same regardless of the spatial size of the filter. A small
bonus is that circular filtering is achieved for free. The main
disadvantage with FFT-based filtering is however the mem-
ory requirements, as the filters need to be stored in the same
resolution as the data, and also as a complex-valued number
for each element.

To see which kind of filtering that fits the GPU best, both
spatial and FFT-based filtering was therefore implemented.
For filtering with the small separable lowpass filters (which
are applied before the data is downsampled and to smooth
the tensor components), only separable spatial filtering is
implemented.

3.3. Spatial Filtering. Spatial filtering can be implemented
in rather many ways, especially in four dimensions. One
easy way to implement 2D and 3D filtering on the GPU
is to take advantage of the cache of the texture memory
and put the filter kernel in constant memory. The drawback
with this approach is however that the implementation will
be very limited by the memory bandwidth, and not by the
computational performance. Another problem is that it is
not possible to use 4D textures in the CUDA programming
language. One would have to store the 4D data as one big 1D
texture or as several 2D or 3D textures. A better approach is
to take advantage of the shared memory, which increased a
factor 3 in size between the Nvidia GTX 285 and the Nvidia
GTX 580. The data is first read into the shared memory and
then the filter responses are calculated in parallel. By using
the shared memory, the threads can share the data in a very
efficient way, which is beneficial as the filtering results for
two neighbouring elements are calculated by mainly using
the same data.

As multidimensional filters can be separable or non-
separable (the monomial filters and the reconstruction
filters are nonseparable, while the different lowpass filters
are separable) two different spatial filtering functions were
implemented.

3.3.1. Separable Filtering. Our separable 4D convolver is
implemented by first doing the filtering for all the rows, then
for all the columns, then for all the rods and finally for all the
time points. The data is first loaded into the shared memory
and then the valid filter responses are calculated in parallel.
The filter kernels are stored in constant memory. For the
four kernels, 16 KB of shared memory is used such that 3
thread blocks can run in parallel on each multiprocessor on
the Nvidia GTX 580.

3.3.2. Nonseparable Filtering. The shared memory approach
works rather well for nonseparable 2D filtering but not
as well for nonseparable 3D and 4D filtering. The size of
the shared memory on the Nvidia GTX 580 is 48 KB for
each multiprocessor, and it is thereby only possible to, for
example, fit 11 × 11 × 11 × 9 float values into it. If the 4D
filter is of size 9×9×9×9, only 3×3×3×1 = 27 valid filter
responses can be generated for each multiprocessor. A better
approach for nonseparable filtering in 4D is to instead use an
optimized 2D filtering kernel, and then accumulate the filter
responses by summing over the other dimensions by calling
the 2D filtering function for each slice and each time point
of the filter. The approach is described with the pseudocode
given in Algorithm 3.

Our nonseparable 2D convolver first reads 64 × 64
pixels into the shared memory, then calculates the valid
filter responses for all the 14 monomial filters or all the 11
reconstruction filters at the same time, and finally writes
the results to global memory. Two versions of the convolver
were implemented, one that maximally supports 7× 7 filters
and one that maximally supports 11 × 11 filters. The first
calculates 58 × 58 valid filter responses, and the second
calculates 54 × 54 valid filter responses. As 64 × 64 float
values only require 16 KB of memory, three thread blocks can
run at the same time on each multiprocessor. This results in
58 × 58 × 3 = 10092 and 54 × 54 × 3 = 8748 valid filter
responses per multiprocessor. For optimal performance, the
2D filtering loop was completely unrolled by generating the
code with a Matlab script.

The 14 monomial filters are of size 7 × 7 × 7 × 7, this
would require 135 KB of memory to be stored as floats, but
the constant memory is only 64 KB. For this reason, 7×7 filter
coefficients are stored at a time and are then updated for each
time point and for each slice. It would be possible to store
7× 7× 7 filter coefficients at a time, but by only storing 7× 7
coefficients, the size of the filters (2.75 KB) is small enough to
always be in the cache of the constant memory (8 KB). The
same approach is used for the 11 reconstruction filters of size
11× 11× 11× 11.

3.4. FFT-Based Filtering. While the CUFFT library by Nvidia
supports 1D, 2D, and 3D FFTs, there is no direct support
for 4D FFTs. As the FFT is cartesian separable, it is however
possible to do a 4D FFT by applying four consecutive 1D
FFTs. The CUFFT library supports launching a batch of 1D
FFTs, such that many 1D FFT’s can run in parallel. The
batch of 1D FFTs are applied along the first dimension in
which the data is stored (e.g., along x if the data is stored

10 International Journal of Biomedical Imaging

// Code that is executed before the kernel is launched

int threadsInX = 32;

int threadsInY = 16;

int blocksInX = DATA W/threadsInX;

int blocksInX = DATA H/threadsInY;

dimGrid = dim3(blocksInX, blocksInY);

dimBlock = dim3(threadsInX, threadsInY, 1);

// Code that is executed inside the kernel

int x = blockIdx.x ∗ blockDim.x + threadIdx.x;

int y = blockIdx.y ∗ blockDim.y + threadIx.yd;

Algorithm 1

// Code that is executed before the kernel is launched

int threadsInX = 32;

int threadsInY = 16;

int threadsInZ = 1;

int blocksInX = (DATA W+threadsInX-1)/threadsInX;

int blocksInY = (DATA H+threadsInY-1)/threadsInY;

int blocksInZ = (DATA D+threadsInZ-1)/threadsInZ;

dim3 dimGrid = dim3(blocksInX, blocksInY∗blocksInZ);
dim3 dimBlock = dim3(threadsInX, threadsInY, threadsInZ);

// Code that is executed inside the kernel

int blockIdxz = float2uint rd(blockIdx.y ∗ invBlocksInY);

int blockIdxy = blockIdx.y − blockIdxz ∗ blocksInY;

int x = blockIdx.x ∗ blockDim.x + threadIdx.x;

int y = blockIdxy ∗ blockDim.y + threadIdx.y;

int z = blockIdxz ∗ blockDim.z + threadIdx.z;

Algorithm 2

as (x, y, z, t)). Between each 1D FFT, it is thereby necessary
to change the order of the data (e.g., from (x, y, z, t) to
(y, z, t, x)). The drawback with this approach is that the time
it takes to change order of the data can be longer than to
actually perform the 1D FFT. The most recent version of the
CUFFT library supports launching a batch of 2D FFT’s. By
applying two consecutive 2D FFT’s, it is sufficient to change
the order of the data once, instead of three times.

A forward 4D FFT is first applied to the volumes. A
filter is padded with zeros to the same resolution as the data
and is then transformed to the frequency domain. To do
the filtering, a complex-valued multiplication between the
data and the filter is applied and then an inverse 4D FFT is
applied to the filter response. After the inverse transform, a
FFT shift is necessary; there is however no such functionality
in the CUFFT library. When the tensor components and the
denoised data are calculated, each of the four coordinates is
shifted by using a help function, see Algorithm 4.

As the monomial filters only have a real part or an
imaginary part in the spatial domain, some additional time
is saved by putting one monomial filter in the real part and
another monomial filter in the imaginary part before the 4D
FFT is applied to the zero-padded filter. When the complex
multiplication is performed in the frequency domain, two

filters are thus applied at the same time. After the inverse 4D
FFT, the first filter response is extracted as the real part and
second filter response is extracted as the imaginary part. The
same trick is used for the 10 highpass reconstruction filters.

3.5. Memory Considerations. The main problem of imple-
menting the 4D denoising algorithm on the GPU is the
limited size of the global memory (3 GB in our case). This is
made even more difficult by the fact that the GPU driver can
use as much as 100–200 MB of the global memory. Storing
all the CT data on the GPU at the same time is not possible, a
single CT volume of the resolution 512× 512× 445 requires
about 467 MB of memory if 32 bit floats are used. Storing the
filter responses is even more problematic. To give an example,
to store all the 11 reconstruction filter responses as floats for
a dataset of the size 512 × 512 × 445 × 20 would require
about 103 GB of memory. The denoising is therefore done
for a number of slices (e.g., 16 or 32) at a time.

For the spatial filtering, the algorithm is started with data
of the resolution 512 × 512 × 51 × 20 and is downsampled
to 256 × 256 × 26 × 20. The control tensor is calculated for
256 × 256 × 20 × 20 time voxels, and the denoised data is
calculated for 512× 512× 39× 20 time voxels. To process all
the 445 slices requires 12 runs.

International Journal of Biomedical Imaging 11

// Do the filtering for all the time points in the data

for (int t=0; t<DATA T; t++)

{
// Do the filtering for all the slices in the data

for (int z=0; z<DATA D;z++)

{
// Set the filter responses on the GPU to 0

Reset<<<dimGrid, dimBlock>>>(d Filter Responses);

// Do the filtering for all the time points in the filter

for (int tt=0; tt<FILTER T; tt++)

{
// Do the filtering for all the slices in the filter

for (int zz=0; zz<FILTER D; zz++)

{
// Copy the current filter coefficients

// to constant memory on the GPU

CopyFilterCoefficients(zz,tt);

// Do the 2D filtering on the GPU

// and increment the filter responses

// inside the filtering function

Conv2D<<<dimGrid, dimBlock>>>(d Filter Responses);

}
}

}
}

Algorithm 3

device int Shift FFT Coordinate(int coordinate, int DATA SIZE)

{
if (coordinate > (ceilf(DATA SIZE/2) − 1))

{
return coordinate − ceilf(DATA SIZE/2);

}
else

{
return coordinate + floorf(DATA SIZE/2);

}
}

Algorithm 4

For the FFT-based filtering, the algorithm is started with
data of the resolution 512×512×31×20 and is downsampled
to 256× 256× 16× 20. The control tensor is then calculated
for 256× 256× 10× 20 time voxels, and the denoised data is
calculated for 512× 512× 18× 20 time voxels. To process all
the 445 slices requires 26 runs.

To store the 10 components of the control tensor in
the same resolution as the original CT data for one run
with spatial filtering (512 × 512 × 39 × 20) would require
about 12.2 GB of memory. As the control tensor needs to be
interpolated a factor 2 in each spatial dimension, since it is
estimated on downsampled data, another approach is used.
Interpolating the tensor is a perfect task for the GPU, due to

the hardware support for linear interpolation. The 10 tensor
components, for one timepoint, are therefore stored in 10
textures and then the interpolation is done on the fly when
the denoised data is calculated. By using this approach, only
another 10 variables of the resolution 256× 256× 20 need to
be stored at the same time.

Table 2 states the in and out resolution of the data, the
used equations, and the memory consumption at each step of
the denoising algorithm, for spatial filtering and FFT-based
filtering. The out resolution refers to the resolution of the
data that is valid after each processing step, as some data is
regarded as non-valid after filtering operations. The reason
why the memory consumption is larger for the FFT-based

12 International Journal of Biomedical Imaging

Table 3: Processing times for filtering with the 14 monomial filters of size 7 × 7 × 7 × 7 and calculating the 4D tensor for the different
implementations. The processing times for the GPU do not include the time it takes to transfer the data to and from the GPU.

Data size Spatial filtering CPU Spatial filtering GPU GPU speedup FFT filtering CPU FFT filtering GPU GPU speedup

128× 128× 111× 20 17.3 min 5.7 s 182 25 s 1.8 s 13.9

256× 256× 223× 20 2.3 h 36.0 s 230 3.3 min 14.3 s 13.9

Table 4: Processing times for lowpass filtering the 10 tensor
components, calculating γ and mapping the structure tensor to the
control tensor for the different implementations. The processing
times for the GPU do not include the time it takes to transfer the
data to and from the GPU.

Data size CPU GPU GPU speedup

256× 256× 223× 20 42 s 1.0 s 42

512× 512× 445× 20 292 s 7.3 s 40

filtering is that the spatial filtering can be done for one slice
or one volume at a time, while the FFT-based filtering has
to be applied to a sufficiently large number of slices and
time points at the same time. We were not able to use more
than about 2 GB of memory for the FFT-based filtering; one
reason for this might be that the CUFFT functions internally
use temporary variables that use some of the memory. Since
the source code for the CUFFT library is unavailable, it is
hard to further investigate this hypothesis.

4. Data

The 4D CT dataset that was used for testing our GPU
implementation was collected with a Siemens SOMATOM
Definition Flash dual-energy CT scanner at the Center
for medical Image Science and Visualization (CMIV). The
dataset contains almost 9000 DICOM files and the resolution
of the data is 512 × 512 × 445 × 20 time voxels. The spatial
size of each voxel is 0.75× 0.75× 0.75 mm. During the image
acquisition the tube current is modulated over the cardiac
cycle with reduced radiation exposure during the systolic
heart phase. Due to this, the amount of noise varies with
time.

5. Results

5.1. Processing Times. A comparison between the processing
times for our GPU implementation and for a CPU imple-
mentation was made. The used GPU was a Nvidia GTX 580,
equipped with 512 processor cores and 3 GB of memory
(the Nvidia GTX 580 is normally equipped with 1.5 GB of
memory). The used CPU was an Intel Xeon 2.4 GHz with 4
processor cores and 12 MB of L3 cache, 12 GB of memory
was used. All the implementations used 32 bit floats. The
operating system used was Linux Fedora 14 64-bit.

For the CPU implementation, the OpenMP (open
multiprocessing) library [38, 39] was used, such that all
the 4 processor cores work in parallel. No other types of
optimization for the CPU, such as SSE2, were used. We are
fully aware of the fact that it is possible to make a much
better CPU implementation. The purpose of this comparison

is rather to give an indication of the performance of the CPU
and the GPU. If the CPU code would be vectorized, the CPU
processing times can be divided by a factor 3 or 4 (except for
the FFT which already is very optimized).

The processing times are given in Tables 3, 4, 5, and
6. The CPU processing times for the spatial filtering are
estimates, since it takes several days to run the algorithm on
the whole dataset. The processing times for a multi-GPU
implementation would scale rather linearly with the number
of GPUs, since each GPU can work on different subsets of
slices in parallel. As our computer contains three GPUs, all
the processing times for the GPU can thereby be divided by a
factor 3.

5.2. Denoising Results. To show the results of the 4D
denoising, the original CT data was compared with
the denoised data by applying volume rendering. The
freely available MeVisLab software development program
(http://www.mevislab.de/) was used. Two volume renderers,
one for the original data and one for the denoised data, run
at the same time and were synced in terms of view angle
and transfer function. Figure 8 shows volume renderings of
the original and the denoised data for different time points
and view angels. It is clear that a lot of noise is removed
by the denoising, but since the denoising algorithm alters
the histogram of the data, it is hard to make an objective
comparison even if the same transfer function is applied.

A movie where the original and the denoised data is
explored with the two volume renderers was also made.
For this video, the data was downsampled a factor 2 in the
spatial dimensions, in order to decrease the memory usage.
The volume renderers automatically loop over all the time-
points. The video can be found at http://www.youtube.com/
watch?v=wflbt2sV34M.

By looking at the video, it is easy to see that the amount
of noise in the original data varies with time.

6. Discussion

We have presented how to implement true 4D image
denoising on the GPU. The result is that 4D image denoising
becomes practically possible if the GPU is used and thereby
the clinical value increases significantly.

6.1. Processing Times. To make a completely fair comparison
between the CPU and the GPU is rather difficult. It has
been debated [40] if the GPU speedups that have been
reported in the literature are plausible or if they are the result
of comparisons with unoptimized CPU implementations.
In our opinion, the theoretical and practical processing
performance that can be achieved for different hardware is

http://www.mevislab.de/
http://www.youtube.com/watch?v=wflbt2sV34M
http://www.youtube.com/watch?v=wflbt2sV34M

International Journal of Biomedical Imaging 13

Table 5: Processing times for filtering with the 11 reconstruction filters of size 11×11×11×11 and calculating the denoised data for the
different implementations. The processing times for the GPU do NOT include the time it takes to transfer the data to and from the GPU.

Data size Spatial filtering CPU Spatial filtering GPU GPU speedup FFT filtering CPU FFT filtering GPU GPU speedup

256× 256× 223× 20 7.5 h 3.3 m 136 5.6 min 1.1 min 5.1

512 × 512× 445× 20 2.5 days 23.9 m 150 45 min 8.6 min 5.2

Table 6: Total processing times for the complete 4D image denoising algorithm for the different implementations. The processing times for
the GPU DO include the time it takes to transfer the data to and from the GPU.

Data size Spatial filtering CPU Spatial filtering GPU GPU speedup FFT filtering CPU FFT filtering GPU GPU speedup

256× 256× 223× 20 7.8 h 3.5 m 133 6.7 m 1.2 m 5.6

512 × 512 × 445 × 20 2.6 days 26.3 m 144 52.8 m 8.9 m 5.9

not the only interesting topic. In a research environment,
the ratio between the achievable processing performance
and the time it takes to do the implementation is also
important. From this perspective, we think that our CPU-
GPU comparison is rather fair, since about the same time was
spent on doing the CPU and the GPU implementation. The
CUDA programming language was designed and developed
for parallel calculations from the beginning, while different
addons have been added to the C programming language
to be able to do parallel calculations. While it is rather
easy to make the CPU implementation multithreaded, for
example, by using the OpenMP library, more advanced CPU
optimization is often more difficult to include and often
requires assembler programming.

While spatial filtering can be significantly slower than
FFT-based filtering for nonseparable filters, there are some
advantages (except for the lower memory usage). One is
that a region of interest (ROI) can be selected for the
denoising, compared to doing the denoising on the whole
dataset. Another advantage is that filter networks [41, 42]
can be applied, such that the filter responses from many
small filters are combined to the same filter response as from
one large filter. Filter networks can reduce the number of
multiplications as much as a factor 5 in 2D, 25 in 3D and 300
in 4D [43]. To design and optimize a filter network however
requires much more work than to optimize a single filter
[33]. Another problem is that the memory usage increases
significantly when filter networks are used, since many filter
responses need to be stored in memory. Filter networks on
the GPU is a promising area for future research.

From our results, it is clear that FFT-based filtering is
faster than spatial filtering for large nonseparable filters. For
data sizes that are not a power of two in each dimension,
the FFT based approach might however not be as efficient.
Since medical doctors normally do not look at 3D or 4D
data as volume renderings, but rather as 2D slices, the
spatial filtering approach however has the advantage that the
denoising can be done for a region of interest (e.g., a specific
slice or volume). It is a waste of time to enhance the parts
of the data that are not used by the medical doctor. The
spatial filtering approach can also handle larger datasets than
the FFT-based approach, as it is sufficient to store the filter
responses for one slice or one volume at a time. Recently, we
acquired a CT data set with 100 time points, compared to 20

time points. It is not possible to use the FFT-based approach
for this data set.

There are several reasons why the GPU speedup for the
FFT-based filtering is much smaller than the GPU speedup
for the spatial filtering. First, the CUFFT library does not
include any direct support for 4D FFT’s, and we had to
implement our own 4D FFT as two 2D FFT’s that are applied
after each other. Between the 2D FFT’s the storage order
of the data is changed. It can take a longer time to change
the order of the data than to actually perform the FFT. If
Nvidia includes direct support for 4D FFT’s in the CUFFT
library, we are sure that their implementation would be much
more efficient than ours. Second, the FFT for the CPU is
extremely optimized, as it is used in a lot of applications,
and our convolver for the CPU is not fully optimized. The
CUDA programming language is only a few years old, and
the GPU standard libraries are not as optimized as the CPU
standard libraries. The hardware design of the GPUs also
changes rapidly. Some work has been done in order to further
optimize the CUFFT library. Nukada et al. [44, 45] have
created their own GPU FFT library which has been proven
to give better performance than the CUFFT library. They
circumvent the problem of changing the order of the data
and thereby achieve an implementation that is much more
efficient. In 2008, their 3D FFT was 5-6 times faster than
the 3D FFT in the CUFFT library. Third, due to the larger
memory requirements of FFT-based filtering it is not possible
to achieve an as big speedup for the GPU implementation
as for the CPU implementation. If a GPU with a higher
amount of global memory would have been used, the FFT-
based implementation would have been more efficient.

6.2. 4D Image Processing with CUDA. As previously dis-
cussed in the paper, 4D image processing in CUDA is harder
to implement than 2D and 3D image processing. There are,
for example, no 4D textures, no 4D FFTs, and there is no
direct support for 4D (or 3D) indices. However, since fMRI
data also is 4D, we have previously gained some experience
on how to do 4D image processing with CUDA [18–20].
The conclusions that we draw after implementing the 4D
image denoising algorithm with the CUDA programming
language is thus that CUDA is not perfectly suited for 4D
image processing, but due to its flexibility, it was still possible
to implement the algorithm rather easily.

14 International Journal of Biomedical Imaging

(a) (b)

Figure 8: Three comparisons between original CT data (a) and denoised CT data (b). The parameters used for this denoising where α =
0.55, β = 1.5, and σ = 0.1 for the M-function.

International Journal of Biomedical Imaging 15

6.3. True 5D Image Denoising. It might seem impossible to
have medical image data with more than 4 dimensions, but
some work has been done on how to collect 5D data [46].
The five dimensions are the three spatial dimensions and two
time dimensions, one for the breathing rhythm and one for
the heart rhythm. One major advantage with 5D data is that
the patient can breathe normally during the data acquisition,
while the patient has to hold its breath during collection of
4D data. With 5D data, it is possible to, for example, fixate
the heart and only see the lungs moving, or fixate the lungs
to only see the heart beating. If the presented algorithm
would be extended to 5D, it would be necessary to use a
total of 20 monomial filters and 16 reconstruction filters.
For a 5D dataset of the size 512 × 512 × 445 × 20 × 20,
the required number of multiplications for spatial filtering
with the reconstruction filters would increase from 375 000
billion for 4D to about 119 million billion (1.19 · 1017) for
5D. The size of the reconstruction filter responses would
increase from 103 GB for 4D to 2986 GB for 5D. This is still
only one dataset for one patient, and we expect that both the
spatial and the temporal resolution of all medical imaging
modalities will increase even further in the future. Except for
the 5 outer dimensions, it is also possible to collect data with
more than one inner dimension. This is, for example, the case
if the blood flow of the heart is to be studied. For flow data,
a three-dimensional vector needs to be stored in each time
voxel, instead of a single intensity value.

7. Conclusions

To conclude, by using the GPU, true 4D image denoising
becomes practically feasible. Our implementation can of
course be applied to other modalities as well, such as ultra-
sound and MRI, and not only to CT data. The short process-
ing time also makes it practically possible to further improve
the denoising algorithm and to tune the parameters that are
used.

The elapsed time between the development of practically
feasible 2D [2] and 3D [4] image denoising techniques was
about 10 years, from 3D to 4D the elapsed time was about 20
years. Due to the rapid development of GPUs, it is hopefully
not necessary to wait another 10–20 years for 5D image
denoising.

Acknowledgments

This work was supported by the Linnaeus Center CADICS
and research Grant no. 2008-3813, funded by the Swedish
research council. The CT data was collected at the Center
for Medical Image Science and Visualization (CMIV). The
authors would like to thank the NovaMedTech project at
Linköping University for financial support of the GPU
hardware, Johan Wiklund for support with the CUDA
installations, and Chunliang Wang for setting the transfer
functions for the volume rendering.

References

[1] J.-S. Lee, “Digital image enhancement and noise filtering by
use of local statistics,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 2, no. 2, pp. 165–168, 1980.

[2] H. E. Knutsson, R. Wilson, and G. H. Granlund, “Anisotropic
non-stationary image estimation and its applications—part I:
restoration of noisy images,” IEEE Transactions on Communi-
cations, vol. 31, no. 3, pp. 388–397, 1983.

[3] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[4] H. Knutsson, L. Haglund, H. Bårman, and G. Granlund,
“A framework for anisotropic adaptive filtering and analysis
of image sequences and volumes,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal
Processing, (ICASSP), pp. 469–472, 1992.

[5] G. Granlund and H. Knutsson, Signal Processing for Computer
Vision, Kluwer Academic, Boston, Mass, USA, 1995.

[6] C.-F. Westin, L. Wigström, T. Loock, L. Sjöqvist, R. Kikinis,
and H. Knutsson, “Three-dimensional adaptive filtering in
magnetic resonance angiography,” Journal of Magnetic Reso-
nance Imaging, vol. 14, pp. 63–71, 2001.

[7] J. Montagnat, M. Sermesant, H. Delingette, G. Malandain, and
N. Ayache, “Anisotropic filtering for model-based segmen-
tation of 4D cylindrical echocardiographic images,” Pattern
Recognition Letters, vol. 24, no. 4-5, pp. 815–825, 2003.

[8] H. Jahanian, A. Yazdan-Shahmorad, and H. Soltanian-Zadeh,
“4D wavelet noise suppression of MR diffusion tensor data,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, (ICASSP), pp. 509–512, April
2008.

[9] K. Pauwels and M. M. Van Hulle, “Realtime phase-based
optical flow on the GPU,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
Workshops, (CVPR), pp. 1–8, June 2008.

[10] P. Muyan-Özcelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast
deformable registration on the GPU: a CUDA implementation
of demons,” in Proceedings of the International Conference on
Computational Sciences and its Applications, (ICCSA), pp. 223–
233, July 2008.

[11] P. Bui and J. Brockman, “Performance analysis of accelerated
image registration using GPGPU,” in Proceedings of the 2nd
Workshop on General Purpose Processing on Graphics Processing
Units, (GPGPU-2), pp. 38–45, March 2009.

[12] A. Eklund, M. Andersson, and H. Knutsson, “Phase based
volume registration using CUDA,” in Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP), pp. 658–661, March 2010.

[13] R. Shams, P. Sadeghi, R. Kennedy, and R. Hartley, “A survey of
medical image registration on multicore and the GPU,” IEEE
Signal Processing Magazine, vol. 27, no. 2, Article ID 5438962,
pp. 50–60, 2010.

[14] A. E. Lefohn, J. E. Cates, and R. T. Whitaker, “Interactive,
GPU-based level sets for 3D segmentation,” Lecture Notes in
Computer Science, vol. 2878, pp. 564–572, 2003.

[15] V. Vineet and P. J. Narayanan, “CUDA cuts: fast graph
cuts on the GPU,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
Workshops, (CVPR), pp. 1–8, June 2008.

[16] A. Abramov, T. Kulvicius, F. Wörgötter, and B. Dellen, “Real-
time image segmentation on a GPU,” in Proceedings of Facing
the Multicore-Challenge, vol. 6310 of Lecture Notes in Computer
Science, pp. 131–142, Springer, 2011.

16 International Journal of Biomedical Imaging

[17] D. Gembris, M. Neeb, M. Gipp, A. Kugel, and R. Männer,
“Correlation analysis on GPU systems using NVIDIA’s
CUDA,” Journal of Real-Time Image Processing, pp. 1–6, 2010.

[18] A. Eklund, O. Friman, M. Andersson, and H. Knutsson, “A
GPU accelerated interactive interface for exploratory func-
tional connectivity analysis of fMRI data,” in Proceedings of the
IEEE International Conference on Image Processing, (ICIP), pp.
1621–1624, 2011.

[19] A. Eklund, M. Andersson, and H. Knutsson, “fMRI analysis
on the GPU—possibilities and challenges,” Computer Methods
and Programs in Biomedicine. In press.

[20] A. Eklund, M. Andersson, and H. Knutsson, “Fast random
permutation tests enable objective evaluation of methods
for single subject fMRI analysis,” International Journal of
Biomedical Imaging, vol. 2011, Article ID 627947, 2011.

[21] M. Rumpf and R. Strzodka, “Nonlinear diffusion in graphics
hardware,” in Proceedings of the EG/IEEE TCVG Symposium on
Visualization, pp. 75–84, 2001.

[22] M. Howison, “Comparing GPU implementations of bilateral
and anisotropic diffusion filters for 3D biomedical datasets,”
Tech. Rep. LBNL-3425E, Lawrence Berkeley National Labora-
tory, Berkeley, Calif, USA.

[23] Y. Su and Z. Xu, “Parallel implementation of wavelet-
based image denoising on programmable PC-grade graphics
hardware,” Signal Processing, vol. 90, no. 8, pp. 2396–2411,
2010.

[24] Q. Zhang, R. Eagleson, and T. M. Peters, “GPU-based image
manipulation and enhancement techniques for dynamic vol-
umetric medical image visualization,” in Proceedings of the 4th
IEEE International Symposium on Biomedical Imaging: From
Nano to Macro, (ISBI), pp. 1168–1171, April 2007.

[25] J. Chen, S. Paris, and F. Durand, “Real-time edge-aware
image processing with the bilateral grid, ACM transactions
on graphics,” in Proceedings of the Special Interest Group on
Computer Graphics and Interactive Techniques Conference, no.
103, p. 9, 2007.

[26] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
color images,” in Proceedings of the IEEE 6th International
Conference on Computer Vision, pp. 839–846, January 1998.

[27] F. Fontes, G. Barroso, P. Coupe, and P. Hellier, “Real time
ultrasound image denoising,” Journal of Real-Time Image
Processing, vol. 6, pp. 15–22, 2010.

[28] B. Goossens, H. Luong, J. Aelterman, A. Pizurica, and W.
Philips, “A GPU-accelerated real-time NLMeans algorithm for
denoising color video sequences,” in Proceedings of the 12th
International Conference on Advanced Concepts for Intelligent
Vision Systems, (ACIVS), vol. 6475 of Lecture Notes in Com-
puter Science, pp. 46–57, Springer, 2010.

[29] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for
image denoising,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
(CVPR), pp. 60–65, June 2005.

[30] H. Knutsson, “Representing local structure using tensors,” in
Proceedings of the Scandinavian Conference on Image Analysis,
(SCIA), pp. 244–251, 1989.

[31] F. Forsberg, V. Berghella, D. A. Merton, K. Rychlak, J. Meiers,
and B. B. Goldberg, “Comparing image processing techniques
for improved 3-dimensional ultrasound imaging,” Journal of
Ultrasound in Medicine, vol. 29, no. 4, pp. 615–619, 2010.

[32] H. Knutsson, C.-F. Westin, and M. Andersson, “Representing
local structure using tensors II,” in Proceedings of the Scandina-
vian Conference on Image Analysis, (SCIA), vol. 6688 of Lecture
Notes in Computer Science, pp. 545–556, Springer, 2011.

[33] H. Knutsson, M. Andersson, and J. Wiklund, “Advanced filter
design,” in Proceedings of the Scandinavian Conference on
Image Analysis, (SCIA), pp. 185–193, 1999.

[34] H. Knutsson and C. F. Westin, “Normalized and differen-
tial convolution: methods for interpolation and filtering of
incomplete and uncertain data,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, (CVPR), pp. 515–523, June 1993.

[35] Nvidia, CUDA Programming Guide, Version 4.0., 2011.
[36] D. Kirk and W. Hwu, Programming Massively Parallel Pro-

cessors, A Handson Approach, Morgan Kaufmann, Waltham,
Mass, USA, 2010.

[37] The Khronos Group & OpenCL, 2010, http://www.khronos
.org/opencl/.

[38] The OpenMP API specification for parallel programming,
2011, http://www.openmp.org/.

[39] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP,
Portable Shared Memory Parallel Programming, MIT Press,
Cambridge, Mass, USA, 2007.

[40] V. W. Lee, C. Kim, J. Chhugani et al., “Debunking the 100X
GPU vs. CPU Myth: an evaluation of throughput computing
on CPU and GPU,” in Proceedings of the 37th International
Symposium on Computer Architecture, (ISCA), pp. 451–460,
June 2010.

[41] M. Andersson, J. Wiklund, and H. Knutsson, “Filter net-
works,” in Proceedings of the Signal and Image Processing, (SIP),
pp. 213–217, 1999.

[42] B. Svensson, M. Andersson, and H. Knutsson, “Filter networks
for efficient estimation of local 3-D structure,” in Proceedings
of the IEEE International Conference on Image Processing,
(ICIP), pp. 573–576, September 2005.

[43] M. Andersson, J. Wiklund, and H. Knutsson, “Sequential filter
trees for efficient 2D, 3D and 4D orientation estimation,” Tech.
Rep. LiTH-ISY-R-2070, Department of Electrical Engineering,
Linköping University, Linköping, Sweden, 1998.

[44] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Bandwidth
intensive 3-D FFT kernel for GPUs using CUDA,” in Pro-
ceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, (SC), pp. 1–11,
November 2008.

[45] A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT library for
CUDA GPUs,” in Proceedings of the International Conference
on High Performance Computing Networking, Storage and
Analysis, (SC), pp. 1–10, November 2009.

[46] A. Sigfridsson, J. P. E. Kvitting, H. Knutsson, and L. Wigström,
“Five-dimensional MRI incorporating simultaneous resolu-
tion of cardiac and respiratory phases for volumetric imaging,”
Journal of Magnetic Resonance Imaging, vol. 25, no. 1, pp. 113–
121, 2007.

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://www.openmp.org/

	Introduction
	Methods
	The Power of Dimensionality
	Adaptive Filtering in 4D
	Adaptive Filtering Compared to Other Methods for Image Denoising
	Estimating the Local Structure Tensor Using Quadrature Filters
	Estimating the Local Structure Tensor Using Monomial Filters
	Monomial Filters in 2D
	Monomial Filters in 4D

	The Control Tensor
	Mapping the Magnitude of the Tensor in 2D
	Mapping the Isotropy of the Tensor in 2D
	The Tensor Mapping in 2D
	The Complete Tensor Mapping in 4D

	Calculating the Denoised Data
	The Complete Algorithm
	Normalized Convolution

	GPU Implementation
	Creating 4D Indices
	Spatial versus FFT Based Filtering
	Spatial Filtering
	Separable Filtering
	Nonseparable Filtering

	FFT-Based Filtering
	Memory Considerations

	Data
	Results
	Processing Times
	Denoising Results

	Discussion
	Processing Times
	4D Image Processing with CUDA
	True 5D Image Denoising

	Conclusions
	Acknowledgments
	References

